
Counting Triangulations of Planar Point Sets∗

Micha Sharir
Blavatnik School of Computer Science

Tel Aviv University, Tel Aviv 69978, Israel, and

Courant Institute of Mathematical Sciences
New York University, New York, NY 10012, USA

michas@tau.ac.il

Adam Sheffer
Blavatnik School of Computer Science

Tel Aviv University, Tel Aviv 69978, Israel

sheffera@tau.ac.il

Submitted: Mar 1, 2010; Accepted: Mar 24, 2011; Published: Mar 31, 2011

Mathematics Subject Classifications: 05C35, 05C80, 05C07

Abstract

We study the maximal number of triangulations that a planar set of n points
can have, and show that it is at most 30n. This new bound is achieved by a careful
optimization of the charging scheme of Sharir and Welzl (2006), which has led to
the previous best upper bound of 43n for the problem.

Moreover, this new bound is useful for bounding the number of other types of
planar (i.e., crossing-free) straight-line graphs on a given point set. Specifically, it
can be used to derive new upper bounds for the number of planar graphs (207.84n),
spanning cycles (O(68.67n)), spanning trees (O(146.69n)), and cycle-free graphs
(O(164.17n)).

Keywords: triangulations, counting, charging schemes, crossing-free graphs.

1 Introduction

A planar graph is a graph that can be drawn on the plane in such a way that its edges
intersect only at their endpoints. A planar straight-line graph is an embedding of a planar

∗Work on this paper was partially supported by Grants 155/05 and 338/09 from the Israel Science
Fund. Work by Micha Sharir was also supported by NSF Grants CCF-05-14079 and CCF-08-30272, by
Grant 2006/194 from the U.S.-Israel Binational Science Foundation, and by the Hermann Minkowski–
MINERVA Center for Geometry at Tel Aviv University.

the electronic journal of combinatorics 18 (2011), #P70 1



graph in the plane such that its edges are mapped into straight line segments. In this
paper, we only consider planar straight-line graphs, but refer to them as planar graphs
for simplicity.

Given a set S of points in the plane, a triangulation of S is a maximal planar graph
on S. When S is of cardinality at least 5, and is in general position (no three points
are collinear), it has at least two different triangulations. Let tr(n) (tr(n)) denote the
maximal (minimal) number of triangulations for a planar point set of n points in general
position. In this paper, we study the asymptotic behavior of tr(n), and focus on its upper
bound.

Previous work. Variants of this problem have been studied for over 250 years. The
first to consider such a variant was probably Euler, who studied the case of n points in
convex position. Euler produced a recursion for the number of triangulations of such
sets and guessed its solution, but could not prove its validity. In the 19th century, the
problem was studied independently by several mathematicians, which were able to produce
some findings, including a proof of Euler’s guessed solution. That is, the number of
triangulations for the convex case is Cn−2, where Cm := 1

m+1

(
2m
m

)
= Θ(m−3/24m) =

Θ∗(4m),1 m ∈ N0, is the mth Catalan number (see [25, page 212] for a discussion).
During the mid-20th century, Tutte studied several variants of this problem. He did

consider points in general position, but had other distinctions from the problem we study
(see [26], and [27, pages 114–120]). Avis was perhaps one of the first to ask whether the
maximum number of triangulations of n points in the plane is bounded by cn for some
c > 0; see [4, page 9]. This fact was established in 1982 by Ajtai, Chvátal, Newborn,
and Szemerédi [4], who showed that there are at most 1013n crossing-free graphs on n
points—in particular, this bound holds for triangulations.

Further developments have yielded progressively better upper bounds for the number
of triangulations2 [24, 8, 20], so far culminating in the previously mentioned 43n bound
[23] in 2006. This compares to Ω(8.65n), the largest known number of triangulations for a
set of n points, very recently derived by Dumitrescu et al. [9] (which improves the previous
bound Ω(8.48n) of Aichholzer et al. [1]).

The value of tr(n) has also been studied. In a companion paper [21], we derive the
bound tr(n) = Ω(2.43n) (which improves a previous bound by Aichholzer, Hurtado, and
Noy [2]). McCabe and Seidel [14] showed that when the convex hull has only O(1) vertices,
there are Ω(2.63n) triangulations. Hurtado and Noy [12] presented a configuration of n
points in general position and Θ∗(

√
12

n
) = O(3.47n) triangulations, implying tr(n) =

O(3.47n).

Related problems. Besides the intrinsic interest in obtaining bounds on the number
of triangulations, they are useful for bounding the number of other kinds of planar graphs

1In the notations O∗(), Θ∗(), and Ω∗(), we neglect polynomial factors and just give the dominating
exponential term.

2Interest was also motivated by the obviously related practical question (from geometric modeling
[24]) of how many bits it takes to encode a triangulation of a point set.
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on a given point set, exploiting the fact that any such graph is a subgraph of some
triangulation. We shortly review some of these bounds.

Let pg(n) denote the maximal number of straight-edge planar graphs embedded on a
planar point set of cardinality n in general position. A bound of pg(n) = O

(
tr(n) · 7.98n

)

is derived in [15]. Quite recently, Hoffmann et al. [11] derived the improved bound pg(n) ≤
tr(n) · 6.93n.

Let sc(n) denote the maximal number of crossing-free straight-edge spanning cycles
(sometimes referred to as simple polygonizations) in a planar point set of cardinality n
in general position. Buchin et al. [6] showed that a single triangulation has O( 4

√
30

n
) ≈

O(2.35n) spanning cycles as subgraphs, which implies sc(n) = O(tr(n) · 2.35n). Recently,
Dumitrescu et al. [9] have improved this bound, showing that sc(n) = O(tr(n) · 2.29n).
An alternative approach of Sharir and Welzl [22] yields the bound sc(n) ≈ O(86.81n).
This bound is derived from an upper bound on the maximal number of crossing-free
straight-edge perfect matchings, and does not use triangulations at all.

Let st(n) denote the maximal number of crossing-free straight-edge spanning trees for
a planar point set of cardinality n in general position. Ribó [16] (see also [18]) showed
that any planar straight-line graph has at most

(
51

3

)n
spanning trees as subgraphs. This

bound has recently been improved to O(5.29n) by Buchin and Schulz [7]. More recently,
Hoffmann et al. [11] proved that st(n) = O

(
tr(n) · 4.88n

)
.

Let cf(n) denote the maximal number of crossing-free straight-edge cycle-free graphs
(i.e., forests) embedded on a planar point set of cardinality n in general position. Such a
graph can contain at most n − 1 edges, which implies that a single triangulation of the
point set contains O∗

((
3n−6
n−1

))
= O∗ (6.75n) cycle-free graphs. This bound has recently

been improved to O(6.49n) by Buchin and Schulz [7]. More recently, Hoffmann et al. [11]
proved that st(n) = O

(
tr(n) · 5.48n

)
.

Our results. In this paper, we further decrease the existing gap on tr(n) by establishing
the new upper bound tr(n) < 30n. By using the above relationships, we get improved
bounds for all five problems mentioned above (improving also upon bounds obtainable
by the alternative technique of [22], which is based on crossing-free matchings). Table 1
presents the previous results and their new improvements. Except for the upper bound on
sc(n) in [22], all the previous bounds are obtained by using the older bound tr(n) < 43n

of [23] in the various inequalities stated above.

2 Degrees in Random Triangulations

This section, together with the following one, presents the basic technique we need in
order to derive our bound on tr(n). These methods were used in [23], to get the bound
43n, and therefore, most of these two sections will repeat the analysis in [23]. The “heart”
of this technique is perhaps its charging scheme, which is somewhat similar to Heesch’s
idea of discharging (Entladung, [10]) employed by the proofs of the Four-Color-Theorem
(see [5] and [17]). In the next sections, we extend this technique in order to get an upper
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Table 1: Summary of bounds that depend on tr(n). All the improved bounds in the right
column (except for the first one) were given in [11] (which appeared much later, after the
original submission of the present paper).

An Upper Bounds prior Improved

Bound on to our result Bounds
tr(n) 43n [23] 30n

sc(n) O(86.81n) [22] O(68.67n)

pg(n) 297.99n [11, 23] 207.84n

st(n) O(209.84n) [11, 23] O(146.69n)

cf(n) O(235.64n) [11, 23] O(164.17n)

bound of 30n. Moreover, we show that the technique, as presented, cannot achieve a
bound of o

((
2817

28

)n)
, although the true bound is probably much smaller.

e

a b

cd

(a) (b) (c)

Figure 1

Assumptions and notations. We use the general position assumption that no three
points are collinear. When there are three (or more) points on the same line, it can be
easily checked that slightly perturbing the middle point can only increase the number of
triangulations. In Section 1 we mentioned that for each point set in general position there
is an exponential number of triangulations. Interestingly, when there are no restrictions on
the number of collinear points, there might be a constant number of triangulations. Figure
1(a) depicts a set of many points with a single triangulation. Therefore, this assumption
is essential for the bounds on tr(n), and does not involve any loss of generality for upper
bounding tr(n).

For a set S of n points in general position, let S+ denote a set of n + 3 points with
a triangular convex hull (i.e., a convex hull of cardinality 3), constructed by taking a
triangle that contains S in its interior, and adding the three vertices of the triangle to S.
Notice that every triangulation of S is contained in at least one triangulation of S+, and
thus, an upper bound on the number of triangulations of S+ is also an upper bound on
the number of triangulations of S.
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Notice that every face of any triangulation of S+ has exactly three edges (including
the outer face). Using Euler’s formula, we find that every triangulation of S+ has exactly
3(n + 3) − 6 = 3n + 3 edges and 2(n + 3) − 5 = 2n + 1 inner faces.

We say that an edge in a triangulation is flippable, if its two incident triangles form
a convex quadrilateral Q. A flippable edge can be flipped, that is, removed from the
graph of the triangulation and replaced by the other diagonal of Q. Figure 1(b) depicts
a triangulation with exactly two flippable edges — ae (that can be flipped into bd) and
de (that can be flipped into ac).

Degrees in triangulations. Let T +

(S) denote the set of all triangulations of S
+

. For
i ∈ N and a triangulation T ∈ T +

(S), we let vi = vi(T ) denote the number of points in S
(not S

+
) that have degree i in T . Obviously, vi ∈ N0, v1 = v2 = 0, and

∑

i vi = n. Let
d1, d2 and d3 be the degrees in T of the three vertices of the bounding triangle, then

d1 + d2 + d3 +
∑

i i vi = 2(3n + 3) = 6n + 6. (1)

It is easily seen that for n ≥ 1, each of the three vertices of the bounding triangle has
degree ≥ 3, and thus, d1 + d2 + d3 ≥ 9. Hence, (1) implies

∑

i i vi ≤ (6n + 6) − 9 = 6n − 3, if n ≥ 1. (2)

Figure 1(c) depicts a triangulation of nine points with v3 = 0. Since we can easily
generalize it to a triangulation of 3m points, for arbitrarily large values of m, we cannot
find a better lower bound than v3 ≥ 0.

For i ∈ N, i ≥ 3, let
v̂i = v̂i(S) := E(vi(T ))

for T uniformly at random in T +
(S). That is, v̂i(S) =

1

|T +(S)|
∑

T∈T +(S)

vi(T ). Due to

linearity of expectation, any linear identity or inequality in the vi’s (such as (2)) will also
be satisfied by the v̂i’s. However, as we will show, the v̂i’s are more constrained than
the vi’s. Some notes concerning these expected degrees are given in [23]; they will be
extended and improved in a forthcoming companion paper [21]. In particular, there is a
constant δ > 0 such that v̂3 ≥ δn if n > 0 and the point set is in general position; recall
Figure 1(a) to see that general position is indeed necessary here. Before we establish this
bound, let us relate it to the question about the number of triangulations. For that, let
tr

+
(S) := |T +

(S)| and tr
+
(n) := max|S|=n tr

+
(S).

Lemma 2.1. (i) Let δ > 0 be a real constant such that, for all n ∈ N, v̂3 ≥ δn for any
set of n points in general position. Then, for all n ∈ N0,

tr
+

(n) ≤
(

1

δ

)n

.

(ii) Let δ1 > 0 be a real constant and n0 ∈ N such that, for all n, n0 ≤ n ∈ N, v̂3 ≤ δ1 n
for any set of n points in general position. Then for any set S of n ∈ N points in general
position, tr

+
(S) = Ω((1/δ1)

n).
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Proof. (i) Let S be a set of n > 0 points that maximizes tr
+

(S) among all sets of n
points; without loss of generality, let S be in general position (a small perturbation of a
point set cannot decrease the number of triangulations).

Note that we can get some triangulations of S
+

by choosing a triangulation of S
+\{q}

for some q ∈ S, and then inserting q as a vertex of degree 3 in the unique face it lands in.
In fact, a triangulation T ∈ T +

(S) can be obtained in exactly v3(T ) ways in this manner
(in particular, if v3(T ) = 0, T cannot be obtained at all in this fashion). This is easily
seen to imply that

∑

T∈T +(S) v3(T ) =
∑

q∈S tr
+

(S \ {q}) . (3)

The left hand side of this identity equals v̂3 · tr
+
(S), and its right hand side is upper

bounded by n · tr+(n − 1). Hence,

tr
+
(S) ≤ n

v̂3

· tr+(n − 1) ≤ 1

δ
· tr+(n − 1)

(since we assume that v̂3 ≥ δ n), and thus tr
+
(n) ≤ 1

δ
· tr

+
(n − 1) for all n ∈ N. Since

tr
+

(0) = 1, the lemma follows.
(ii) Along the same lines—omitted.

Recall that tr(n) ≤ tr
+
(n), as mentioned above. Therefore, our problem is reduced to

finding a large value of δ > 0 which satisfies v̂3 ≥ δ n for every n-element point set in the
plane. Our approach for this problem is explained in Section 3, but first, we present an
example for analyzing v̂3.

v

(a) (b)

Figure 2

An example. Consider a point set S+ such that S lies on a convex arc that shares
its endpoints with an edge of the bounding triangle (as depicted in Figure 2(a)). Notice
that each of the edges depicted in this figure must be present in every triangulation of S+

(since no other edge can cross it). Therefore, the number of triangulations of S+ equals
the number of triangulations of the shaded area. Since this is a convex polygon with n+2
vertices, it has Cn = Θ∗(4n) triangulations.

For a point in S to have degree 3, its two adjacent vertices in the convex polygon have
to be connected to each other, which leaves an (n + 1)-gon to be triangulated in Cn−1

ways (as depicted in Figure 2(b), where v has degree 3). Therefore, the probability that
this point has degree 3 is exactly Cn−1

Cn

= n+1
2(2n−1))

= 1
4

+ O
(

1
n

)
, and thus, v̂3 = n

4
+ O(1).
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3 A Lower Bound on v̂3

The material in this and the following sections is largely borrowed from the earlier paper
[23], with the kind permission of Emo Welzl. It is presented here for the sake of completion.

In this section we show how to get a lower bound on v̂3 by using a charging scheme.
The basic idea of our analysis is to have each vertex of any triangulation of S charge
to vertices of degree 3. If every vertex charges at least 1 and each vertex of degree 3
is charged at most c, then we know that v̂3 ≥ n

c
, so that, by Lemma 2.1, tr

+

(n) ≤ cn.
The actual charging scheme is more involved, for several reasons. First, since there are
triangulations that have no degree 3 vertices, the charging has to go across triangulations.
Moreover, we will let vertices charge amounts different from 1 (even negative charges will
occur). However, on average, each vertex will charge at least 1. The difficulty in the
analysis will be to bound the maximum charge c to a vertex of degree 3.

v

(b) (c) (d)

v’

u’

u

(a)

Figure 3

A simplified charging scheme. We consider the set S × T +
(S) and call its elements

vints (vertex in triangulation). The degree of a vint (p, T ) is the degree (number of
neighbors) of p in T ; a vint of degree i is called an i-vint. The overall number of vints is
obviously n · tr+(S), and the number of i-vints is v̂i · tr+(S). (Note that the three vertices
of the enclosing triangle do not participate in this definition.)

We define a relation on the set of vints. If u and v are vints, then we say that u → v
if v can be obtained by flipping one edge incident to u in its triangulation. That is, u
and v are associated with the same point but in different triangulations, and u has to be
an (i + 1)-vint and v an i-vint, for some i ≥ 3. We denote by →∗ the transitive reflexive
closure of →, and if u →∗ v, we say that u can be flipped down to v. Charges will go from
vints to 3-vints they can be flipped down to. For example, the 4-vint u depicted in Figure
3(a) can be flipped down to the 3-vint v in Figure 3(b).

The support of a vint u is the number of 3-vints it can be flipped down to, i.e.,

supp(u) :=
∣
∣{v | v is 3-vint with u →∗ v}

∣
∣ .

Out of the four edges incident to the 4-vint u in Figure 3(a), only one is flippable, and
thus, u can only be flipped down to the 3-vint v in Figure 3(b), and supp(u) = 1. The
4-vint u′ in Figure 3(c) can be flipped down both to v and to the 3-vint v′ in Figure 3(d),
and thus, supp(u′) = 2.
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A natural charging scheme would let a vint u charge 1
supp(u)

to each 3-vint it can be
flipped down to—in this way, it will charge a total of 1. In the case depicted in Figures
3(a–d), v is charged 1 by u and 1

2
by u′, and v′ is charged 1

2
by u′.

Let us gain some understanding of the notion of supp(u). Note that the removal of an
interior point p and its incident edges in a triangulation T creates a star-shaped polygon
(with respect to p). We call this the hole of the vint (p, T ). For a vint u = (p, T ), we
can remove p and its incident edges from T , triangulate the hole that was created, and
reinsert p as a 3-vint in the unique triangle it lands in. Notice that u flips down to a 3-vint
v (and charges it) if and only if v can be obtained as just described. Indeed, each down-
flip removes one edge incident to u and the flip cuts off a portion of the hole, until the
degree of u becomes 3 and then the removal of u gives a triangulation of its original hole.
The converse direction is established similarly. Therefore, supp(u) equals the number of
triangulations of the hole of u.

Lemma 3.1. For an i-vint u = (p, T ):

(i) 1 ≤ supp(u) ≤ Ci−2, where the upper bound is attained if and only if the hole is convex.

(ii) For a vint u′, if u →∗ u′, then supp(u) ≥ supp(u′).

Proof. (i) This follows from the fact that a convex i-gon has Ci−2 triangulations, which
is the maximum for all i-gons. The support is at least 1 since each simple polygon has at
least one triangulation.
(ii) If u → u′ then the hole of u′ is contained in the hole of u, with the vertices of the
former a subset of the vertices of the latter. Therefore, every triangulation of the hole of
u′ can be extended to at least one triangulation of the hole of u.

Lemma 3.2. The number of i-vints (i ≥ 3) that charge a fixed 3-vint is at most Ci−1 −
Ci−2, and this bound is tight in the worst case.

The general outline of a proof of this lemma can be found in [19, Lemma 4].

v u’u

(a) (b) (c)

Figure 4

The actual charging scheme. By Lemma 3.2, the maximal number of 4-vints that
can charge a certain 3-vint is C3 − C2 = 5 − 2 = 3, and the maximal number of 5-vints
is 14 − 5 = 9. Figure 4(a) depicts a 3-vint v that is charged by three 4-vints and nine
5-vints, and moreover, each of these vints has a support of 1 (i.e., charges 1 to v). Figures
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4(b) and 4(c) depict two of the 5-vints that charge v (and have a support of 1). This case
can easily be extended into a 3-vint charged 1 by Ci−1 −Ci−2 i-vints, for every 3 ≤ i ≤ j.
Such a 3-vint is charged at least

3−vint
︷ ︸︸ ︷

(C2 − C1) +

4−vints
︷ ︸︸ ︷

(C3 − C2) + · · ·+
j−vints

︷ ︸︸ ︷

(Cj−1 − Cj−2) = Cj−1 − 1 = Θ∗(4j).

Therefore, in the simplified charging scheme there is no uniform upper bound on the
amount charged to individual 3-vints.

For that reason, we switch to a charging where

an i-vint u charges 7−i
supp(u)

to each 3-vint v with u →∗ v.

Note that in this scheme, a 3-vint charges 4 to itself (which sounds like bad news), but
7-vints do not charge at all, and all i-vints with i ≥ 8 charge a negative amount, so that
is good news for the 3-vints (which want to be charged as little as possible).

The overall charge that an i-vint can make is 7− i, so the overall charge accumulated
for all vints associated with a triangulation T is exactly

∑

i(7 − i)vi(T ) =
∑

i 7vi(T ) −
∑

i i vi(T ) > 7n − 6n = n,

where we have used (2) for the inequality. Therefore, on average, each vint gets to charge
at least 1.

For a 3-vint v and i ∈ N, let chi(v) be the number of i-vints that charge v. For an
initial upper bound, we can ignore the zero and negative chargings and therefore consider
only charges from vints of degree at most 6. Thus, a 3-vint cannot be charged more than

4 ch3(v) + 3 ch4(v) + 2 ch5(v) + ch6(v).

By Lemma 3.2, ch3(v) = 1, ch4(v) ≤ C3 − C2 = 5 − 2 = 3, ch5(v) ≤ 14 − 5 = 9, and
ch6(v) ≤ 42 − 14 = 28. Therefore, a 3-vint cannot be charged more than

4 · 1 + 3 · 3 + 2 · 9 + 1 · 28 = 59,

which implies v̂3 ≥ n
59

. By Lemma 2.1, this gives an upper bound of 59n for the number
of triangulations of any set of n points. This bound was established by Santos and Seidel
[19], which we have derived now with ideas similar to theirs but in a different setting.

4 First Improvements

In the current section, we improve the bound v̂3 ≥ n
59

, presented in the previous section,
to the bound v̂3 ≥ n

43
, repeating the analysis of Sharir and Welzl [23]. This improvement

is achieved by considering vints with a negative charge (i.e., vints of degree at least 8),
and also by taking into account the supports of the positively charging vints (both of
which have been ignored in the derivation of the Santos-Seidel bound). We observe that
when there is a large positive charge (from vints of degree at most 6), there is also a large
negative charge. For example, if indeed v is charged 28 from the 6-vints, it is also charged
less than -10164 from 18-vints (the analysis below will clarify this statement).
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Figure 5

Flip-trees. How do we find the vints that flip down to a given 3-vint v = (pv, Tv)?
Clearly, there is v itself. Consider a flippable edge e (in Tv) that is not incident to pv but
is part of a triangle incident to pv. Flipping e yields a 4-vint u = (pv, Tu) that can be
flipped down to v (by reversing the preceding flip). Similarly, if in the triangulation Tu

there is a flippable edge that is not incident to pv but part of a triangle incident to pv,
then we can flip this edge to get a 5-vint that can be flipped down to v, etc. Figure 5(a)
depicts a 3-vint v, that, by flipping bc into dv, turns into a 4-vint that can be flipped
down to v (and by afterwards flipping bd into ev, turns into a 5-vint that can be flipped
down to v).

In order to represent this structure, we associate with a 3-vint v = (pv, Tv) a flip-tree
τ(v), defined as follows. The root of the tree is labeled by the pair (tv, Nv), where tv is
the hole of v (a triangle) and Nv is the set of its three vertex points (the neighbors of pv

in Tv). All other nodes of the tree are associated with a pair (t, q), where t is a face of Tv

and q is a point incident to that face (note that tv from the root is not a face of Tv—it is
the union of the three faces incident to pv). While explaining the structure of the flip-tree
in the following paragraphs, we refer to an example depicted in Figures 5(b) and 5(c).
These figures depict a 3-vint v and its flip-tree, and the nodes of this flip-tree are labeled
only by their vertex (and not by their triangle).

(i) Every edge e of tv gives rise to a child if it can be flipped in Tv. If so, this child
is labeled by the triangle incident to e that is not incident to pv, and by the point in
this triangle which is not incident to e. Therefore, the root has at most three children.
In our example, the root has two children—d (since bc is flippable) and h (since ab is
flippable). Notice that ∆bcd is the triangle corresponding to d and ∆abh is the triangle
corresponding to h.

(ii) Consider now a non-root node of the tree labeled by (t, q) and an edge e of t
incident to q. If e is a boundary edge, no child will be obtained via e. Otherwise, let
t′ be the other triangle incident to e. If t′ together with the triangle formed by e and
pv is a convex quadrilateral (where e can be flipped), then this gives rise to a child of
(t, q) labeled by (t′, q′) where q′ is the vertex of t′ that is not incident to e. Therefore, a
non-root node has at most two children. In our example, the node corresponding to h has
a single child, since the quadrilateral vhia is convex, but the quadrilateral vbjh is not.

Note that the union of all triangles of the nodes of any subtree of τ(v) (containing
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the root) form a polygon that is star-shaped with respect to pv; this follows easily by the
inductive definition of τ(v). The triangles (in the triangulation of v) form a triangulation
of the polygon, and the subtree is actually the dual tree of this triangulation. The shaded
area in Figure 5(b) is the portion of the triangulation dual to the entire flip-tree of v.
Also, an edge in the flip-tree incident to two nodes that are dual to (i.e., labeled by) the
triangles ∆1, ∆2 in Tv, can be regarded as dual to the edge in Tv incident to both ∆1 and
∆2. If we retriangulate this polygon in Tv by connecting pv to all vertices of the polygon,
we get a vint that flips down to v. Moreover, every vint u that flips down to v can be
obtained in this way (by taking the subtree dual to the hole of u). That is:

Lemma 4.1. The subtrees of τ(v) containing its root are in bijective correspondence with
the vints that flip down to v.
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Figure 6

Rigid cores. In the above, we identified the vints that charge a 3-vint v = (pv, Tv).
The next step is to determine how much these vints charge to v. This depends on the
support of these vints (i.e., the number of triangulations of their holes)—the smaller the
support, the more v is charged. The following analysis only discriminates between vints
that have a support of 1, and all other vints.

Consider an edge e of the flip-tree τ(v), and let us denote the two triangles of Tv that
are dual to the nodes adjacent to e as ∆1 and ∆2. e is dual to the edge e′ of Tv, which is
adjacent to both ∆1 and ∆2. If e′ cannot be flipped in the union of these two triangles,
then we say that e is a rigid edge (with respect to τ(v)). Notice that if one of the two
triangles corresponds to the root of τ(v), e′ may be flippable in Tv but not in ∆1 ∪ ∆2.
For an example, we return to the case depicted in Figures 5(b) and 5(c), where the edge
ab is flippable in the triangulation, but not in ∆abc ∪ ∆abh. Figure 6(a) depicts (again)
the flip-tree of v from Figure 5(b), with the distinction that the solid lines represent rigid
edges and the dashed lines represent non-rigid edges.

The rigid core, τ ∗(v), of τ(v) is defined to be the maximal subtree of τ(v) that includes
the root and consists exclusively of rigid edges. τ ∗(v) is non-empty, since it always contains
the root of τ(v). In Figure 6(a), the rigid core consists of the edges dual to ab and ah,
and of the nodes incident to these edges.

Lemma 4.2. The subtrees of the rigid core τ ∗(v) containing the root are in bijective
correspondence with the vints u that flip down to v and have a support of 1.
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Proof. Consider a vint u that flips down to v. We recall that supp(u) = 1 if and only if
the hole of u has exactly one triangulation. Note that one triangulation of this polygon
can be obtained by taking the set of triangles in the subtree corresponding to u.

• If all edges in this subtree are rigid, then none of the dual edges in the triangulation
can be flipped. That is, there is only one triangulation of the hole, since the set of
triangulations of a polygon is connected via edge-flips (as shown by Hurtado et al.
[13]).

• If any of the edges is not rigid, then its dual edge can be flipped, and so obviously there
are at least two triangulations.

We next analyze the contribution of a rigid core R to the charging of its 3-vint v. Each
j-edge subtree of R (containing the root) corresponds to a (j + 3)-vint, and therefore,
charges 7 − (j + 3) = 4 − j. Let contr+(R) (contr−(R)) denote the sum of positive
(negative) charges coming from subtrees of R. That is, contr+(R) (resp., contr−(R)) is
the sum of the charges coming from subtrees with j ≤ 3 (resp., j ≥ 5) edges.

Given a tree, we let the level of an edge denote the level of the node at its bottom
(where the root is of level 0). Given a rigid core, we let λi, i ∈ {1, 2, 3}, denote the number
of level-i edges it contains. Moreover, we denote the number of nodes at level 1 with two
child-edges by ν2. There are several restrictions on these parameters: λ1 ≤ 3, λ2 ≤ 2λ1,
λ3 ≤ 2λ2, and ν2 ≤ λ2/2. For example, for the rigid core depicted in Figure 6(b), we have
λ1 = 3, λ2 = 2, λ3 = 0, and ν2 = 1.

We can express contr+(R) by using the above parameters:

4 ·
︷︸︸︷

1 +3 ·
︷︸︸︷

λ1 +2 · (
︷︸︸︷
(

λ1

2

)
+

︷︸︸︷

λ2 )

+ 1 · (
︷︸︸︷
(

λ1

3

)
+

︷ ︸︸ ︷

λ2(λ1 − 1)+
︷︸︸︷
ν2 +

︷︸︸︷

λ3 )

= 4 +
(

λ1

3

)
+ λ2

1 + 2λ1 + (λ1 + 1)λ2 + λ3 + ν2

=







20 + 4λ2 + λ3 + ν2 if λ1 = 3,
12 + 3λ2 + λ3 + ν2 if λ1 = 2, and
7 + 2λ2 + λ3 + ν2 if λ1 = 1.

(4)

For example, if R is a complete tree of height 3, then λ1 = 3, λ2 = 6, λ3 = 12, and ν2 = 3.
Therefore, contr+(R) = 20 + 4 · 6 + 12 + 3 = 59.

Lemma 4.3. Let R be a rigid core with m edges and without any level-4 edges, then

(i) contr+(R) ≤ 13 + 9m

2
.

(ii) contr−(R) ≤ min{0, 14 − 3m}.
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Proof. (i) Note that ν2 ≤ λ2

2
and λ2 + λ3 = m− λ1. If λ1 = 3, then by using (4) we get

contr+(R) ≤ 20 +
9

2
λ2 + λ3 ≤ 20 +

9

2
(λ2 + λ3) = 20 +

9

2
(m − λ1) =

13 + 9m

2
.

In a similar manner, we get a bound of contr+(R) ≤ 10+7m
2

when λ1 = 2, and a bound
of contr+(R) ≤ 9+5m

2
when λ1 = 1. Obviously, these latter bounds are dominated by the

bound of λ1 = 3.
(ii) If m ≤ 4, then R does not contain any i-vints with i ≥ 8, and thus, contr−(R) =

0. If m = 5, there is a single 8-vint that consists of the entire rigid core, and thus,
contr−(R) = 7 − 8 = −1. Notice that the above bound holds for both of these cases.

For m ≥ 6, the vint that consists of all the edges of the rigid core is an (m + 3)-vint
that charges 7 − (m + 3) = 4 − m < 0. By removing a single leaf from the rigid core, we
get an (m + 2)-vint that charges 7 − (m + 2) = 5 − m < 0. A rigid-core of size at least
6 that has no level-4 edges must have at least two leaves, and therefore, contains at least
two (m + 2)-vints. (Figure 6(c) depicts a rigid core with m = 6 and exactly two leaves.)
By summing up the above, we get contr−(R) ≤ (4−m)+ 2(5−m) = 14− 3m < 0, which
implies that the bound holds for this case, too.

The maximal charge of a flip-tree. We are now ready to analyze how much a 3-vint
v can get charged by the vints of its flip-tree (which are the only vints that charge it, as
shown above).

First, for j ≥ 4, we ignore j-level edges of the flip-tree. Since such edges cannot
participate in 4-, 5-, or 6-vints, this can only increase the charge of the flip-tree. Moreover,
we assume that every 4-, 5-, or 6-vint that is not entirely in the rigid core has a support
of 2. Since such a vint has a support of at least 2, this also can only increase the charge
of the flip-tree. Finally, we consider i-vints with i ≥ 8, only if they have a support of 1
(i.e., contained in the rigid core). Since such vints with a larger support have a negative
charge, ignoring them can only increase the charge of the flip-tree.

We further simplify the analysis, by assuming that the flip-tree is complete up to level
3 (i.e., the root has three child edges, and every level-1 or level-2 node has two child
edges). If an edge is missing in the flip-tree, we can add it as a non-rigid edge. Since
we only consider vints with a non-rigid edge if they have a positive charge, this can only
increase the charge of the flip-tree.

By using all of the above assumptions, we notice that v cannot be charged by more
than (the second term represents the charge from vints not entirely in the rigid core)

contr+(R) +
1

2
(59 − contr+(R)) + contr−(R)

=
59

2
+

contr+(R)

2
+ contr−(R)

≤ 118 + (13 + 9m)

4
+ contr−(R)

=
131 + 9m

4
+ contr−(R),
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where R is the rigid core of the flip-tree, and m is the number of its edges. If m ≤ 4,
then contr−(R) = 0, and the expression is bounded by 131+36

4
= 413

4
. If m ≥ 5, then the

expression is bounded by

131 + 9m

4
+ (14 − 3m) =

187 − 3m

4
≤ 187 − 3 · 5

4
= 43.

Therefore, we get a bound of v̂3 ≥ n
43

for any set of n points. Figure 7(a) depicts a flip-tree
that achieves this bound by using our pessimistic and simplified analysis (as before, the
solid lines represent rigid edges and the dashed lines represent non-rigid edges). In this
flip-tree, the rigid core generates a 3-vint (which is the root), three 4-vints, five 5-vints
(out of the possible 9), six 6-vints (out of possible 28), and one 8-vint. This implies that
the charge of this flip-tree (again, using our pessimistic form of analysis) is

4 · 1 + 3 · 3 + 2

(

5 +
4

2

)

+

(

6 +
22

2

)

− 1 · 1 = 43.

Can we do better? We now discuss possible improvements for the bound presented
above. There are some obvious places where the simplified analysis presented above can
potentially be improved — it considers vints with a negative charge only if they are
entirely in the rigid core, and it assumes that every vint with a positive charge has a
support of at most 2. For example, we can improve the analysis by noticing that every
vint with at least two non-rigid edges has a support of at least 3.

The following sections present a more complex analysis that exploits these issues, and
shows that the maximum charge to a 3-vint is smaller than 30, thus yielding the bound
of v̂3 > n

30
(and tr(n) < 30n). A natural question would be how much further can we

improve this bound. To answer this, we consider the 3-vint v depicted in Figure 7(b)
(together with the respective flip-tree). This is exactly the flip-tree in Figure 7(a), after
removing all of its non-rigid edges, except for cd. For the charge coming from the rigid
core, we can repeat the above analysis, and get 4 · 1 + 3 · 3 + 2 · 5 + 1 · 6 − 1 · 1 = 28.
The non-rigid edge is present in one 5-vint, two 6-vints, three 8-vints, and one 9-vint. In
the following sections, we explain how to analyze the supports of such vints (i.e., count
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the number of triangulations of their holes). For now, we only state that the 5-vint has a
support of 3, both 6-vints have a support of 4, two 8-vints have a support of 8, the third
8-vint has a support of 7, and the 9-vint has a support of 12. (All of these statements
can be verified directly, though tediously, from Figure 7(b).) Therefore, v gets charged

28 + 2 · 1 · 1

3
+ 1 · 2 · 1

4
− 1

(

2 · 1

8
+ 1 · 1

7

)

− 2 · 1 · 1

12
= 28

17

28
.

This implies that even an optimal analysis of the flip-tree will not achieve a better bound
than 2817

28
. We believe that this is indeed the flip-tree with the largest charge possible.

However, recall that our technique gives a bound for the worst-case 3-vint, when we
actually need a bound for the average 3-vint. Therefore, it might be possible to achieve
a much smaller bound than 2817

28
, by using methods that consider the average charge to

a 3-vint. It seems likely that the actual value of tr(n) is much closer to the current lower
bound of 8.65n than to our upper bound of < 30n.

5 Infrastructure for an Improved Analysis

The three remaining sections of this paper describe an improved analysis, proving that a
3-vint always gets charged less than 30. This extended analysis proceeds by case analysis
according to the possible RCs (rigid cores). The current section presents some notations
and rules which will be used repeatedly in the analysis of charges of 3-vints. Section 6
provides more advanced rules that are used to bound the supports of vints with negative
charges. Finally, Section 7 presents the analysis itself.
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Figure 8

Catalan numbers — extensions. The Catalan numbers were introduced in Section 1,
for counting triangulations of point sets in convex position. We will also need the following
extension of these numbers, for point sets in “almost” convex position. Consider a simple
polygon with n + 1 vertices in convex position, and an additional reflex vertex b, which
blocks the visibility between its two direct neighbors, a and c, and not between any other
pair of vertices (see Figure 8(a)). The number of triangulations of this polygon is equal
to the number of triangulations of a convex set of n + 2 points, which do not contain the
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edge ac (see Figure 8(b)). This number is easily seen to be Cn − Cn−1, and we denote it
by C ′

n.
Consider a simple polygon with n vertices in convex position, and two additional reflex

vertices, which are not direct neighbors, so that, as above, each of them only blocks the
visibility between its two neighbors (as depicted in Figure 8(c)). Similarly to the previous
case, the number of triangulations of this polygon is equal to the number of triangulations
of a convex set of n+2 points, which do not contain the edge ac and the edge df . By using
the inclusion-exclusion principle, this number is easily seen to be Cn − 2Cn−1 +Cn−2, and
we denote it by C ′′

n.
We can further generalize this notation into a polygon with r ≤ n

2
reflex vertices, with

the above minimal-blocking property, when no two of these vertices are neighbors. By
using the inclusion-exclusion principle again, it can be easily seen that the number of
triangulations of such a polygon is C

(r)
n =

∑r
i=0(−1)i

(
r
i

)
Cn−i.

The tr(·) function. This function is defined with respect to a simple star-shaped poly-
gon P , and its input is an internal chord of P . The value of the function is the number of
triangulations of P which contain the chord. For example, when referring to the polygon
in Figure 8(d), we have tr(bd) = C2 = 2 and tr(ad) = C ′

2 = 1. When we wish to refer
to the number of triangulations which contain more than one chord, we put a plus sign
between the chords. For example, using the same polygon, we have tr(bd + be) = 1.

We usually use this notation when each triangulation must contain exactly one out of
two specific chords, A and B. In such a case, the number of triangulations of the polygon
is tr(A) + tr(B). For example, the polygon in Figure 8(d) has tr(ad)+ tr(be) = 1 +2 = 3
triangulations.

p

bc

cq bq
a

b

q

c o

v

bq

b
c

a

v

o

p
q

bc

cqa

bc

cq bq

b

o

c

p

v

q

(a) (b) (c)

Figure 9

The vertex of an edge. This term is used with respect to a specific flip-tree. Consider
an edge H in the flip-tree, which is dual to an edge pq of the triangulation. Let pqa and
pqb be the triangles adjacent to the edge pq, so that the node in the flip-tree dual to pqa
is the parent of the node dual to pqb. In this case, we say that b is the vertex of the edge
H , or, equivalently, of the edge pq. (Recall that b was used earlier to label the node dual
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to pqb.) The vertices of a vint v are the vertices of the edges in the flip-tree of v, plus the
three vertices of the triangle containing the point of the vint.

For example, in Figure 9(a), q is the vertex of bc and p is the vertex of cq (in the
flip-tree of v).

Rule 1. Let D be a level-1 or level-2 edge which is part of the rigid core (RC). Assume
that D has two child-edges in the flip-tree, E and F , and that they are not part of the
RC. Flipping E or F might cause D to be flippable, but it is not possible for both of them
to have this property.

Explanation. For an example of the assumptions in the rule, see Figure 9(a). In this
figure, v is the 3-vint, and bc, cq, and bq are dual to D, E, and F , respectively. In the
flip-tree, a dashed line represents a non-rigid edge, and a solid line represents a rigid edge.
In the notation of the figure, assume, without loss of generality, that abq forms a right

turn. Since o is to the right of the line supporting
−→
bq (directed from b to q), abo is also a

right turn. This means that, after flipping bq, bc remains unflippable. �

We refer to Figure 9(a) again, and consider the 5-vint which uses bc and bq. Such a
5-vint can have a support of at most 2, no matter where o is, since o can never see a. We
refer to such a 5-vint as a handicapped 5-vint. In other words, it is a 5-vint which uses a
rigid level-1 edge, and the level-2 edge which cannot cause its parent to be flippable, no
matter where its vertex is. Rule 1 implies that each rigid level-1 edge with two non-rigid
child-edges, produces at least one handicapped 5-vint. Note that the level-2 edge of a
handicapped 5-vint may or may not be rigid.

Rule 2. Let D be a level-1 or level-2 edge which is part of the RC, so that it has a
non-rigid child E and a rigid child F . After flipping E, F remains unflippable.

Explanation. Without loss of generality, we assume that D is a level-1 edge. For an
example of the assumptions in the rule, see Figure 9(b). In the figure, D, E, and F
are dual to bc, cq, and bq, respectively. For F to be rigid, o has to be to the left of

the line supporting −→cq (it cannot be to the right of the line supporting
−→
cb , or else it

would not be visible from v). This means that o is also to the left of the line supporting
−→pq. This implies that the quadrilateral pboq is non-convex, and that after flipping cq,
bq remains unflippable. The same argument implies that bq remains unflippable after
flipping any child edges of cq. The symmetric case, where the flippable edge belongs to
the handicapped 5-vint, is depicted in Figure 9(c). Notice that the proof also remains
valid if we replace E with one of its child edges. �

Rule 3. Consider a rigid core with at least four edges. Expanding it by adding a level-3
edge H to the RC, cannot increase the charge (the entire charge of the 3-vint, not only
from rigid core edges).
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Explanation. There is a single vint with a positive charge that uses H , which is a
6-vint. Let m > 1 denote the support of this 6-vint in the original configuration. If the
6-vint did not exist, we define m = ∞. In the new layout, in which H becomes rigid,
the charge gained from the 6-vint increases by 1 − 1

m
. There is at least one 8-vint which

contains the 6-vint and two additional RC edges. In the original triangulation, this 8-vint
had a support of at least m. In the new layout, the charge received from the 8-vint is −1,
which means that it decreased by at least 1 − 1

m
. Therefore, adding H to the RC cannot

increase the charge. �

6 Vint extensions

One of the techniques that are used in order to bound positive charges of vints, is to extend
them into vints with negative charge, such that this charge neutralizes some (or all) of the
positive charge (see, for example, Rule 3 above). Typically, but not exclusively, we add
RC edges to the vint, since they have a relatively small influence on the support of the
vint. This section presents additional rules which calibrate the effect of such extensions
on the total charge.
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6.1 Non-visible terrains

Let v be a 3-vint whose vertex has a, b, and c as neighbors (see Figure 10(a)). The
non-visible terrain of bc is defined as follows. Draw two half-lines from the vertex a, one
passing through b, and the other through c. The truncated unbounded wedge bounded by
these two half-lines and by the edge bc is referred to as the visible terrain of bc; it is the
darkly shaded area in Figure 10(a). The non-visible terrain of bc consists of two wedges,
lightly shaded in Figure 10(a), one bounded by the halflines that emanate from c, lie on
the lines −→ac, −→cv, and do not contain a, v, and the other bounded by the halflines that

emanate from b, lie on the lines
−→
ab,

−→
bv, and do not contain a, v. Consider the subtree
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of the flip-tree of v, which is formed by taking the edge dual to bc and its descendants.
When talking about vertices in the non-visible terrain of bc, we only refer to vertices of
edges dual to edges in this subtree 3. Any vertex in the non-visible terrain of bc cannot
see any of the vertices in the non-visible terrains of ab and ac (in the sense that the
segment between them is not fully contained in the hole of the respective vint; such a
case is depicted in Figure 10(b)). We say that the vertex of an edge E is in its non-visible
terrain, if it is in the non-visible terrain of the level-1 ancestor of E (which may be E
itself). By definition, the vertex of an RC edge has to be in its non-visible terrain.

Rule 4. Consider two (or three) vints without a common level-1 edge, and assume that all
of their vertices are in their non-visible terrains. We can create a larger vint by appending
the edges of these vints. The support of this larger vint will be the product of the supports
of the original vints.

Explanation. By the above definitions, vertices from different vints cannot see each
other, which implies the rule. �

For a typical application of this rule, consider a 5-vint with a rigid level-1 edge, a
non-rigid level-2 edge, and a support of 2. The vertex of the level-2 edge must be in its
non-visible terrain, for otherwise the 5-vint would have a support of 3 (this is depicted in
Figure 10(a), where the 5-vint has a support of 3 if and only if p is in its visible terrain.).
See Figure 10(b) for an example, which depicts such a 5-vint in each of the subtrees of
the flip-tree. Appending the edges of two such 5-vints results in a 7-vint with a support
of four. Appending the edges of three such 5-vints results in a 9-vint with a support of
eight. Additional RC edges can also be appended without increasing the support.

The support of more complex vints can be bounded this way. For example, building
a vint using all the edges in Figure 10(c), results in a 10-vint with a support of 12 (a
5-vints with a support of 2 in the subtree of ab; in the subtree of bc, ce must be present,
and when cd is present there are four possible triangulations, giving a total support of 6).

Rule 5. Consider a 5-vint with a rigid level-1 edge, a level-2 edge, and a support of at
most 2. (a) At least one of the two 6-vints, which extend the 5-vint with a level-3 edge, is
entirely in its non-visible terrain (i.e., the vertices of its three edges are in their non-visible
terrain). (b) If the 5-vint, which uses the same level-1 edge with a different level-2 edge
(the sibling edge), has a support of 3, both 6-vints (extending the first 5-vint) are entirely
in their non-visible terrain. (c) If the 5-vint is handicapped, the two 6-vints are entirely
in their non-visible terrain.

Explanation. In each of the cases (a)–(c), the vertices of the level-1 and level-2 edges
are in their non-visible terrain, as easily follows from the assumptions. Thus, we only need
to show that the vertices of the level-3 edges are in their non-visible terrain. Consider
first case (c) of a handicapped 5-vint, as depicted in Figure 11(a) (the 5-vint containing

3Note that any such vertex must lie either in the visible or in the non-visible terrain of bc.
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the edges bc and bp is handicapped). Since p must be to the right of
−→
ab, the halfline which

emanates from b, lies on the line
−→
ab, and does not contain a, must be counterclockwise to

the ray from a through p. The vertices of the level-3 edges of the 6-vints which extend
the 5-vint (t and r in the figure), must be to the right of the ray from a through p, since
otherwise they will not be able to see v. This implies that these vertices are to the right

of
−→
ab, and thus, in their non-visible terrain.
Consider a 5-vint with a support of 3, a rigid level-1 edge, and a level-2 edge A. The

5-vint which uses the sibling edge of A is either a handicapped 5-vint, or entirely in the
RC (see Rule 1; the distinction is because we have defined handicapped 5-vints only for
non-RC vints). Such a 5-vint is depicted in Figure 11(b) (the 5-vint which contains bc
and bp). The analysis in the preceding paragraph applies here as well, and implies the
claim in (b).

Finally, consider case (a). Let q denote the vertex of the level-2 edge of the 5-vint. It
can be easily checked that if the 5-vint has a support of at most 2, q cannot see a (see
Figures 11(b–d)), so q must be in its non-visible terrain, and thus, at least one of the
level-3 triangles with q as a vertex lies in its non-visible terrain.
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6.2 Non-visible subtrees

This subsection presents an additional application of non-visible terrains. We do not
present it as a rule, since it is a general method, and we will later use several of its
variants.

Consider a level-1 edge and one of its child edges, both belonging to the RC. By
construction, the vertices of these edges are in the same wedge of their non-visible terrain.
This case is depicted in Figure 12(a), where o, p, and q are in their non-visible terrain
wedge bounded by the ray from c through b and the ray from v through b (the shaded
wedge in the figure). These vertices cannot see any of the vertices from the subtree of the
flip-tree rooted at ab (such as the vertex d in Figure 12(a)); we refer to this subtree as the
non-visible subtree of the vertices in the wedge. Each non-visible subtree can contain up
to five 6-vints, four of which use a level-3 edge, and one of which uses two level-2 edges.
The two RC edges assumed above do not participate in any of these 6-vints, since they
are in a different subtree. Using these two edges, any of the five 6-vints can be extended
into an 8-vint with the same support. In Figure 12(a), bc and cp are two such RC edges,
which can be used to extend possible 6-vints in the subtree of ab.

Here are two additional applications of this observation:
(i) Consider a handicapped 5-vint. The vertices of the 5-vint are in the same wedge,

and hence have the same non-visible subtree. This time, each 6-vint from the non-visible
subtree can be extended into an 8-vint with a double support. In Figure 12(a), bc and
bp create such a 5-vint, which can be used to extend 6-vints in the subtree of ab. In this
way, half of the charge of these 6-vints is eliminated.

(ii) Consider a level-1 edge which has two child edges, all contained in the RC. The
vertices of the three edges must be in the same wedge. The non-visible subtree of these
vertices can contain up to two 5-vints; each can be extended into an 8-vint with the same
support, halving the charge of any such 5-vint. Such a case is depicted in Figure 12(b),
where the subtree of ab is the non-visible subtree of bc, bp, and cp.

6.3 Non-rigid subtrees

Rule 6. Consider a level-1 edge, e, which is not part of the rigid core. We refer to the
subtree which is rooted at e as a non-rigid subtree. There are at most five 6-vints in this
subtree, and the overall charge from these 6-vints and their extensions cannot exceed 2.

Explanation. Since the level-1 edge is not rigid, each of the 6-vints has a support of at
least 2, which implies a trivial bound of 5

2
on their overall charge. To improve this bound

to the one asserted in the rule, we distinguish between the following cases:

• At most four of the 6-vints exist. Then the bound cannot exceed 1
2
· 4 = 2. In the

following cases we may therefore assume that all five 6-vints are present, so the subtree
is full up to level 3.

• All of the 6-vints have a support of 2. In this case, all the edges in the non-rigid
subtree must be rigid, except for the level-1 edge. In addition, these edges must remain
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unflippable (in the hole of v) after the level-1 edge is flipped, since none of the vertices
in the subtree, except d, can see a; see Figure 12(c). This implies that the 10-vint which
contains the entire non-rigid subtree must also have a support of 2. The overall charge
in this case is lower than 1

2
(1 · 5 − 3 · 1) = 1.

• Exactly four 6-vints have a support of 2, and the fifth 6-vint uses a level-3 edge. Ap-
pending the edges of the first four 6-vints generates a 9-vint with a support of 2. The
charge in that case is at most 1

2
(1 · 4 − 2 · 1) + 1

3
= 11

3
.

• Exactly four 6-vints have a support of 2, and the fifth 6-vint uses two level-2 edges.
The fact that the support of the fifth 6-vint is at least 3 implies that at least one of the
level-2 edges must be flippable (possibly only after flipping the level-1 edge). Two of
the other 6-vints also use this level-2 edge, and thus have a support larger than 2. We
thus conclude that this case cannot occur.

• Exactly three 6-vints have a support of 2. For the same reason as in the previous case,
the two 6-vints with the higher support must contain a level-3 edge. Appending the
edges of the other three 6-vints generates an 8-vint with a support of 2. The charge is
at most 1

2
(1 · 3 − 1 · 1) + 1

3
· 2 = 12

3
.

• There are at most two 6-vints with a support of 2. The charge is at most 1
2
·2+ 1

3
·3 = 2.

�

We do not use the following rules in the analysis of λ1 = 0 and λ1 = 1, and thus, it is
possible to skip forward to the respective subsections of Section 7 before reading them.

6.4 Eliminating 6-vints with two level-2 edges

Rule 7. Consider a 6-vint with a rigid level-1 edge and two non-rigid level-2 edges.
Assume that there are at least three additional RC edges, not involved in the 6-vint,
which are not level-3 edges. Using these edges, it is possible to extend the 6-vint into at
least two 8-vints, which neutralize its positive charge.
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Explanation. See Figure 13(a) for an example of such a 6-vint (the additional RC edges
are not shown). We use the notation depicted in the figure and consider the handicapped
5-vint which uses the edge bp. By construction, the two vertices of this 5-vint (p and q)
are in their non-visible terrain. If the vertex o of the other level-2 edge cannot see a, then
it is also in its non-visible terrain. In this case, adding two extra RC edges cannot increase
the support of the 6-vint, since vertices in their non-visible terrains cannot see vertices
of RC edges from other subtrees. Hence, each extended 8-vint has the same support as
the original 6-vint, and thus fully neutralizes the charge of the 6-vint. We may therefore
ignore this case, and assume that o sees a (as depicted in Figure 13(a)).

In order to show that the 8-vints can neutralize the charge of the 6-vint, we need to
count the triangulations of the hole of the 6-vint, and of the holes of the potential 8-vints.
We first claim that in any of these triangulations, exactly one of the edges bc and ao must
be present. This is obvious for the 6-vint, since ao is the only chord of its hole which
crosses bc, so when bc is absent, ao must be present. For an 8-vint, its hole is obtained
by appending two triangles through the edges ab and/or ac. When considering an 8-vint
which extends the 6-vint, we refer to the additional RC edges as the added edges. Since
o is the only vertex of the 6-vint which is in its visible terrain, it is the only vertex that
might be able to see vertices of the added edges. Hence, the only chords of the hole of
such an 8-vint which can cross bc are incident to o. Moreover, if any such chord, other
than ao, is part of the triangulation, then it is obtained after flipping one of the edges ab
and ac, and the first time such a flip occurs, ao must be present in the triangulation, and
remain in it thereafter. Moreover, in a triangulation of the hole of an 8-vint, an added
edge is flippable only if both of its vertices are connected to o. This implies that when bc
is present, no added edge is flippable; that is, the 6-vint and the 8-vints have the same
number of triangulations which contain bc.

It remains to count the triangulations which contain ao. Notice that when ao is
present, bo must also be present. We distinguish between the following cases:

(i) o cannot see q, as depicted in Figure 13(b). In this case, bp must be present, which
implies that each triangulation can be uniquely determined by the set of vertices of added
edges which are connected to o. The 6-vint has only one triangulation, which corresponds
to the empty set. After adding two RC edges, there can be at most 22 = 4 such sets,
including the empty one. This implies that the support of an 8-vint can be higher than
that of the 6-vint by at most 3. Since o can see a, the 6-vint has a support of at least
tr(bp) = C ′

3 = 3, meaning that two 8-vints are always sufficient to neutralize its charge.
(ii) o can see q, as depicted in Figure 13(a). In this case, when bc is present there

are five triangulations, both for the hole of the 6-vint and for any hole of an 8-vint (the
number of triangulations of the convex pentagon bcopq). In order to count triangula-
tions which contain ao, we use the same method as in the previous case. This time,
since the quadrilateral obqp has two triangulations, each subset of vertices of added edges
corresponds to two triangulations. The 6-vint has only the empty set, so its support is
5+1 ·2 = 7. An 8-vint can have, as above, at most four such subsets, and thus, a support
of at most 5 + 4 · 2 = 13. Thus, two 8-vints are always sufficient to neutralize the charge
of the 6-vint. �
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6.5 Reducing the charge of 6-vints with a level-3 edge

Rule 8. Consider a 6-vint with a level-3 edge and a rigid level-1 edge. Assume that there
are at least three RC edges which do not participate in the 6-vint and are not level-3
edges. Using these edges, the 6-vint can be extended into at least two 8-vints and one
9-vint. The overall charge of the 6-vint and its extensions cannot exceed 1

1400
.

Explanation. Establishing this rule is the most complex part of the analysis, and in
fact, in what follows, we also provide a more general analysis of how one can reduce the
charge of a 6-vint of the form described in the rule, using extensions of the vint into
vints with negative charge, even when there are only two RC edges that can be exploited.
When encountering a reference to this section in the analysis of an RC, it is best to refer
to Table 2, which presents bounds for the support of 8-vints which extend the possible
6-vints. The table also presents improved bounds for standard 8-vints, which are 8-vints
that extend the 6-vint using an additional level-1 edge and one of its child edges (as
opposed to extensions that use two additional level-1 edges, or descendant edges of the
level-1 edge of the 6-vint). Such a case is depicted in Figure 13(c), where the shaded area
represents the hole of the 6-vint, the 8-vint created using ac and ad is a standard 8-vint,
and the 8-vint created using ab and ac is not.

Table 2: The results of Section 6.5

Case Support Support Support of
of 6-vint of 8-vint standard 8-vint

Level-2 edge is rigid ≤ 3 same as 6-vint -
Level-2 edge is rigid 4 ≤ 7 -
q and o cannot see a any same as 6-vint -

only o can see a 4 ≤ 7 ≤ 6
only o can see a 6 ≤ 9 ≤ 8
only o can see a 7 ≤ 13 ≤ 11
only q can see a 3 ≤ 8 -
only q can see a 4 ≤ 7 -
only q can see a 5 ≤ 13 -
only q can see a 6 ≤ 9 -
only q can see a 7 ≤ 13 -
q and o can see a 9 ≤ 25 ≤ 20
q and o can see a 6 ≤ 20 ≤ 15
q and o can see a 4 ≤ 14 ≤ 11

In the analysis (and in the table), we refer to Figures 14–18. In these figures, v is the
vertex of the 3-vint and bc is the rigid level-1 edge of the 6-vint, whose vertex p lies to the

right of
−→
ab. The 6-vint has two additional vertices q and o. Unless otherwise stated, q is

the vertex of the level-2 edge, and o is the vertex of the level-3 edge. If the level-2 edge

the electronic journal of combinatorics 18 (2011), #P70 24



p

bc

ab

ac

cp

a

b

c

v
p

bc

cp

cq

c

v
b

a

o
q

a

bc

cp

cq

v
b

c

o
q

p

cq

a

b

v

p

q

c

o

bc

cp

(a) (b) (c) (d)

Figure 14

of the 6-vint is bp (as depicted in Figure 14(a)), all the vertices of the 6-vint are in their
non-visible terrain, and adding RC edges will not increase the support of the vint (see
Section 6.1). If there are three additional RC edges, as prescribed in the rule, we can form
at least two 8-vints and one 9-vint which extend the 6-vint and (more than) neutralize
its charge. If only two RC edges are present, we can neutralize its charge by the resulting
8-vint extension. We may therefore ignore this case and assume that the level-2 edge is
always cp.

Assume that bp is one of the additional RC edges. By Rule 2, appending bp (and any
of its descendants) to the 6-vint cannot increase its support. This implies that replacing
bp with other RC edges can only increase the support of the 9-vint and two 8-vints. That
is, it suffices to consider the cases where all the additional RC edges are in the subtrees of
ab or of ac. In particular, if three RC edges are added, they induce at least one standard
extending 8-vint. We may therefore assume that bp is not one of the additional RC edges.
For the rest of the analysis, we distinguish between five possible cases:

1. The level-2 edge is rigid. An example of this case is depicted in Figure 14(b).
If o (the vertex of the level-3 edge) is in its non-visible terrain, all of the vertices of the
6-vint are in their non-visible terrains, and thus, adding RC edges will not increase its
support. We may therefore assume that o is in its visible terrain (as in the figure), which
also implies that the 6-vint has a support of 4 (see also the argument below).

In every triangulation of the hole of the 6-vint or of an extension 8-vint, exactly one of
the edges bc and ao must exist (this is explained in the proof of Rule 7). If bc exists, there
are exacly C ′

3 = 3 triangulations (of the 6-vint). If ao exists, bo and op must also exist,
and only o can see the vertices of the added RC edges. Each triangulation which contains
ao can be uniquely determined by its set of vertices of added edges which are connected
to o (a similar argument can be found in Rule 7). This implies that the support of an
extension 8-vint is 3 plus the number of these sets. Adding two RC edges yields at most
2 · 2 = 4 sets, and thus, each 8-vint has a support of at most 7. Since we have at least
two 8-vints which extend the 6-vint, they always (more than) neutralize its charge.

In the following cases, the level-2 edge is assumed not to be rigid.
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2. Both q and o cannot see a. An example of this case is depicted in Figure 14(c).
Since all the vertices of the 6-vint are in their non-visible terrains, the addition of RC
edges cannot increase its support, so even a single extension 8-vint will neutralize the
charge.
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Figure 15

3. Only o can see a. Examples of this case are depicted in Figures 14(d)–15(b). Since
we assume that the level-2 edge is not rigid, q can see b. o can also see b and c, since in
order not to see one of them, o has to be in its non-visible terrain, which implies that it
cannot see a either. Since q is in its non-visible terrain, it cannot see any of the vertices
of the added RC edges. Let x be a binary variable, which is 1 if and only if o can see p
(see Figure 15(b) for a case where x = 0). Similarly, let y be a binary variable, which is
1 if and only if x = 1 and bq does not cross ao (y = 1 in Figure 14(d) and 0 in Figures
15(a) and 15(b)).

Notice that exactly one of the edges bc and ao must exist in any triangulation of the
hole of the 6-vint or of any extension 8-vint. The 6-vint has 3 + 2x triangulations which
contain bc (it has either C3 = 5 or C ′

3 = 3 triangulations), and 1 + y triangulations
which contain ao (as can be easily checked; see Figures 14(b), 15(a), and 15(b)). That
is, the 6-vint has 4 + 2x + y triangulations. An extension 8-vint has the same number of
triangulations when bc is present (recall that we only consider extensions through ab or
ac). When ao is present, bo must also be present, and the quadrilateral oqpb has x + 1
triangulations (or, as in Figure 15(a), it might not be present at all in these triangulations).
Once again, we count the number of possible sets of vertices of added edges which are
connected to o. This time, each set represents y + 1 triangulations (which contain ao).
The support of the 8-vint is therefore 3 + 2x, plus the number of sets multiplied by y + 1.
Adding two RC edges can create at most four possible sets, which implies that an 8-vint
has a support of at most (3 + 2x) + 4(y + 1) = 7 + 2x + 4y. For a standard 8-vint, there
are at most three sets, and thus, the support is at most (3 +2x)+ 3(y +1) = 6 +2x+3y.
From the above, we conclude that two 8-vints always neutralize the charge of the 6-vint,
since 1

4+2x+y
= 2

8+4x+2y
≤ 2

8+2x+4y
< 2

7+2x+4y
(by definition, x ≥ y).

A case with x = y = 1 is depicted in Figure 15(c), where the 6-vint has a support of
7 (5 when bc is present, and 2 when ao is present) and the 8-vint has a support of 13 (5
when bc is present, and 2 · 4 = 8 when ao is present).
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4. Only q can see a. Examples of this case are depicted in Figures 15(d) and 16(a–d).
o can “hide” from a on one of the sides of its non-visible terrain (such as in Figures 15(d),
16(a), and 16(b)), or behind q (such as in Figures 16(a) and 16(b)). As in previous cases,
we notice that in each triangulation either aq or bc must exist. We divide the rest of the
analysis into the following subcases:

(i) o is in its non-visible terrain, as depicted in Figures 15(d), 16(a), and 16(b). In
this case, q is the only vertex which might be able to see vertices of added edges. For an
extension vint, consider the set of the vertices of the added edges which are connected to
q in a specific triangulation. We can bound the number of triangulations of the extension
vint, which do not contain a triangulation of the 6-vint, by counting the number of the
possible different non-empty sets of this kind (as in the explanation of Rule 7). Since
the simple quadrilateral qopb (which may not exist, as in Figure 15(d)) might have two
triangulations (as in the case of Figure 16(a)), each set might correspond to two such
triangulations (but not more than two). Let x denote the support of the 6-vint; the
support of an extension vint is at most x plus twice the number of non-empty sets (of
q-connected vertices of the added RC edges). An 8-vint which extends the 6-vint with
two level-1 edges, has at most three such sets. A standard 8-vint has at most two such
sets. A 9-vint has at most five such sets (which is tight when there are two additional
level-1 RC edges and one additional level-2 RC edge). That is, the absolute value of the
overall negative charge from the three extension vints is at least 1

x+4
+ 1

x+6
+ 2

x+10
.

We notice that the inequality 1
x

< 1
x+4

+ 2
x+6

< 1
x+4

+ 1
x+6

+ 2
x+10

holds for every x ≥ 3
(the second inequality holds for every positive value of x). A 6-vint such as in Figure
15(d) has a support of tr(bc) + tr(aq) = 5 + 1 = 6. A 6-vint such as in Figure 16(a) has
a support of tr(bc) + tr(aq) = 5 + 2 = 7. A 6-vint such as in Figure 16(b) has a support
of tr(bc) + tr(aq) = 3 + 1 = 4. Since these cases exhaust all possibilities, we always have
x ≥ 4, which implies that a 9-vint and two 8-vints always (more than) neutralize the
charge of the 6-vint.

(ii) o is the vertex of cq and is to the right of −→aq, as depicted in Figure 16(c).
Since o is hiding behind q, it also cannot see b and p. Hence, the edge cq must be present
in every triangulation of the hole of the 6-vint, and thus, the 6-vint has a support of
C ′

3 = 3. For the larger vints, when bc is present, there are two triangulations; when aq is
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present, the number depends on the added edges (however, for any set of added edges, bq
must be present in the resulting triangulations; recall that we assume that bp is not an
added edge):

• Without additional edges, each of the portions of the hole of the vint to the right of
aq and to its left has a single triangulation (which implies a single triangulation of the
6-vint when aq is present).

• Adding ab results in at most two triangulations of the portion to the right of aq. Adding
a child of ab raises it up to three triangulations, and adding both children of ab raises
it up to five. This follows by noticing that each triangulation is uniquely determined
by the set of vertices of added edges which are connected to q. In the latter case, for
example, we have one triangulation when ab is present; otherwise, qe must be present
(where, as in the figure, e is the vertex of ab), and we have at most C2C2 = 4 ways to
complete the triangulation.

• Adding ac results in at most C ′
3 = 3 triangulations of the portion to the left of aq.

Adding a child of ac raises it up to C ′′
4 = 6. Adding both children of ac cannot cause

this number to exceed C ′′
5 = 19 (this time, the analysis is not tight, since we allow

several forbidden chords, such as the one connecting a to the new lower left vertex).

Table 3: Possible supports of extension vints in case (ii) (Figure 16(c))

8-vints 9-vints

Right of aq Left of aq Support Right of aq Left of aq Support

1 6 8 1 < 19 < 21
2 3 8 2 6 14
3 1 5 3 3 11

5 1 7

The above analysis is summarized in Table 3, which presents the maximal supports for
the various extension vints (in the i-th row of the table, i − 1 RC edges of the extension
vint are added to the right of aq and the rest are added to its left). Notice that the
support of each vint is the number of triangulations of its right portion times the number
of its left portion, plus 2. We notice that an 8-vint has a support of at most 8, and a
9-vint has a support of at most 20. Two 8-vints and a 9-vint generate a negative charge
of at least 2 · 1

8
+ 2

20
> 1

3
, so they neutralize the charge of the 6-vint.

(iii) o is the vertex of pq and is to the left of −→aq, as depicted in Figure 16(d). o
must be able to see b, since otherwise it will not be able to see v. It can easily be checked
that each of the holes of the 6-vint and of the extension vints has three triangulations
which contain bc (again, by assumption, there are no added edges through bp). When
aq is present in the hole of the 6-vint, there are C ′′

3 = 2 triangulations of the portion to
its right and one of the portion to its left. This implies that the support of the 6-vint is

the electronic journal of combinatorics 18 (2011), #P70 28



3 + 2 · 1 = 5. We consider the number of triangulations of the holes of the larger vints,
when aq is present:

• Without any additional edges, the portion of the hole of the vint to the left of aq has a
single triangulation, and the portion to its right has two triangulations (as in the case
of the 6-vint).

• Adding ac results in C2 = 2 triangulations of the portion to the left of aq. Adding a
child of ac increases it up to C ′

3 = 3. Adding both children of ac increases it up to 5
(as in a preceding case, recalling that each triangulation is uniquely determined by the
set of vertices which are connected to q).

• Adding ab results in at most tr(eo) + tr(bq) = 1 + C2C2 = 5 triangulations to the right
of aq. Adding a child of ab increases it up to tr(pq+bq)+ tr(bo) = C ′

3 +C ′′
4 = 9. Adding

both children of ab cannot cause it to exceed tr(pq)+tr(bo) = (tr(ab)+tr(eq))+tr(bo) =
(1 + C2C2) + C ′′

5 = 24 (the analysis is not tight for the case where bo is present, since
we admit some of the forbidden chords).

Table 4: Possible supports of extension vints in case (iii) (Figure 16(d))

8-vints 9-vints

Right of aq Left of aq Support Right of aq Left of aq Support

9 1 12 < 24 1 < 27
5 2 13 9 2 21
2 3 9 5 3 18

2 5 13

The above analysis is summarized in Table 4, which presents the maximal supports for the
various extension vints (with the same convention of display of the rows). The support of
each vint is the number of triangulations of its right portion times the number of its left
portion, plus 3. We notice that an 8-vint has a support of at most 13, and a 9-vint has
a support of at most 26. Two 8-vints and a 9-vint generate a negative charge of at least
2 · 1

13
+ 2

26
> 1

5
, neutralizing the charge of the 6-vint.

5. Both q and o can see a. Examples of this case are depicted in Figures 17 and 18.
Here we change the notation used in the preceding cases, and take q and o to be such that
the clockwise order of the vertices on the boundary of the hole of the 6-vint is a, c, o, q,
p, b. In the vertex group {a,b,c,p}, only p and a cannot see each other. Any additional
visibility restrictions between the vertices of the 6-vint, have to involve either o or q. If o
can see p, it can also see b (since it is required to see a). Moreover, only the vertex of the
level-3 edge of the 6-vint (which is either o or q) might have visibility restrictions. This
implies that there are only four possible cases: (i) o and q are unrestricted, and the 6-vint
has a support of C ′

4 = 9 (see Figure 17(a)). (ii) q is the level-3 vertex and it cannot see c
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(it always sees p since it precedes p in the order along the hole); the 6-vint has a support
of C ′′

4 = 6 (see Figure 18(a)). (iii) o is the level-3 vertex and it cannot see p (but can see
b); the 6-vint has a support of C ′′

4 = 6 (see Figure 18(b)). (iv) o cannot see p and b, and
the 6-vint has a support of tr(ao) + tr(cq) = 1 + C ′

3 = 4 (see Figure 18(c)). We analyze
each of these subcases separately:

(i) o and q are unrestricted (see Figure 17(a), which depicts one of the two forms of
such an “almost convex” 6-vint; the analysis does not depend on the specific shape of the
vint). Clearly, if a triangulation of the hole of the 6-vint (or of an extension vint) does not
include bc, it must include either ao or aq (or both). Hence, the number of triangulations
of the 6-vint (or of an extension vint) is tr(bc) + tr(ao) + tr(aq) − tr(ao + aq). Notice
that tr(bc) = 5, both for the 6-vint and for any extension vint. We thus need to count
the number of triangulations of two left portions — the portion to the left of ao and
the portion to the left of aq (which contains the chord ao in some of its triangulations).
Similarly, we need to count the triangulations of two respective right portions. In the
following analysis, all of the results are upper bounds:

• When there are no added edges, there is a single triangulation to the left of ao, a single
triangulation to the right of aq, C2 = 2 triangulations to the left of aq, and C ′

3 = 3
triangulations to the right of ao. We can use these results to verify that the support of
the 6-vint is tr(bc) + tr(ao) + tr(aq) − tr(ao + aq) = 5 + 1 · 3 + 2 · 1 − 1 · 1 = 9.

• After the addition of ab (as depicted in Figure 17(b)), there are C2 = 2 triangulations to
the right of aq (bq must be present), and tr(op+bo)+tr(bq) = C2+C3 = 7 to the right of
ao. Adding a child edge of ab, results in C ′

3 = 3 triangulations to the right of aq (again,
bq must be present), and tr(op+ bo)+ tr(bq) = C ′

3 +C ′
4 = 12 to the right of ao. Adding

both child edges of ab results in 5 triangulations to the right of aq (each triangulation
is uniquely defined by the set of vertices of added edges which are connected to q), and
tr(op + bo) + tr(bq) = 5 + [(tr(bq + eq) + tr(bq + eo)− tr(bq + eo + eq)) + tr(bq + ab)] =
5 + [(C3C2 + C2C3 − C2C2) + C2] = 23 triangulations to the right of ao.

• After the addition of ac (as depicted in Figure 17(c)), there are C2 = 2 triangulations
to the left of ao and C3 = 5 triangulations to the left of aq. Adding a child of ac results
in C ′

3 = 3 to the left of ao, and C ′
4 = 9 to the left of aq. Adding both child edges of
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ac results in 5 triangulations to the left of ao (each triangulation is uniquely defined
by the set of vertices of added edges which are connected to o), and [tr(do) + tr(dq) −
tr(do+ dq)]+ tr(ac) = [C2C3 +C3C2 −C2C2] +C2 = 18 triangulations to the left of aq.
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Figure 18

The above analysis is summarized in Table 5, which presents the maximal supports for
the various extension vints (each row in the table is indexed by the numbers of RC edges
added through ab and of RC edges added through ac).The support of each vint is given
by the expression tr(bc) + tr(aq) + tr(ao) − tr(aq + ao); by using the column names of
Table 5, and recalling that tr(bc) = 5, the support can be written as 5+AB +CD−AD.

Using the table, we notice that an 8-vint has a support of at most 25, and a 9-vint
has a support of at most 38. Moreover, at most one extension 8-vint has a support of at
most 25 (it is the 8-vint with three level-1 edges), and the other 8-vints have a support
of at most 20. The absolute value of the overall charge of two 8-vints and a 9-vint is at
least 1

20
+ 1

25
+ 2

38
= 271

1900
> 1

9
, neutralizing the charge of the 6-vint.

Table 5: Upper bounds on the supports of the extension vints of a 6-vint with a support
of 9.

A B C D

ab/ac Type Right Left Right Left Support
edges of aq of aq of ao of ao

2/0 8-vint 3 2 12 1 20
1/1 8-vint 2 5 7 2 25
0/2 8-vint 1 9 3 3 20
3/0 9-vint 5 2 23 1 33
2/1 9-vint 3 5 12 2 38
1/2 9-vint 2 9 7 3 38
0/3 9-vint 1 18 3 5 33

(ii)/(iii) The 6-vint has a support of 6, which implies that either o or q blocks the
visibility between its two neighbors, as depicted in Figures 18(a) and 18(b). We determine
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how many triangulations are lost in an 8-vint (or a 9-vint) when taking the previous case
and adding such a restriction. This is exactly the number of triangulations which contain
the forbidden chord, which is also the number of triangulations after removing either o
or q (without loss of generality, consider case (ii), where o is removed). There are C2 = 2
such triangulations when bc is present.

When aq is present, each triangulation holds a unique set of vertices of added edges
which are connected to q; when there are at least two added edges, there are at least three
such sets, and thus, there are tr(bc)+ tr(aq) ≥ 2 +3 = 5 triangulations. Notice that even
if some of these triangulations do not exist (since q cannot see a vertex of an added edge),
they were still counted in the analysis of case (i). This implies that the absolute value of
the overall charge of two 8-vints and a 9-vint is more than 1

20−5
+ 1

25−5
+ 2

38−5
= 39

220
> 1

6
,

neutralizing the charge of the 6-vint (a slightly higher charge is easily achieved using a
separate analysis for each of the various extension vints. However, this simpler and weaker
analysis is sufficient for our purpose).

(iv) The 6-vint has a support of 4, as depicted in Figure 18(c). As in the previous
case, we determine the number of triangulations of the 8-vints and 9-vints (from the
first case), which use at least one of the forbidden chords. This time, these are the
triangulations which contain bo, and an additional triangulation which contains op but
not bo (both cp and bc must be present in this case). When bc is present, there are C2 = 2
triangulations which contain bo.

When ao is present, each set of vertices of added edges which are connected to o
corresponds to two triangulations (since the quadrilateral bpqo has two triangulations).
In an 8-vint with three level-1 edges, there are at most four such sets, and in a standard 8-
vint there are three. In a 9-vint with three level-1 edges there are at most six such sets and
in a 9-vint with two level-1 edges there are five. The absolute value of the overall charge
of two 8-vints and a 9-vint is at least 1

20−9
+ 1

25−11
+ min( 2

38−15
, 2

33−13
) = 883

3542
> 1

4
− 1

1400
,

leaving the 6-vint with a charge smaller than 1
1400

(note that this is the only case where
we do not manage to completely neutralize the charge of the 6-vint). �

7 The analysis

In the previous sections, we reviewed a variety of rules and methods for analyzing the
charge of a 3-vint. In this section, we apply these rules to show that the charge of a 3-vint
is always smaller than 30. This is achieved using a rather long case analysis, according to
the possible rigid cores, which are grouped into subsections according to the number λ1

of their level-1 edges.
In order to bound the charge from any RC, with any non-rigid extensions, we first

assume that its flip-tree is complete, up to level-3, and that each vint with a positive
charge, which is not entirely in the RC, has a support of 2. This usually leads to a larger
bound on the total charge (e.g., see [23]). To lower this bound, we remove edges from
the flip-tree, by arguing that their presence can only lower the charge (for example, if
they participate in 8-vints with a low support). Similarly, we argue that the worst-case
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charge is obtained when some vints have a higher support, either because a lower support
would give a lower total charge, or by showing that it is impossible for them to have a
low support.

7.1 Analysis of λ1 = 0

In this case, there are no edges in the rigid core; this implies that there are no vints with
a support of 1, except for the 3-vint itself. There are three 5-vints and twelve 6-vints
which contain two level-1 edges. All of these vints have a support of at least 3. The total
charge is therefore at most

4 · 1 + 3 · 1

2
· 3 + 2

(
1

2
· 6 +

1

3
· 3

)

+ 1

(
1

2
· 16 +

1

3
· 12

)

= 28
1

2
.

7.2 Analysis of λ1 = 1

This subsection analyzes the rigid cores with λ1 = 1. We first analyze the basic RCs
depicted in Figures 19(a), 19(c), and 19(d), and then deal with any other RC with λ1 = 1,
obtained by adding RC edges to one of the basic RCs. Any of these extension RCs
is analyzed using a bound proved for the corresponding basic RC, and considering the
changes in that bound caused by the rigidity of the new edges. In these flip-tree figures,
the solid lines represent RC edges, and the dashed lines represent non-RC edges, which
might, or might not be present in the flip-tree.

RC 1a

A

B

C

Z b

bcab

c

v

a

RC 1b

B
Z

D Y

A

RC 1c

B
Z

X

A

(a) (b) (c) (d)

Y

Figure 19

RC 1a, as depicted in Figure 19(a).
As already mentioned, here and later, we begin by assuming that the flip-tree is complete.
This involves no loss of generality as long as we only consider vints with positive charges.
We will drop this assumption and analyze the situation more carefully when we need to
use vints with negative charges.

• There are two non-rigid subtrees (as defined in Rule 6; in the figure, these are the
subtrees of A and B). Each of those can contain five 6-vints. By Rule 6, the charge
from these ten 6-vints cannot exceed 2 · 2 = 4.
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• The 6-vint which contains C and A has two non-adjacent flippable edges, which implies
a support of at least 4. There are four 6-vints of this sort, with a total charge of at
most 4 · 1

4
= 1.

• The 5-vint which contains both A and B has a support of at least 3 (as depicted in
Figure 19(b)). This also applies to the five 6-vints which extend this 5-vint. The overall
charge from the above vints is at most 2 · 1

3
· 1 + 1 · 1

3
· 5 = 21

3
.

In the above, we analyzed the supports of nineteen 6-vints. Since no 6-vint is fully
contained in the RC, we assume that each of the other nine 6-vints has a support of 2.
Using similar considerations for the other 5-vints and 4-vints, we conclude that the total
charge cannot exceed

4 · 1 + 3

(

1 · 1 +
1

2
· 2

)

+ 2 · 1

2
· 8 + 1 · 1

2
· 9 + 4 + 1 + 2

1

3
= 29

5

6
.

RC 1b, as depicted in Figure 19(c).

• As in RC 1a, there are five 6-vints and one 5-vint which contain both A and B. Each
of those vints has a support of at least 3, and their overall charge is, as above, at most
21

3
.

• Similarly to RC 1a, the 6-vints which contain D and either A or B, have a support of
at least 4. The charge from the two 6-vints cannot exceed 2 · 1

4
= 1

2
.

• In the non-visible subtree of Z and Y (rooted at either A or B), five 6-vints can be
extended (using Z and Y ) into 8-vints with the same support (see Section 6.2). We can
ignore each of these 6-vints.

So far, we have accounted for twelve 6-vints, and one 5-vint. There is only one rigid 5-vint
and no rigid 6-vints; so each of the other vints has a support of at least 2. We conclude
that the total charge is at most

4 · 1 + 3

(

1 · 1 +
1

2
· 2

)

+ 2

(

1 · 1 +
1

2
· 7

)

+ 1 · 1

2
· 16 + 2

1

3
+

1

2
= 29

5

6
.

RC 1c, as depicted in Figure 19(d).

• Assume, without loss of generality, that the non-visible subtree of Z, Y , and X is the
subtree of A (see Section 6.2). Using these RC edges, each of the five 6-vints lying
entirely in the non-visible subtree can be extended into (more than) an 8-vint with the
same support, neutralizing its charge. Similarly, each of the two 5-vints lying entirely in
the non-visible subtree can be extended into an 8-vint with the same support, halving
its charge. This implies that the overall charge from these seven vints is at most
2 · 1

2
· 1

2
· 2 = 1.
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• As in the two preceding cases, there are five 6-vints and one 5-vint which contain both
A and B. Each of those vints has a support of at least 3, and their overall charge is, as
above, at most 21

3
.

• Consider the 5-vint using B and Z. If this 5-vint has a support of 3, the four 6-vints
extending it with either X, Y , or a child of B, also have a support of at least 3. This
implies that, in this case, the charge is decreased by at least (1

2
− 1

3
)(2 · 1 + 1 · 4) = 1.

If the 5-vint has a support of 2, the vertex of B cannot see the vertex of Z (see Figure
20(a), where p is the vertex of Z and d is the vertex of B). Notice that any point that
cannot be seen by p, cannot be seen neither by o nor by q, which are the vertices of
X and Y , respectively (the line of sight of o is shaded, and the line of sight of p is
bounded by the dashed lines). This implies that o and q also cannot see d, either. This,
combined with the fact that the non-visible subtree of Z is the subtree of A, implies
that we can use X and Y to extend the 6-vint using A, B, and Z, into an 8-vint with
the same support. We can also use Z and X (or Y ) to extend the two 6-vints using
A, B, and a child of B, into an 8-vint with the same support. Since each of these
three 6-vints has a support of at least 3, the charge decreases by at least 1

3
· 3 = 1. We

conclude that in either case the charge goes down by at least 1.

The first two steps have taken care of ten 6-vints and three 5-vints. Using the default
assumption that each of the remaining vints has a support of at least 2, with the exception
of one 4-vint, two 5-vints, and one 6-vint which are rigid, and exploiting the charge
reduction obtained in the first step, the overall charge is at most

4 · 1 + 3

(

1 · 1 +
1

2
· 2

)

+ 2

(

1 · 2 +
1

2
· 4

)

+ 1

(

1 · 1 +
1

2
· 17

)

+ 1 + 2
1

3
− 1 = 29

5

6
.

Extensions of the previous cases. The only possible extension to the above RCs is
the inclusion of additional level-3 RC edges (in cases RC 1b and RC 1c). Consider the
addition of a single level-3 edge, H , either to RC 1b or to RC 1c (without loss of generality,
as a child edge of Y ), as depicted in Figures 20(b) and 20(c). There is only a single vint
with a positive charge that uses H , which is a 6-vint previously considered as having a
support of 2 (in the analysis of the bounds for these RCs). This increases the bound on
the charge by 1

2
. In both cases, assume first that the edge C exists, and consider the 6-vint

which contains C. By Rule 2, this 6-vint can be extended into an 8-vint with the same
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support, using H and its parent (as depicted in Figure 20(d), where the 6-vint is shaded).
This 6-vint, and the 6-vint obtained by replacing C with its sibling edge (assuming that
it exists), each added a charge of 1

2
to the original total charge, which is now neutralized.

Hence, the bound on the overall charge changes by 1
2
(1 · 1 − 1 · 2) = −1

2
, implying that

adding H to the RC can only lower the bound. If C or D (or both) do not exist, the
overall charge decreases by at least 1

2
(since we assumed each of the corresponding 6-vint

has a support of at least 2; note that neither of these 6-vints participated in the special
cases of charge reduction). This neutralizes the increase in the charge caused by H .

We now consider the addition of two level-3 RC edges. The subtree of the rigid level-1
edge can hold four 6-vints with a level-3 edge. Two of these 6-vints are entirely in the
RC, which increases the bound on the charge by at most 1

2
· 2 = 1 (as in the previous

paragraph, the bound on the charge of each 6-vint increases from 1
2

to 1). For each of the
two other 6-vints, either it is not present in the flip tree, or it can be extended into an
8-vint with the same support, as in the previous paragraph. In either case, the bound on
the charge of the 6-vint decreases from 1

2
to 0. This implies that the change in the charge

cannot exceed 1
2
(1 · 2 − 1 · 2) = 0.

In RC 1b, no more than two level-3 RC edges can be added. In RC 1c, after adding
two such edges there are five RC edges, and by Rule 3, additional level-3 RC edges cannot
increase the charge.

7.3 Analysis of λ1 = 3

This subsection analyzes the rigid cores with λ1 = 3. We first analyze the basic RCs
depicted in Figures 21(a), 23(b), 25(b), and 25(d), and then deal with any other RC with
λ1 = 3, obtained by adding RC edges to one of the basic RCs. Any of these extension RCs
is analyzed using a bound proved for the corresponding basic RC, and considering the
changes in that bound caused by the rigidity of the new edges. In these flip-tree figures,
the solid lines represent RC edges, and the dashed lines represent non-RC edges, which
might, or might not be present in the flip-tree.

RC  3a

X

Y

Z

BA

C

bc

ab

ac

bd

c

v
b

a

d

ac

ab

bc

v

a

d
e

f

g

cd

cede

(b)(a) (c)

Figure 21

the electronic journal of combinatorics 18 (2011), #P70 36



RC 3a, as depicted in Figure 21(a).
There are at most three 6-vints that use two level-2 edges, such as the one using X, A,
and B. Each such 6-vint can be extended into an 8-vint by adding the two additional RC
edges. The possible charges from such vints were analyzed in Section 6.4 (notice, though,
that we cannot use Rule 7 from this section, since we do not have three additional RC
edges). If the 6-vint has a support of at most 3, the 8-vint has the same support. If
the 6-vint has a support of either 4 or 7, the 8-vint has a support of at most 7 or 13,
respectively. In both cases, the combined charge from both vints cannot exceed 3

28
.

We first ignore every vint that is not entirely in the RC, except for the three 6-vints
that were just considered. The charge from the remaining vints cannot exceed

4 · 1 + 3 · 3 + 2 · 3 + 1 · 1 +
3

28
· 3 = 20

9

28
.

We next analyze the possible charges coming from the ignored vints. First, there are six
5-vints that consist of a rigid level-1 edge and a level-2 edge (such as the one using X
and A). By Rule 1, three out of these six 5-vints are handicapped (if they are present in
the flip-tree), and the other three can have a support of either 2 or 3. Moreover, each of
the six 5-vints can be extended into two 6-vints by adding a level-3 edge (such as the one
using X, B, and C), and into two more 6-vints by adding an additional level-1 edge (such
as the one using X, A, and Y ). Each 5-vint can be extended into a fifth 6-vint by an
additional level-2 edge, but we already considered these 6-vints. We consider the possible
cases for a 5-vint and its extensions, and bound the combined charge in each case:

• A handicapped 5-vint (as depicted in Figure 21(b), where the hole of the 5-vint is
shaded). Each of the two 6-vints that extend the 5-vint with a level-3 edge is entirely
in its non-visible terrain. Therefore, by adding the two additional RC edges to such a 6-
vint, we generate an 8-vint with the same support, neutralizing the charge of the 6-vint.
The charge from the 5-vint and the two remaining 6-vints is at most 2 · 1

2
·1+1 · 1

2
·2 = 2.

• A 5-vint which is not handicapped, but has a support of 2 (as depicted in Figure 21(c),
where the 5-vint is shaded). As in the previous case, each of the two 6-vints that extend
the 5-vint with a level-3 edge (such as the 6-vint using de) can be extended into an
8-vint, by using the two additional RC edges. If the vertex of the level-3 edge of the
6-vint cannot see a (such as the vertex g in figure 21(c)), the 6-vint is entirely in its
non-visible terrain, and thus, the 8-vint has the same support as the 6-vint. Otherwise,
by Table 2 in Section 6.5 (the part where only o — f in Figure 21(c) — can see a), the
6-vint has a support of either 4, 6, or 7, and the 8-vint has a support of at most 7, 9
or 13, respectively. Therefore, the overall charge from such a 6-vint and its extending
8-vint cannot exceed 1

4
− 1

7
= 3

28
. We conclude that the charge from such a 5-vint and

its four extension 6-vints is at most 2 · 1
2
· 1 + 1 · 1

2
· 2 + 3

28
· 2 = 2 3

14
.

• A 5-vint with a support of 3 (as depicted in Figure 22(a), where the 5-vint is shaded).
Once again, each of the two 6-vints that extend the 5-vint with a level-3 edge (such
as the one using de) can be extended into an 8-vint, by using the two additional RC
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edges. The possible charges from such vints are listed in Table 2 in Section 6.5 (since
the vertex of the level-2 edge can see a, we need to consider the part where only q can
see a, and the part where both o and q can see a). We notice that there is only a single
case which generates a charge of more than 1

5
— when the 6-vint and the 8-vint have

supports of 3 and 8, respectively. We conclude that the charge from the such a 5-vint
and its four extension 6-vints is at most 2 · 1

3
· 1 + 1 · 1

3
· 2 +

(
1
3
− 1

8

)
· 2 = 13

4
.

So far we have accounted for all possible 5-vints and 6-vints. The overall charge depends
on how many 5-vints with a level-2 edge are actually present (and what are their supports):

• There are at most four 5-vints. By Rule 1, at least one of these 5-vints is handicapped.
Therefore, the charge cannot exceed (the second term represents the handicapped 5-
vint, and the third term represents the most pessimistic bound for the three other
5-vints)

20
9

28
+ 2 · 1 + 2

3

14
· 3 = 28

27

28
.

• There are five 5-vints, and at least two of them have a support of 3. There are at least
two handicapped 5-vints, and by appending their edges together with the third RC edge,
we form an 8-vint (as depicted in Figure 22(b), where one handicapped 5-vint consists
of ab and ad, and the other one consists of bc and bp). All the vertices of this 8-vint
are in their non-visible terrains, and thus, its support is the product of the supports of
the 5-vints, which is 2 · 2 = 4 (see Rule 4). Therefore, the total charge cannot exceed
(the second term represents two 5-vints with a support of 3, the third term represents
two handicapped 5-vints, the fourth term represents the remaining 5-vint, and the last
term represents the 8-vint described above)

20
9

28
+ 1

3

4
· 2 + 2 · 2 + 2

3

14
· 1 − 1

4
· 1 = 29

11

14
.

• There are five 5-vints, and at least four of them have a support of 2 (notice that this
is the complement of the previous case for five 5-vints). We can use pairs of such 5-
vints (from different subtrees) in order to create 8-vints such as the one described in
the previous case. (For this, we only need to assume that the supports of each of the
corresponding 5-vints is 2.) This time, there are at least four such 8-vints, each with
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a support of 4. Therefore, the total charge cannot exceed (the second term represents
two handicapped 5-vints, the third term represents the three other 5-vints, and the last
term represents the four 8-vints described above)

20
9

28
+ 2 · 2 + 2

3

14
· 3 − 1

4
· 4 = 29

27

28
.
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• There are six 5-vints, and exactly three of them have a support of 2. These three 5-vints
must be the handicapped 5-vints, and we can use the non-visible subtree method with
each of them (see Section 6.2). There are six 6-vints with a level-3 edge that were not
yet ignored (those that extend a 5-vint with a support of 3), and we considered the
charge generated by each of those as at most 1

3
− 1

8
= 5

24
(in the case of “A 5-vint with

a support of 3”). Each non-visible subtree of a handicapped 5-vint contains two such
6-vints, and thus, by appending each of the 6-vints with the edges of the respective
handicapped 5-vint, we generate an 8-vint with a double support (as depicted in Figure
22(c), where the 6-vint is shaded and the handicapped 5-vint consists of ac and cd).
For simplicity, we will assume that each such 8-vint halves the net previous charge of
its corresponding 6-vint, including the other extension 8-vint considered above, even
though it actually gives a higher negative charge (for example, when the 6-vint has a
support of 3, the charge should be

(
1
3
− 1

8

)
− 1

3
· 1

2
= 1

24
and not

(
1
3
− 1

8

)
· 1

2
= 5

48
).

Each of the three hadicapped 5-vints extends two such 6-vints, with an overall negative
charge of at least 5

24
· 1

2
· 6 = 5

8
(notice that such a 6-vint can be in at most two non-

visible subtrees, which implies that the overall charge from a 6-vint and its extensions
is non-negative). As in the previous cases, we can generate an 8-vint with a support
of 4 from each pair of handicapped 5-vints. This time, there are three such 8-vints.
Similarly, by appending the edges of all three handicapped 5-vints, we get a 9-vint with
a support of 2 · 2 · 2 = 8 (as depicted in Figure 23(a)). The total charge cannot exceed
(the second term represents three handicapped 5-vints, the third term represents the
three other 5-vints, the fourth term represents the negative charge from the three non-
visible subtrees, the fifth term represents the three 8-vints described above, and the
last term represents the 9-vint)

20
9

28
+ 2 · 3 + 1

3

4
· 3 − 5

8
− 1

4
· 3 − 2

8
· 1 = 29

53

56
.
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• There are six 5-vints, and at least four of them have a support of 2. We wish to show
that the bound in this case cannot exceed the bound in the previous case. This is done
by showing that in the previous case, changing the support of another 5-vint into 2 can
only lower the overall charge. Such a change increases the bound on the charge of the
5-vint and its extensions by (2 3

14
−13

4
) = 13

28
. Moreover, there might be a decrease in the

negative charge attained from the use of non-visible subtrees (described in the previous
case). Specifically, there are two 6-vints that extend the 5-vint with a level-3 edge, and
each of them could be a 6-vint with a support of 3 contained in the non-visible subtree
of at most two handicapped 5-vints. After the change, each such 6-vint generates a
charge of at most 3

28
, instead of at most 5

24
. Since we assume that an 8-vint extending

such a 6-vint neutralizes half of its charge, the negative charge from (at most) four
8-vints decreases by 1

2
·
(

5
24

− 3
28

)
·4 = 17

84
. Nevertheless, we also get vints which decrease

the total charge. That is, we can use the changed 5-vint to create additional extension
vints, such as those described in the previous cases. We can create at least two new
8-vints with a support of 4 and one 9-vint with a support of 8. The above implies that
the change can increase the total charge by at most 13

28
+ 17

84
− 2 · 1

4
− 2

8
= − 1

12
. We

conclude that changing the support of more 5-vints into 2 cannot increase the total
charge.

RC 3b, as depicted in Figure 23(b).

• Each of the ten 6-vints that consist of a rigid level-1 edge, a non-rigid level-2 edge, and
a level-3 edge meets the conditions of Rule 8. By the rule, the overall charge of these
ten 6-vints cannot exceed 10 · 1

1400
= 1

140
.

• Each of the two 6-vints which use two non-rigid level-2 edges meets the conditions of
Rule 7. By the rule, these 6-vints can be ignored.

• Each of the two 6-vints using X, W , and a level-3 edge can be extended into an 8-vint,
by using Y and Z. By Table 2 of Section 6.5 (the part where the level-2 edge is rigid),
if the 6-vint has a support of at most 3, the 8-vint has the same support, and if it has a
support of 4, the 8-vint has a support of at most 7. Therefore, the overall charge from
these two 6-vints and their two extending 8-vints is at most 2(1

4
− 1

7
) = 3

14
.

We first ignore every vint not entirely in the RC, except for the fourteen 6-vints that
were just considered, and the 6-vint that consists of X, W , and B. The charge from the
remaining vints cannot exceed

4 · 1 + 3 · 3 + 2 · 4 + 1

(

1 · 3 +
1

2
· 1

)

+
1

140
+

3

14
= 24

101

140
.

The possible additional charges come from the five 5-vints which use a rigid level-1 edge
and a non-rigid level-2 edge, and from the ten 6-vints that extend such a 5-vint using an
additional level-1 edge. At least two of these five 5-vints must be handicapped, and each
of the other three can have a support of either 2 or 3. We analyze the possible charges
from such 5-vints and their extension vints according to the following cases:
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• A 5-vint with a support of 2 (including the handicapped 5-vints). By appending addi-
tional RC edges to the 5-vint, we can generate two 6-vints and an 8-vint4. Since all of
the vertices of the 5-vint are in their non-visible terrain, adding additional RC edges
cannot increase the support. Thus, all of the above vints have a support of 2. The
overall charge of these vints is 1

2
(2 · 1 + 1 · 2 − 1 · 1) = 11

2
.
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• A 5-vint with a support of 3 that does not use X (as depicted in Figure 23(c), where
the 5-vint is shaded). By appending additional RC edges, the 5-vint can be extended
into two 6-vints, each with a support of either 3 or 4 (as depicted in Figure 23(c) and
in Figure 23(d), respectively; in both figures, the 5-vint is shaded), and into one 8-vint
with a support that can be bounded in terms of the supports of the 6-vints, as followd.
(See Figure 24(a), where the 5-vint is shaded and ac represents X.) For each of these
three extension vints, every triangulation of its hole must contain either aq or bc (in
the notation of the figures), and tr(bc) = C2 = 2. Let i be a binary variable, which is
1 if and only if q can see d (in the notation of Figure 24(a)). (Notice that when i = 0,
q cannot see f either.) Let j be a binary variable, which is 1 if and only if q can see
e. The support of the 6-vint that uses X is tr(aq) + tr(bc) = (1 + i) + 2 = 3 + i, and
similarly, the support of the second 6-vint is 3 + j. We can bound the support of the
8-vint by the expression tr(bc) + tr(aq) = 2 + (1 + j) · (1 + 2i) (where tr(aq) is the
maximal number of triangulations of the portion to the right of aq, times the maximal
number of triangulations of the portion to its left). Table 6 lists the possible cases for
the supports of these vints. (The first term in the charge represents the charge of the
5-vint, which is always 2 · 1

3
.) By examining the four possible cases, we conclude that

the overall charge of these four vints cannot exceed 1 1
20

.

• A 5-vint with a support of 3 that contains X (as depicted in Figure 24(b), where the
5-vint is shaded, bc represents X, and cp represents B). By using the same analysis as
in the previous case, we notice that the 6-vints have the same possible supports, and
that the 8-vint has a smaller bound on its support — tr(bc)+tr(aq) = 2+(1+j) ·(1+i)
(since, by Rule 2, adding W cannot increase its charge). In this case, as is easily verified,
the charge from the four vints cannot exceed 1.

4Note that the extension 6-vints used here, and in the following cases, are indeed those not considered
above. In the case of the 5-vint which uses X and B, the extension 6-vints are those using Y or Z, but
not W
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Table 6: Possible charges from a 5-vint with a support of 3 and its extensions. The first
6-vint is the one containing X.

i/j 6-vint Second Max support Overall
using X 6-vint of 8-vint charge

0/0 3 3 3 2
3

+ 2 · 1
3
− 1

3
= 1

0/1 3 4 4 2
3

+ 1
3

+ 1
4
− 1

4
= 1

1/0 4 3 5 2
3

+ 1
4

+ 1
3
− 1

5
= 1 1

20

1/1 4 4 8 2
3

+ 2 · 1
4
− 1

8
= 1 1

24

We divide the rest of the analysis according to the number of such 5-vints that are present
in the flip-tree and their supports:

• At least two 5-vints are not present in the flip-tree. The charge is at most

24
101

140
+ 1

1

2
· 3 = 29

31

140
.

• A single 5-vint is not present in the flip-tree, and at most two 5-vints have a support
of 2. The charge is at most (the third term represents two 5-vints with a support of 3,
and the second term represents the other two 5-vints)

24
101

140
+ 1

1

2
· 2 + 1

1

20
· 2 = 29

23

28
.

• A single 5-vint is not present in the flip-tree, and at least three 5-vints have a support of
2. We consider the previous case and show that changing the support of another 5-vint
into 2 cannot increase the total charge. The bound on the charge of the changed 5-vint
increases by 11

2
− 1 1

20
= 9

20
. By appending the edges of the changed 5-vint with the

edges of another 5-vint which has a support of 2 (and without a common level-1 edge),
and with the additional RC edges, we form a 9-vint (as depicted in Figure 24(c), where
bc represents X, the first 5-vint consists of bc and bp, and the second 5-vint consists
of ab and ae). By Rule 4, the support of this 9-vint is the product of the supports
of the two 5-vints, which is 2 · 2 = 4. Therefore, the change in the total charge is at
most 9

20
− 2

4
= − 1

20
, which implies that giving a support of 2 to more 5-vints can only

decrease the total charge. In conclusion, when a single 5-vint is missing, the charge
cannot exceed 2923

28
.

• All five 5-vints are present, and only the two handicapped 5-vints have a support of 2.
By appending the edges of the two handicapped 5-vints together with additional RC
edges, we form an 8-vint and a 9-vint. As in the previous case, by Rule 4, both vints
have a support of 2 · 2 = 4. The non-visible subtree of each of the handicapped 5-vints
must contain a 5-vint with a support of 3. Appending the edges of a handicapped 5-vint
together with the edges of the corresponding 5-vint with a support of 3, and with the
rest of the RC, forms a 9-vint (as depicted in Figure 25(a), where the handicapped
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5-vint consists of ab and be, and the corresponding 5-vint with a support of 3 consists
of bc and cp). If we ignore the edges of the handicapped 5-vint, we get a 7-vint with a
support of at most tr(bc) + tr(aq) = 2 + 3 = 5. Since e and o cannot see any vertices
outside of the convex quadrilateral aboe, adding the edges of the handicapped 5-vint
doubles the support of the 7-vint, to at most 5 · 2 = 10. There are two such 9-vints,
since there are two handicapped 5-vints. Therefore, the total charge cannot exceed
(the second term represents the two handicapped 5-vints, the third term represents the
other three 5-vints, the fourth term represents the 8-vint and the 9-vint which have a
support of 4, and the last term represents the two 9-vints that have a support of 10)

24
101

140
+ 1

1

2
· 2 + 1

1

20
· 3 − 1

4
(2 · 1 + 1 · 1) − 2

10
· 2 = 29

101

140
.

• All five 5-vints are present in the flip-tree, and there are at least three 5-vints with
a support of 2. As before, we consider the previous case and change the support of
another 5-vint into 2. The bound on the charge of the 5-vint and its extensions increases
by at most 11

2
−1 = 1

2
. By appending the edges of the changed 5-vint together with the

edges of a handicapped 5-vint that does not share a common level-1 edge with it, and
with additional RC edges, we can create one additional 8-vint and one additional 9-vint,
both with a support of 4 (as described in the previous case; notice that if the changed
5-vint is the one using X, we can use each of the handicapped 5-vints, and thus, have
two 8-vints and two 9-vints). However, we might have already considered this 9-vint
in the previous case as having a negative charge of at least 2

10
= 1

5
. Therefore, the

bound increases by at most 1
2
− 1

4
(2 · 1 + 1 · 1) + 1

5
= − 1

20
(the second term represents

the additional 8-vint and 9-vint with a support of 4, and the third term represents the
previous charge of the 9-vint). In conclusion, changing the supports of more 5-vints
into 2 can only decrease the charge.

RC 3c, as depicted in Figure 25(b).

• There are five 5-vints, six 6-vints, and one 8-vint entirely in the RC. The overall charge
of the vints entirely in the RC is 4 · 1 + 3 · 3 + 2 · 5 + 1 · 6 − 1 · 1 = 28.

• Each of the twelve 6-vints that use a level-3 edge meets the conditions of Rule 8. By
the rule, the overall charge of these twelve 6-vints cannot exceed 12 · 1

1400
< 1

100
.
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• Each of the two 6-vints that use two non-rigid level-2 edges meets the conditions of
Rule 7. By the rule, these two 6-vints can be ignored.

• Consider a 5-vint with a non-rigid level-2 edge and a support of 2. We already considered
the two 6-vints that extend it with a level-3 edge and the 6-vint that extends it with an
additional level-2 edge. By appending additional RC edges, the 5-vint can be extended
into two additional 6-vints, three 8-vints and one 9-vint, all with a support of 2 (since
the vertices of the 5-vint are in their non-visible terrain). The overall charge from the
above vints is 1

2
(2 ·1+1 ·2−1 ·3−2 ·1) = −1

2
. Therefore, the existence of a level-2 edge,

which takes part in a 5-vint with a support of 2, can only decrease the total charge. By
Rule 1, there can be at most two 5-vints with a level-2 edge and a support of 3, since
the other two are handicapped 5-vints.

• We still need to consider two possible 5-vints with a support of 3, and four 6-vints
which extend them with an additional level-1 edge. One of these two 5-vints is in the
non-visible subtree of X, W , and U (as depicted in Figure 25(c), where X, W , and U
correspond to bc, be, and ce, respectively, and the 5-vint is shaded). By using additional
RC edges, we can extend the 5-vint into two 6-vints with a support of at least 3 (by
adding either bc or ac), one 8-vint with a support of exactly 3 (by adding bc, be, and
ce), two 8-vints with a support of at most tr(ab)+ tr(cf) = 2+2 = 4 (by adding ac, bc,
and a child-edge of bc), and one 9-vint with a support of at most 4 (by adding the entire
RC). The overall charge from these seven vints is at most 2

3
+ 1

3
· 2 − 1

3
− 1

4
· 2 − 2

4
= 0

(the terms represent the vints in the order they were described above). We conclude
that this 5-vint and its extensions cannot increase the total charge.

• We are left with a single 5-vint with a support of 3, and with the two 6-vints which
extend it with an additional level-1 edge. Since these 6-vints also have a support of at
least 3, the overall charge of these three vints cannot exceed 1

3
(2 · 1 + 1 · 2) = 11

3
.

Hence, the total charge cannot exceed (the first term represents the vints that are entirely
in the RC, the second term represents the twelve 6-vints with a level-3 edge, and the last
term represents the only additional 5-vint that can generate positive charge with its
extensions)

28 +
1

100
+ 1

1

3
= 29

103

300
.

RC 3d, as depicted in Figure 25(d).

• There are five 5-vints, five 6-vints, and one 8-vint entirely in the RC. The overall charge
of the vints entirely in the RC is 4 · 1 + 3 · 3 + 2 · 5 + 1 · 5 − 1 · 1 = 27.

• Each of the twelve 6-vints that use a level-3 edge meets the conditions of Rule 8. By
the rule, the overall charge of these twelve 6-vints cannot exceed 12 · 1

1400
< 1

100
.

• The 6-vint using two non-rigid level-2 edges meets the conditions of Rule 7. By the
rule, this 6-vint can be ignored.
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• Consider a 5-vint using Z and a non-rigid level-2 edge (such as the one using Z and B),
and assume that it has a support of 2. The vertices of such a 5-vint are in their non-
visible terrain, and thus, appending additional RC edges cannot increase its charge. By
appending additional RC edges, we get two 6-vints (by appending either X or Y ), two
8-vints, and a 9-vint, all with a support of 2. There are three more vints that extend
the 5-vint and may have a positive charge (the two 6-vints that extend the 5-vint with
a level-3 edge, and the 6-vint that extends it with an additional level-2 edge), but we
already considered them above. Thus, when the level-2 edge of such a 5-vint is present
in the flip-tree, the bound on the charge can increase by at most 2

2
·1+ 1

2
·2− 1

2
·2− 2

2
·1 = 0.

We may therefore ignore the level-2 edge of the handicapped 5-vint in the subtree of
Z, and assume that the other 5-vint in that subtree has a support of 3.

• Consider the 5-vint which contains Z and has a support of 3. Out of the five 6-vints that
extend it, we already considered the two 6-vints that extend the 5-vint with a level-3
edge and the 6-vint which extends the 5-vint with an additional level-2 edge. The overall
charge from the 5-vint and the two remaining 6-vints cannot exceed 1

3
(2 ·1+1 ·2) = 11

3
.
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• Consider a 5-vint using either X or Y and a non-rigid level-2 edge (such as the one
using Y and A), and assume that it has a support of 2. The vertices of such a 5-vint are
in their non-visible terrain, and thus, appending additional RC edges cannot increase
its charge. By appending additional RC edges, we get three 6-vints (by appending
either X, Z, or U), three 8-vints, and a 9-vint, all with a support of 2. There are two
more vints that extend the 5-vint and may have a positive charge (the two 6-vints that
extend the 5-vint with a level-3 edge), but we already considered them above. Thus,
when the level-2 edge of such a 5-vint is present in the flip-tree, the bound on the charge
can increase by at most 2

2
· 1 + 1

2
· 3 − 1

2
· 3 − 2

2
· 1 = 0. We may therefore assume that

these two 5-vints have a support of 3.

• Consider a 5-vint which contains either X or Y , a non-rigid level-2 edge, and has a
support of 3 (as depicted in Figure 26(a), where ac represents Z and the 5-vint is
shaded). Using RC edges, the 5-vint can be extended, as in the preceding case, into
three additional 6-vints, three 8-vints, and one 9-vint. For each of these vints, every
triangulation of its hole must contain either bc or aq, and tr(bc) = 2. There are two
more vints that extend the 5-vint and might have a positive charge (the two 6-vints
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that extend the 5-vint with a level-3 edge), but they were already considered above.
The 6-vint that extends the 5-vint with a rigid level-2 edge must have a support of 3,
and we ignore it for now. Let i be a binary variable, which is 1 if and only if q can
see d (in the notation of the figure); notice that when i = 0, q cannot see f either.
Let j be a binary variable, which is 1 if and only if q can see e. The 6-vint using ab
has a support of tr(bc) + tr(aq) = 2 + (1 + i) = 3 + i, and similarly, the 6-vint using
ac has a support of 3 + j. As in RC 3b, we use the supports of the 6-vints to bound
the supports of the larger vints. The support of the 8-vint not using ad is at most
tr(bc) + tr(aq) = 2 + (1 + j) · (1 + i) (since tr(aq) is the number of triangulations of the
portion to the left of aq times the number of triangulations of the portion to its right).
Similarly, the support of the 8-vint not using bp is 2 + (1 + j) · (1 + 2i), the support of
the 8-vint not using ac is at most 2 + 1 · (1 + 2i), and the support of the 9-vint is at
most 2 + (1 + j) · (1 + 2i). Table 7 lists the possible cases of the overall charge of these
six extension vints. Using the table, we notice that this charge cannot exceed − 29

120
,

and thus, the overall charge from such a 5-vint and its seven extending vints (including
the previously ignored 6-vint, with a support of 3) is at most 2

3
+ 1

3
− 29

120
= 91

120
.

Table 7: The overall charge of six extension vints of a 5-vint using either X or Y and a
non-rigid level-2 edge.

i/j 6-vint 6-vint first second third 9-vint Charge
using using 8-vint 8-vint 8-vint
ab ac

0/0 3 3 3 3 3 3 1
3

+ 1
3
− 1

3
− 1

3
− 1

3
− 2

3
= −1

0/1 3 4 4 4 3 4 1
3

+ 1
4
− 1

4
− 1

4
− 1

3
− 2

4
= −3

4

1/0 4 3 4 5 5 5 1
4

+ 1
3
− 1

4
− 1

5
− 1

5
− 2

5
= − 7

15

1/1 4 4 6 8 5 8 1
4

+ 1
4
− 1

6
− 1

8
− 1

5
− 2

8
= − 29

120

Hence, the total charge cannot exceed (the second term represents the 5-vint using Z, the
third term represents the two other 5-vints that have a support of 3, and the last term
represents the twelve 6-vints that use a level-3 edge)

27 + 1
1

3
+

91

120
· 2 +

1

100
= 29

43

50
.

Extensions of the previous cases. We start by considering additional level-3 RC
edges. We cannot add any level-3 RC edges to RC 3a, since it does not have a level-2
RC edge. Each other RC with λ1 = 3 has at least four RC edges, and thus, by Rule 3,
adding a level-3 RC edge cannot increase the bound on its charge. Therefore, we only
need to consider additional level-2 RC edges. Adding a level-2 edge to RC3a results in
RC 3b, and adding a level-2 edge to RC 3b results in RC 3c or RC 3d. Hence, it suffices
to consider such extensions only of these two latter RCs.

Consider an RC with a size of at least 5 (such as RC 3c, RC 3d, or an extension
thereof), and assume that its total charge is bounded by m. We now show that adding a
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level-2 edge to the RC cannot increase the bound beyond m, if the sibling of the added
edge is an RC edge. An example of such a case is depicted in Figure 26(b), where the
changed edge is A. The change can increase the bound on the total charge by reducing
the support of one 5-vint (using Y and A), two 6-vints that extend the 5-vint with a
level-3 edge, two 6-vints that extend the 5-vint with an additional level-1 edge (either X
or Z), and one 6-vint that extends the 5-vint with an additional level-2 edge (U). The
charge from the two 6-vints that use a level-3 edge remains bounded by Rule 8. (Notice
that we have indeed used Rule 8 to bound the charge of these vints while analyzing the
basic RCs, so the charge does not change.) Let s be the support of the 5-vint before the
change. Since after the change the 5-vint has a support of 1, the positive charge gained
from the 5-vint by the change is 2

(
1 − 1

s

)
. There is at least one 9-vint that consists of the

edges of the 5-vint and additional RC edges. Before the change, this 9-vint had a support
of at least s, and afterwards, it has a support of 1. The change in the charge of the 9-vint
is at least 2

(
1 − 1

s

)
, neutralizing the change in the charge of the 5-vint. (A similar case

is described in Rule 3.) Similarly, there are at least three 8-vints which consist of the
edges of the 5-vint and additional RC edges, and the change in their charges neutralizes
the change in the charges of the other three 6-vints. We conclude that the change did not
increase the bound on the total charge.

Let RC 3e be the RC created by taking RC 3d and adding a child of Z to the RC
(as depicted in Figure 26(c), where the changed edge is T ). Similarly to the previous
paragraph, we show that the bound on the total charge of RC 3d applies also to RC 3e.
Once again, we need to neutralize the positive charge generated by the reduction in the
supports of one 5-vint (using Z and T ) and the five 6-vints that extend it. The charge of
the two 6-vints using a level-3 edge is still bounded by Rule 8. The charge of the 6-vint
using Z and two level-2 edges can still be ignored by Rule 7. Finally, as in the previous
paragraph, the change in the charge of the 5-vint and of the two 6-vints that extend it
with an additional level-1 edge (either X or Y ) is neutralized by the change in the charge
of the 9-vint (using all the edges in Figure 26(c)) and of the two 8-vints (removing either
U or W from the 9-vint).

With all these observations, we can prove a bound of at most 2943
50

on any extension
RC with λ1 = 3 and with at least two level-2 edges, by taking either RC 3d or RC 3e
and using the above claim (that the addition of a level-2 RC edge with an already rigid
sibling cannot increase the bound). For example, to show this bound on the RC in Figure
26(d), we start from RC 3e and add two level-2 edges to the RC, each with an already
rigid sibling. We have already argued that the bound 2943

50
holds for RC 3e, and the above

claim implies that adding the two level-2 edges cannot increase the bound.

7.4 Analysis of λ1 = 2

This subsection analyzes the rigid cores with λ1 = 2. We first analyze the basic RCs
depicted in Figures 31(a), 33(a), 36(a), 38(a), and 39(b), and then deal with any other
RC with λ1 = 2, obtained by adding RC edges to one of the basic RCs. Any of these
extension RCs is analyzed using a bound proved for the corresponding basic RC, and
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considering the changes in that bound caused by the rigidity of the new edges. In these
flip-tree figures, the solid lines represent RC edges, and the dashed lines represent non-RC
edges, which might, or might not be present in the flip-tree.

Before analyzing the basic RCs, we present two methods for analyzing RCs with
λ1 = 2. In these methods, we assume that there are three level-1 edges in the flip-tree, so
there is exactly one non-rigid subtree (as defined in Rule 6). In order to refer to specific
subcases of these methods while analyzing RCs, some of the following paragraphs are
labeled with letters.

Method 1. Assume that there are two 5-vints in the non-rigid subtree. In order for any
of these 5-vints to have a support of 2, its level-2 edge must be rigid, so the vertex of the
level-2 edge can see only its direct neighbors (along the boundry of the hole). In Figure
27(a), o and q are such vertices; in what follows, we focus on o, the vertex of bp. In order

not to see a, o must “hide” either to the right of the line supporting
−→
ab, or to the left of

the line supporting −→ap (the figure depicts the second situation). Similarly, in order not

to see c, o must hide either to the left of the line supporting
−→
bc , or to the left of the line

supporting −→cp. However, the former of the last two cases is impossible, since in this case
o would not see v. This leaves two cases, which we refer to as a type I 5-vint and a type II

5-vint, respectively. In a type I vint, o is to the right of the line supporting
−→
ab and to the

left of the line supporting −→cp. In a type II vint, o is to the left of the line supporting −→ap,
in which case it is also to the left of the line supporting −→cp. In Figure 27(a), the 5-vint
which contains o is a type II vint, and the 5-vint which contains q is a type I vint (with
the roles of c and b flipped in the definition). It cannot be the case that both 5-vints are
of type II, since this would cause their level-2 triangles to overlap near p. We emphasize
that these definitions only pertain to 5-vints with a support of 2 in the non-rigid subtree.
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(A) In order to analyze a type I 5-vint (such as the shaded 5-vint in Figure 27(b)), we
use a similar argument to the one in Rule 7. Consider a vint, s, which is created by adding
RC edges to the 5-vint (such as the ones in the figure). As in Rule 7, a triangulation of the
hole of s must contain exactly one of the edges bc, ap. It can be easily checked that the
hole of s has a single triangulation that contains bc. Since o is in its non-visible terrain,
when ap is present, only p might be able to see vertices of added edges (along chords of
the corresponding hole). This implies that every triangulation of the hole which contains
ap is uniquely determined by the subset of vertices of the added edges that are connected
to p. The support of s is two plus the number of these non-empty subsets (one additional
triangulation that contains bc and another that corresponds to the empty subset). For
example, if there are two added edges, as depicted in Figure 27(b), there are two subsets
with one vertex, and one subset with two vertices; the corresponding triangulations are
depicted in Figure 28. This implies that the support of such a 7-vint is at most 2+3 = 5.
Although we have no use for a 7-vint, the support of larger vints can be analyzed by using
this method.

(B) For each type I 5-vint, there might be two 6-vints which extend it with a level-3
edge. In one of these 6-vints, the vertex of the level-3 edge must be in its non-visible
terrain; this is similar to the case of a handicapped 5-vint, which is why we refer to it as
a handicapped 6-vint. We refer to the second 6-vint which extends a type I 5-vint with a
level-3 edge as the sibling of the handicapped 6-vint. In Figure 27(d), the 6-vint using the
edge cq is a handicapped 6-vint, and the 6-vint using pq is its sibling (the vertex of the
level-3 edge of the sibling may or may not see a). Consider the vints that can be created
by the addition of RC edges to a handicapped 6-vint. Since p remains the only vertex in
its visible terrain, we can analyze the supports of such vints in a manner similar to the
analysis in the previous paragraph.

(C) If r, the level-3 vertex of the handicapped 6-vint, cannot see p, the handicapped
6-vint can be analyzed in the same way as the 5-vint. For example, consider the addition
of two level-1 RC edges, as in the preceding example involving the 5-vint. In this case,
there are still three non-empty subsets of vertices connected to q, which implies that the
resulting 8-vint has a support of at most 3 plus the support of the 6-vint. If r can see
p, the quadrilateral pqrc must be convex and have two triangulations; thus, each subset
of vertices connected to p in a triangulation corresponds to two additional triangulations.
Notice that in this case the 6-vint has a support of at least 3.

(D) When there are three added edges (none of them a level-3 edge), the handicapped
6-vint can be extended into two 8-vints and one 9-vint. By examining the possible cases
(r can see p and b, r can see only p, and r cannot see both p and b; at most three non-
empty subsets for an 8-vint, and at most four for a 9-vint), it is easily seen that these
vints always neutralize the charge of the 6-vint.

(E) Consider a sibling of a handicapped 6-vint, such as the one using t in Figure 27(d).
If t is in its visible terrain, the 6-vint has a support of tr(cp)+ tr(ta) = C2C2 +C ′

2C
′
2 = 5.

This implies that if the 6-vint has a support of at most 4, the vertex of its level-3 edge
must be in its non-visible terrain, and thus, it can be analyzed in the same way as the
handicapped 6-vint. As in the previous case, if the sibling 6-vint has a support of 2
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(such as the one depicted in Figure 27(d)), each subset of added vertices connected to p
corresponds to one triangulation. If the 6-vint has a higher support (albeit still smaller
than 5), the quadrilateral ptqc must be convex, and thus, each subset corresponds to at
most two triangulations.
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Method 2. This method applies to 5-vints with a rigid level-1 edge, a non-rigid level-1
edge, and a support of 2, so that the non-rigid edge is not in the non-visible subtree of
the rigid edge. Such a case is depicted in Figure 29(a), where the non-rigid edge is bc, the
rigid edge is ac, and the 5-vint is shaded. Note that in this case the non-visible subtree
of ac is rooted at ab, and vice versa.

(A) Using the notations in the figure, we observe that for the 5-vint to have a support

of 2, p has to be either to the left of the line supporting
−→
dc, or to the right of the line

supporting
−→
da. Assume, without loss of generality, that the latter occurs (as will follow,

it will not matter that the two cases are not symmetric, since we will only use the fact
that p cannot see d). By construction, p cannot see ad (or cd in the other situation) or
any of its descendants. If cd is rigid, then its vertex is to the right of the line supporting−→
da, and p cannot see that vertex either. This implies that p cannot see the vertices of the
RC edges in the subtree of ac (for our purposes, we do not need to consider level-3 RC
edges, although this is also the case for them).

(B) After establishing which vertices of RC edges p cannot see, we now consider the
level-2 vertices of handicapped 5-vints (which might be present both in the subtree of
ab and in the subtree of ac). If p can see the vertex of exactly one rigid level-1 edge
(such as in Figure 29(a), where it can only see e), it cannot see the level-2 vertex of the
handicapped 5-vint using the other rigid level-1 edge (the vertex of ad in the figure). If p
cannot see both vertices of the rigid level-1 edges (such as in Figure 29(b)), it still cannot
see the level-2 vertex of at least one handicapped 5-vint (again, the vertex of ad in the
figure). This can be easily proved using an analysis similar to the one in the previous
paragraph.

(C) The edge bc can have two child-edges; the vertex of one of those must be to the

right of the line supporting
−→
bp (q in Figure 29(a)). This vertex cannot see d, which implies

that the above analysis for p also applies to it. Moreover, it also applies to the vertices
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of the child-edges of this level-2 edge, if they exist. Using the edges of these vertices, it is
possible to form a 5-vint (acpqb in Figure 29(a)) and up to two 6-vints. Hence, extending
these vints with RC edges from the subtree of ac cannot increase their support.

A detailed example. Since the use of the two methods is not trivial, we present a
detailed analysis that uses both of them. Consider the flip-tree depicted in Figure 29(c),
where the non-rigid subtree is the subtree of A and there are three RC edges — X, Y ,
and Z (in order to keep this example simple, we ignore the third level-1 edge). We start
with the naive approach of giving every (4-, 5-, or 6-) vint not entirely in the RC a
support of 2. This implies that the total charge of the depicted flip-tree cannot exceed
4 · 1 + 3

(
1 · 1 + 1

2
· 1

)
+ 2

(
1 · 2 + 1

2
· 3

)
+ 1

(
1 · 1 + 1

2
· 9

)
= 21.

We continue the analysis depending on whether the vertex of X does or does not see
the vertex of A. In the former case, after flipping A, X becomes flippable (such a case
is depicted in Figure 29(a), where A and X are bc and ab, respectively), which implies
that the 5-vint and four 6-vints which contain these two edges have a support of at least
3 (instead of a support of at least 2). This lowers the bound on the charge by at least
(

1
2
− 1

3

)
(2 · 1 + 1 · 4) = 1. In the latter case (see Figure 29(a), with A = bc and X = ac),

we can use Method 2(A, C)) to extend a 5-vint and two 6-vints from the non-rigid subtree.
The method states that extending these vints with RC edges cannot increase their support,
and thus, each 6-vint can be extended into an 8-vint which neutralizes its charge. (More
precisely, a 6-vint with a support of s can be extended into two 8-vints and a 9-vint, which
have an overall charge of 1

s
(1 · 1 − 1 · 2 − 2 · 1) = −3

s
; however, the overall charge could

be only 0 if we assume that the level-3 edge of the 6-vint is not present in the flip-tree.
Thus, the overall charge from the 6-vint and its extensions is at most 0.) The 5-vint can
be extended into an 8-vint which halves its charge. In this case, we lose a charge of at
least 2 · 1

2
· 1

2
+ 1 · 1

2
· 2 = 11

2
. We conclude that the charge is decreased by at least 1 in

either case.
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Figure 30

Our next observation is that either at least one of the two 5-vints in the non-rigid
subtree has a support of at least 3, or there are two 5-vints with a support of 2, and
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then a Type I 5-vint must exist. In the former case, a 5-vint and the four 6-vints which
extend it have a support of at least 3 (instead of a support at least 2), which lowers the
charge by at least

(
1
2
− 1

3

)
(2 · 1 + 1 · 4) = 1. In the latter case, we can use Method 1 to

analyze the extensions of the Type I 5-vint, its handicapped 6-vint, and its sibling (such
a case is depicted in Figure 30(a), where the 5-vint is shaded and the subtree of ab has
three RC edges). According to Method 1(B, C, D), three RC edges suffice to neutralize
the charge of the handicapped 6-vint; this also applies to the sibling of this 6-vint, unless
it has a support of 5 (Method 1(E)). The Type I 5-vint can be extended into an 8-
vint with a support of at most 6 (there are four non-empty subsets of vertices of added
edges connected to p). These extensions imply that the charge is lowered by at least
1
6

+
(

1
2
− 1

5

)
+ 1

2
= 29

30
. We conclude that the charge is decreased by at least 29

30
in either

case.
Variants of this example will show up while analyzing RCs with λ1 = 2.

Combining the two methods. Intuitively, we would like to continue the above exam-
ple with the conclusion that the total charge cannot exceed 21− 1− 29

30
= 19 1

30
. However,

for this statement to be valid, we need to verify that the two methods can be combined
without clashing with each other (i.e., multiply counting the same reduction in charge).

The first problem with combining the methods is that they both attempt to increase
the bound on the support of the same 6-vint (from a bound of at least 2 to a bound of at
least 3; in Figure 29(c), a 6-vint of this kind is the one using X, A, and the level-2 edge of
a Type I 5-vint). To prevent this problem, we ignore this 6-vint in the application of one
of the methods. In the above example, it is better to ignore this 6-vint in the paragraph
using Method 1, which lowers the decrease in the charge in its first case from 1 down to
5
6
.

The second, more complex problem, is that both methods might refer to the same
5-vint in the non-rigid subtree; Method 1 might extend it if it is a Type I 5-vint, while
Method 2 might extend it for different reasons. Fortunately, this can be avoided, and to
explain this we refer to Figures 30(b) and 30(c). Figure 30(b) illustrates the case where
a single 5-vint can be analyzed by Method 2 (the one using bc and ac), and Figure 30(c)
illustrates the case where there are two such 5-vints (the additional 5-vint is the one using
bc and ab). The following analysis is identical for both cases, but it may be easier to follow
it when we keep both of them in mind. As before, we assume, as depicted in the figures,
that the 5-vint in the non-rigid subtree which might be analyzed by Method 2 is the one
using the level-2 edge bp. In the following paragraph, we prove that the 5-vint using the
level-2 edge cp can always be analyzed according to Method 1 (when it has a support of 2,
even if it is a Type II 5-vint). This solves the second conflict between the methods, since
it implies that we can apply each method to a different 5-vint of the non-rigid subtree.

If the 5-vint using cp is a Type I vint, then, by definition, it can be analyzed by Method
1. We are left with the case of a Type II vint, as depicted in Figures 30(b) and 30(c). In
order not to see a, the vertex o of cp has to be to the right of the line supporting −→ap (the
dashed line in the figures). This implies that o cannot see any vertices of the subtree of
ab. Moreover, since the 5-vint using bc and ac can be analyzed using Method 2, d must be

the electronic journal of combinatorics 18 (2011), #P70 52



to the right of the line supporting −→ap. This implies that o cannot see d; the same applies
to the vertices of the child edges of ac, if they are rigid. We conclude that o cannot see the
vertex of any RC edge, which is exactly the requirement for using the analysis of Method
1(A). The same analysis applies to one of the child vertices of o (s in the illustration),
and also for the other, if the 6-vint which contains it has a support of at most 4 (r in the
illustration; this follows from the same reasoning as given in Method 1(B, C, E). This
makes the two 6-vints, which extend the 5-vint with a level-3 edge, behave just as the
handicapped 6-vint and its sibling.

We conclude that in order to combine the two methods without clashing, we only need
to ignore a specific 6-vint in the method of our choice. When two 5-vints are analyzed
according to method 2, we need to ignore two such 6-vints.
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RC 2a, as depicted in Figure 31(a) (the RC only consists of two level-1 edges).
We first ignore edges that are not in the RC and not in the non-rigid subtree (as

defined in Rule 6). The remaining edges are those depicted in Figure 31(a) (although
some of the non-RC edges might not be present). By applying a naive analysis, which
gives a support of 2 to each vint not entirely in the RC, we get a charge of at most

4 · 1 + 3

(

2 +
1

2

)

+ 2

(

1 +
1

2
· 4

)

+ 1 · 1

2
· 10 = 22

1

2
.

We observe that either at least one of the 5-vints of the non-rigid subtree has a support
of 3, or a Type I 5-vint must exist (or one of the 5-vints does not exist, see below). In the
former case, a 5-vint and three of the 6-vints which extend it have a support of at least
3 (we do not count the two additional 6-vints, using either Y or Z, in order not to clash
with Method 2); the charge is therefore reduced by at least

(
1
2
− 1

3

)
(2 · 1 + 1 · 3) = 5

6
.

In the latter case, the handicapped 6-vint can be extended into an 8-vint with a support
that can be bounded by Method 1(B, C). Figure 31(b) depicts the resulting 8-vint, where
the hole of the 6-vint is shaded. There are three non-empty subsets of vertices connected
to p (as defined in Method 1(A)). This implies that if the 6-vint has a support of 2, the
8-vint has a support of at most 2 + 3 = 5, and if the 6-vint has a support of m > 2, the
8-vint has a support of at most m + 6 (we multiply the number of subsets of p-connected
edges by 2). As is easily verified, the smallest decrease in the charge, i.e., 1

5
, occurs when
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the 6-vint has a support of 2. The same analysis remains valid for the sibling 6-vint,
unless it has a support of 5 (see Method 1(E); again, a sibling 6-vint with a support of 2
generates the smallest decrease in the charge). The reduction in the charge in this case is
therefore at least 1

5
+ 1

5
= 2

5
(obtained from two 8-vints with a support of at most 5). In

the third case, where a level-2 edge in the non-rigid subtree is missing, the 5-vint and its
three extending 6-vints are missing, which obviously gives a lower charge than the case
where each of them has a support of 3. We conclude that in either case the total charge
goes down by at least 2

5
.

We next observe that either at least one 5-vint, with a rigid level-1 edge (Y or Z) and
a non-rigid level-1 edge (A), has a support of 3, or (recalling Figure 30(c), which better
captures this situation than Figure 29(a)) we can use Method 2 to extend vints from the
non-rigid subtree(by using the RC edges). In the former case, the support of one 5-vint
and the three 6-vints which extend it is at least 3, which lowers the bound by at least
(

1
2
− 1

3

)
(2 · 1 +1 · 3) = 5

6
. In the latter case, we can extend two 6-vints from the non-rigid

subtree (both obtained from the same 5-vint by adding a level-3 edge) into 8-vints with
the same support by adding the two RC edges. This follows since the vertices of these
6-vints, as considered in Method 2(C), cannot see vertices of RC edges (again, refer to
Figure 30(c)); the charge is therefore reduced by at least 2 · 1

2
= 1. We conclude that in

either case the bound on the total charge goes further down by at least 5
6
.

Hence, so far the total charge is at most

22
1

2
− 2

5
− 5

6
= 21

4

15
.

So far, we have ignored the portion of the flip-tree below the RC edges Y and Z, but now
we bring it into play (as depicted in Figure 31(c)). There might be additional charges from
the four 5-vints with a rigid level-1 edge and a level-2 edge, and from their extensions into
eighteen 6-vints (in all possible ways). Recall that, in this case, the four level-2 edges are
assumed not to be rigid (see Figure 31(a)). The two 6-vints which use two level-2 edges
must therefore have a support of at least 3 (since both of the level-2 edges are flippable);
the support of each of the other sixteen 6-vints depends on the support of its 5-vint:

• A 5-vint with a support of 2 and its four other extensions into 6-vints generate a charge
of at most 2 · 1

2
· 1 + 1

(
1
2
· 3 + 1

4
· 1

)
= 23

4
(the 6-vint extending the 5-vint with A has a

support of at least 4, since it contains two non-adjacent flippable edges).

• A 5-vint with a support of 3 and its four other extensions into 6-vints generate a charge
of at most 2 · 1

3
· 1 + 1

(
1
3
· 3 + 1

5
· 1

)
= 113

15
(similarly to the previous case, the 6-vint

extending the 5-vint with A has a support of at least 5).

The above implies that when at least one of these four 5-vints is missing, the total charge
cannot exceed 21 4

15
+ 3 · 23

4
+ 1

3
· 1 = 2917

20
(the third term represents the single 6-vint

which consists of a rigid level-1 edge and two level-2 edges; the second term represents
the maximal charge from the other previously ignored vints that are present in this case).
We may therefore assume that all four 5-vints are present, which implies that there are
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two handicapped 5-vints among them (see Section 5). We can use these 5-vints to modify
the above use of Method 2, and raise the negative charge attained by it from 5

6
up to 1,

as follows (see Method 2(B)).
Consider the two 5-vints, which use a rigid level-1 edge and a non-rigid level-1 edge.

We already noticed that when both 5-vints have a support of 2, we gain a negative charge
of at least 1 (when we used Method 2 earlier in the analysis of this RC).

If both 5-vints have a support of 3, there are five 6-vints which we previously considered
to have a support of at least 2, and now have a support of at least 3 (Namely, we have
two 6-vints using A, Y , and a child of A, two using A, Z, and a child of A, and one using
A, Y , and Z. However, we ignore one of the 6-vints using Y , A, and a child of A, in order
not to clash with Method 1. Note that there are four additional 6-vints which extend
these 5-vints, but they were already considered as having a higher support). Therefore,
in this case, the charge goes down by at least

(
1
2
− 1

3

)
(2 · 2 + 1 · 4) = 11

3
.

When exactly one 5-vint has a support of 2, we can use the edges of a handicapped
5-vint to extend two 6-vints from the non-rigid subtree (those considered in the first
case, where the two 5-vints have a support of 2) into 8-vints with a double support (such
an 8-vint is depicted in Figure 31(d), where the 6-vint is shaded and the handicapped
5-vint is the one using ac and ad); this raises the negative charge of this case up to
1
4
· 2 +

(
1
2
− 1

3

)
(2 · 1 + 1 · 2) = 11

6
(the second term represents the change in the bound on

the supports of the 5-vint and of two other 6-vints which extend it).
In either case, we lose an additional charge of at least 1, which implies that the total

charge (not including the previously ignored vints) is at most

22
1

2
− 2

5
− 1 = 21

1

10
.
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Moreover, a 6-vint which extends a handicapped 5-vint with a level-3 edge can be extended
into an 8-vint with a double support, using the edges of the other handicapped 5-vint
(since all of these edges are in their non-visible terrain). An example of such an 8-vint is
depicted in Figure 32(a), where the 6-vint is shaded and the other handicapped 5-vint is
the one using ac and ad. We will use this observation repeatedly in what follows.

The rest of the analysis is divided according to the supports of the two non-handicapped
5-vints which consist of a rigid level-1 edge and a level-2 edge:
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• Both 5-vints have support of 3. As explained above, each of the four 6-vints which
extend a handicapped 5-vint with a level-3 edge, can be extended into an 8-vint with
a double support. There exists an additional 8-vint, consisting of the edges of the two
5-vints that have a support of 3, and of a level-2 edge of one of the handicapped 5-vints.
This 8-vint has a support of at most C6 = 132 (which is the maximal support for any
8-vint). Then the total charge cannot exceed5 (the second and third terms account
for the four addional 5-vints and for sixteen of their 6-vint extensions; the fourth term
represents the remaining two 6-vints, which consist of a rigid level-1 edge and two level-2
edges; the fifth term represents four 8-vints, each with a support of 4, as just discussed;
the last term represents an 8-vint with a support of at most 132)

21
1

10
+ 2 · 23

4
+ 2 · 113

15
+

1

3
· 2 − 1

4
· 4 − 1

132
= 29

131

132
.

• Exactly one of the two 5-vints has a support of 3 (without loss of generality, we assume
that it is in the subtree of Z). On top of the four 8-vints with a double support that
were already mentioned, we show the existence of additional 8-vints, whose support is
easily analyzed by noticing that all of their vertices are in their non-visible terrains.
First, each of the two 6-vints, which extend the handicapped 5-vint of Z with a level-3
edge, can be extended into an 8-vint with a double support, using the edges of the non-
handicapped 5-vint from the subtree of Y (similarly and in addition to the reduction
in charge yielded by the extension through the handicapped 5-vint; such an 8-vints is
depicted in Figure 32(a), where the 6-vint is shaded, and the additional 8-vint is using
ac and cd). Next, the 6-vint using Y and two level-2 edges (which has a support of
at least 3) can be extended into an 8-vint with a double support, using the edges of
the handicapped 5-vint of Z (as depicted in Figure 32(b), where the 6-vint is shaded
and the other handicapped 5-vint is using ab and ad). Finally, one of the two 6-vints
which extend the non-handicapped 5-vint of Y with a level-3 edge, can be extended
into an 8-vint with a double support, using the edges of the handicapped 5-vint of Z (as
depicted in Figure 32(c), where the 6-vint is shaded and the extending edges are ac and
ad; the level-3 vertex of the 6-vint is in its non-visible terrain according to Rule 5). The
total charge cannot exceed (the first four terms of the sum have the same meaning as
in the previous case; the last term accounts for eight 8-vints, four already encountered
in the previous case, and the four new ones mentioned above; of those, one extends a
6-vint with a support of 3)

21
1

10
+ 3 · 23

4
+ 1 · 113

15
+

1

3
· 2 − 1

2

(
1

2
· 7 +

1

3
· 1

)

= 29
29

30
.

• Both 5-vints have a support of 2. As in the previous case, we show the existence of
additional 8-vints, all of whose vertices are in their non-visible terrains. Each of the

5Without the additional 8-vint, the charge would be 30, and this is the only case in our analysis where
the charge is not strictly smaller than 30. We use this vint to demonstrate that the maximum charge of
a 3-vint is indeed smaller.
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four 6-vints which extend a handicapped 5-vint with a level-3 edge can be extended
into two 8-vints with a double support (instead of just one 8-vint), each using the edges
of a different 5-vint from the other subtree (such as depicted in Figure 32(a), where the
6-vint is shaded). This accounts for four additional 8-vints. Moreover, two of the four
6-vints, which extend with a level-3 edge a non-handicapped 5-vint with a rigid level-1
edge and a support of 2, can be extended into two 8-vints with a double support, each
using the edges of a different 5-vint from the other subtree (as depicted in Figure 32(c),
where the 6-vint is shaded; the level-3 vertices of these 6-vints are in their non-visible
terrains according to Rule 5). There are four such 8-vints in this case, as opposed to
only a single 8-vint in the previous one. The total charge cannot exceed (the first three
terms of the sum have the same meaning as in the previous cases; the last term accounts
for twelve 8-vints, as mentioned above)

21
1

10
+ 4 · 23

4
+

1

3
· 2 − 1

2
· 1

2
· 12 = 29

23

30
.
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Figure 33

RC 2b, as depicted in Figure 33(a).
Similarly to the previous analysis, we start by considering only the edges from the RC,

the edges from the non-rigid subtree, and the two child edges of X (the edges depicted in
Figure 33(a)). By applying a naive analysis, which gives a support of 2 to each vint not
entirely in the RC, we get a charge of at most

4 · 1 + 3

(

2 +
1

2

)

+ 2

(

2 +
1

2
· 4

)

+ 1

(

1 +
1

2
· 13

)

= 27.

We observe that either at least one of the 5-vints of the non-rigid subtree has a support of
3, or a Type I 5-vint must exist. In the former case, a 5-vint and four of the 6-vints which
extend it have a support of at least 3 (we do not count the fifth 6-vint, in order not to
clash with Method 2); the charge is therefore reduced by at least

(
1
2
− 1

3

)
(2 ·1+1 ·4) = 1.

In the latter case, the handicapped 6-vint can be extended into an 8-vint with a support
that can be bounded by Method 1 — as explained in Method 1(D), we can ignore this
6-vint when there are at least three RC edges. This is also valid for the sibling of the
handicapped 6-vint, unless it has a support of 5 (see Method 1(E)). Finally, according to
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Method 1(A), we can extend the Type I 5-vint into an 8-vint, using the three RC edges
(as depicted in Figure 33(b), where the hole of the 5-vint is shaded). There are at most
five non-empty sets of vertices connected to p, which implies that the support of this
8-vint is at most 2 + 5 = 7. The reduction in the charge in this case is therefore at least
1
2

+ (1
2
− 1

5
) + 1

7
= 33

35
. We conclude that in either case the total charge goes down by at

least 33
35

.
We next observe that either the 5-vint using A and Z has a support of 3, or we can use

Method 2 to extend vints from the non-rigid subtree (using Z and X). In the former case,
the support of one 5-vint and the four 6-vints which extend it is at least 3, which lowers
the bound by at least (1

2
− 1

3
)(2 · 1 + 1 · 4) = 1. In the latter case, there exist two 6-vints

from the non-rigid subtree which can be extended into 8-vints with the same support,
by appending Z and X. This follows since the vertices of these 6-vints, as considered
in Method 2(C), cannot see vertices of RC edges (refer to Figures 30(b) and 30(c)); the
charge is therefore reduced by at least 2 · 1

2
= 1. We conclude that in either case the

bound on the total charge goes further down by at least 1.
Hence, so far the total charge is at most

27 − 33

35
− 1 = 25

2

35
.

Similarly to the previous analysis, we now bring back the edges that were ignored up to
now (resulting in the complete flip-tree depicted in Figure 33(c); as before, the dashed
edges are optional). There might be additional charges from three 5-vints with a rigid
level-1 edge and a non-rigid level-2 edge, and from their extensions into fourteen 6-vints
(in all possible ways). The 6-vint which contains Y and two level-2 edges has a support
of at least 3 (since both of the level-2 edges are flippable). The 6-vint which contains Z
and two level-2 edges has a support of at least 2. The support of each of the other twelve
6-vints depends on the support of its 5-vint:

• A handicapped 5-vint. The two 6-vints which extend the 5-vint with a level-3 edge, use
only vertices which are in their non-visible terrains (see Rule 5); this implies that each
of them can be extended into an 8-vint with the same support, using the additional
RC edges. The 6-vint extending the 5-vint with A has a support of at least 4, since it
holds two non-adjacent flippable edges. This leaves one 6-vint with “full” charge and
another with a charge of 1

4
, so the overall charge from the 5-vint and its four extensions

cannot exceed 1
4

+ 1
2
(2 · 1 + 1 · 1) = 13

4
.

• A non-handicapped 5-vint with a support of 2. One of the two 6-vints, which extend
the 5-vint with a level-3 edge, must be entirely in its non-visible terrain (see Rule 5);
this 6-vint can be extended into an 8-vint with the same support, using RC edges. The
second 6-vint and the 8-vint extending it with the other RC edges give an overall charge
of at most 1

4
− 1

6
= 1

12
. (See Table 2 in Section 6.5, where this is the worst possible

charge for the case where only o can see a, and the 8-vint is a standard 8-vint. This
must be the case here, since the 5-vint has a support of 2; such a case is depicted in
Figure 33(d), where the 6-vint is shaded.) As in the previous case, the 6-vint extending
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the 5-vint with A has a support of at least 4. The charge from 5-vint and its four
extensions cannot exceed 1

4
+ 1

12
+ 1

2
(2 · 1 + 1 · 1) = 15

6
.

• A 5-vint with a support of 3. The two 6-vints, which extend the 5-vint with a level-3
edge, can be extended into 8-vints, using RC edges. The appropriate parts of Section
6.5 (when only q can see a, and when both q and o can see a) contain a single case where
the 6-vint has a support of at most 3, and in this case, the overall charge of the two
vints cannot exceed 1

3
− 1

8
= 5

24
< 1

4
. This implies that, no matter what the support of

the 6-vint is, the overall charge of such a 6-vint and its extending 8-vint cannot exceed
1
4
. Similarly to the previous cases, the 6-vint extending the 5-vint with A has a support

of at least 5 (four triangulations as before, plus an additional triangulation where the
level-1 edge of the 5-vint is flipped). The overall charge from the 5-vint and its four
extensions cannot exceed 1

4
· 2 + 1

5
+ 1

3
(2 · 1 + 1 · 1) = 1 7

10
.

The above implies that when at least one of these three 5-vints is missing, the total charge
cannot exceed 25 2

35
+ 1

2
+2 ·15

6
= 29 47

210
(the second term represents the single 6-vint which

consists of a rigid level-1 edge and two level-2 edges; the third term represents the maximal
charge from the other previously ignored vints that are present in this case). We may
therefore assume that all three 5-vints are present, which implies that there is at least one
handicapped 5-vint (in the subtree of Y ; see Section 5). We can use this 5-vint to modify
the above use of Method 2, and raise the negative charge attained by it from 1 up to 11

2
,

as follows (see Method 2(B)).
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Figure 34

Consider the two 5-vints, which use a rigid level-1 edge and a non-rigid level-1 edge.
When both 5-vints have a support of 2, we can extend a 5-vint and two 6-vints from
the non-rigid subtree into three respective 8-vints with the same supports (according to
Method 2; the extension of the 5-vint is depicted in Figure 34(a), where the 5-vint is
shaded). The negative charge in this case is at least 1

2
· 3 = 11

2
.

If both 5-vints have a support of 3, there are six 6-vints which we previously considered
to have a support of at least 2, and now have a support of at least 3. Namely, we have
two 6-vints using A, Y , and a child of A, two using A, Z, and a child of A, one using
A, Y , and Z, and one using A, Z, and X. However, we ignore one of the 6-vints using
Y , A, and a child of A, in order not to clash with Method 1; the other 6-vint clashing
with Method 1 has been ignored in the application of Method 1, and we can safely use it
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here. (Note that there are three additional 6-vints which extend these 5-vints, but they
were already considered as having a higher support.) Thus, in this case, the bound on
the total charge decreases by at least

(
1
2
− 1

3

)
(2 · 2 + 1 · 5) = 11

2
.

If only the 5-vint using Y and A has a support of 3, we can extend the two 6-vints
from the non-rigid subtree (those considered in the first case, where the two 5-vints have
a support of 2), but not necessarily the 5-vint. Therefore, in this case, the charge goes
down by at least 1

2
· 2 +

(
1
2
− 1

3

)
(2 · 1 + 1 · 2) = 12

3
(the second term represents the change

in the bound on the supports of the 5-vint and of two other 6-vints which extend it).
If only the 5-vint using Z and A has a support of 3, we can extend two 6-vints

from the non-rigid subtree into 8-vints with a double support, using the edges of the
handicapped 5-vint (as depicted in Figure 34(b), where the 6-vint is shaded and the
extending edges are ac and ad). Therefore, in this case, the charge goes down by at least
1
4
· 2 +

(
1
2
− 1

3

)
(2 · 1 + 1 · 4) = 11

2
(the second term represents the change in the bound on

the supports of the 5-vint and of four other 6-vints which extend it).
In either case, we lose a charge of at least 11

2
, which implies that the total charge (not

including the previously ignored vints) is at most

27 − 33

35
− 1

1

2
= 24

39

70
.

Moreover, one of the two 6-vints which contain X and a level-3 edge is entirely in its non-
visible terrain, according to Rule 5. This 6-vint can be extended into an 8-vint with a
double support, using the edges of the handicapped 5-vint in the subtree of Y (as depicted
in Figure 34(c), where the 6-vint is shaded). We will use this observation repeatedly in
what follows.
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Figure 35

At least one of the three 5-vints that consist of a rigid level-1 edge and a non-rigid
level-2 edge is handicapped, and thus, must have a support of 2 (it lies in the subtree of
Y , as stated above). The rest of the analysis is divided according to the supports of the
other two 5-vints:

• The (non-handicapped) 5-vint from the subtree of Y has a support of 2 (with no re-
strictions on the support of the 5-vint in the subtree of Z). The above 6-vint using X
and a level-3 edge can be extended into two 8-vints with a double support (instead of
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just one), each using the edges of a different 5-vint from the subtree of Y . Moreover,
the 6-vint using Y and two level-2 edges is entirely in its non-visible terrain, and thus,
can be extended into an 8-vint with the same support, using Z and X, neutralizing
its charge (as depicted in Figure 35(a), where the 6-vint is shaded). Thus, the total
charge cannot exceed (the fourth and fifth terms account for the three addional 5-vints
and for twelve of their 6-vint extensions; the second and third terms represent the two
remaining 6-vints, which consist of a rigid level-1 edge and two level-2 edges; the last
term represents two 8-vints, each with a support of 4, as just discussed)

24
39

70
+

1

2
+ 0 + 1

3

4
+ 2 · 15

6
− 1

4
· 2 = 29

409

420
.

• Only the 5-vint from the subtree of Z has a support of 2. The 6-vint using Z and
two level-2 edges is entirely in its non-visible terrain, and thus, can be extended into
an 8-vint with a double support, using the edges of the handicapped 5-vint. We next
consider the 6-vint using Y and two level-2 edges. We use Section 6.4 in order to bound
the support of the 8-vint which extends it with Z and X. If the two level-2 edges cannot
see each other (as depicted in Figure 35(b), where the 6-vint is shaded), the 6-vint has a
support of tr(bp)+ tr(cq) = 3+1 = 4, and the 8-vint a support of at most 4+2 = 6 (as
explained in Section 6.4; in our case, there are two non-empty sets of vertices connected
to o). Otherwise, the 6-vint has a support of tr(bc)+ tr(ao) = 5+2 = 7, and the 8-vint
has a support of at most 7 + 2 · 2 = 11 (as depicted in Figure 35(c), where the 6-vint is
shaded). In either case, the overall charge from the vints is at most 1

4
− 1

6
= 1

12
. Thus,

the total charge cannot exceed (the fourth, fifth, and sixth terms account for the three
addional 5-vints and for twelve of their 6-vint extensions; the second and third terms
represent the two remaining 6-vints, which consist of a rigid level-1 edge and two level-2
edges; the last term represents two 8-vints, each with a support of 4, as just discussed)

24
39

70
+

1

12
+

1

2
+ 1

3

4
+ 1

5

6
+ 1

7

10
− 1

4
· 2 = 29

97

105
.

• Both 5-vints have a support of 3. As in the previous case, the overall charge from
the 6-vint using Y and two level-2 edges, and from its extending 8-vint, cannot exceed
1
12

. The 6-vint using Z and two level-2 edges has a support of 3. Thus, the total
charge cannot exceed (the fourth and fifth terms account for the three addional 5-vints
and for twelve of their 6-vint extensions; the second and third terms represent the two
remaining 6-vints, which consist of a rigid level-1 edge and two level-2 edges; the last
term represents an 8-vint with a support of 4, as discussed above)

24
39

70
+

1

3
+

1

12
+ 1

3

4
+ 2 · 1 7

10
− 1

4
· 1 = 29

367

420
.

RC 2c, as depicted in Figure 36(a).

• The four 6-vints, which use Y and a level-3 edge, meet the conditions of Rule 8. By
the rule, their overall charge cannot exceed 4 · 1

1400
= 1

350
.
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Figure 36

• The 6-vint, which consists of Y and two level-2 edges, meets the conditions of Rule 7.
By the rule, this 6-vint can be ignored.

• Each of the four 6-vints using Z and a level-3 edge can be extended into an 8-vint,
using the additional RC edges (as depicted in Figure 36(b), where the hole of the 6-vint
is shaded). When o is in its non-visible terrain, the 6-vint is entirely in its non-visible
terrain, and thus, the extending 8-vint has the same support (by Rule 2, o cannot see
the vertex of bp), neutralizing its charge. By Rule 5, three of the four 6-vints must be
entirely in their non-visible terrains (the fourth 6-vint is the one using cq as its level-3
edge, which is the one shaded in Figure 36(b)). For the fourth 6-vint, when o is in its
visible terrain, the 6-vint has a support of tr(bc)+ tr(ao) = 3+1 = 4, and its extending
8-vint has a support of at most tr(bc) + tr(ao) = 3 + 2 = 5 (which occurs when o can
see the vertex of the RC edge ab, as in Figure 36(b)). This implies that the overall
charge from the four 6-vints and their extension 8-vints cannot exceed 1

4
− 1

5
= 1

20
.

As in the previous cases, we first ignore some of the vints. This time, we only ignore the
two 5-vints using Y and one of its child edges, and the four 6-vints which extend one of
these 5-vints with either A or Z. We have already accounted for nine 6-vints (different
from those ignored). Each of the other vints has a support of at least 2 (apart from the
two rigid 4-vints, three rigid 5-vints, and three rigid 6-vints), and therefore, we get a
charge of at most

4 · 1 + 3

(

2 +
1

2

)

+ 2

(

3 +
1

2
· 4

)

+ 1

(

3 +
1

2
· 12

)

+
1

20
+

1

350
= 30

387

700
.

We observe that either at least one of the 5-vints of the non-rigid subtree has a support of
3, or a Type I 5-vint must exist (or one of these 5-vints is missing). In the former case, a
5-vint and four of the 6-vints which extend it have a support of at least 3 (we do not count
the fifth 6-vint, in order not to clash with Method 2); the charge is therefore reduced by
at least

(
1
2
− 1

3

)
(2 · 1 + 1 · 4) = 1. In the latter case, the handicapped 6-vint can be

extended into an 8-vint with a support that can be bounded by Method 1 — as explained
in Method 1(D), we can ignore this 6-vint when there are at least three RC edges. This
is also valid for the sibling of the handicapped 6-vint, unless it has a support of 5 (see
Method 1(E)). Finally, according to Method 1(A), we can extend the Type I 5-vint into
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two 8-vints, each using two level-1 RC edges and one level-2 RC edge (as depicted in
Figure 36(c), where the hole of the 5-vint is shaded; there are additional extension vints,
but we do not consider them here). There are at most five non-empty sets of vertices
connected to p, which implies that the support of either of these two 8-vints is at most
2 + 5 = 7 (this analysis is identical to the one in RC 2b). The reduction in the charge in
this case is therefore at least 1

2
+

(
1
2
− 1

5

)
+ 1

7
· 2 = 38

35
. We conclude that in either case the

total charge goes down by at least 1.
We next observe that either the 5-vint using A and Z has a support of 3, or we can

use Method 2 to extend vints from the non-rigid subtree (using Z, X, and W ). In the
former case, the support of the 5-vint (the one using A and Z) and the five 6-vints which
extend it is at least 3, which lowers the bound by at least

(
1
2
− 1

3

)
(2 · 1 + 1 · 5) = 11

6
. In

the latter case, we can extend two 6-vints and a 5-vint from the non-rigid subtree into
three respective 8-vints with the same supports, by appending Z and X (and also W
in the case of the 5-vint). This follows since the vertices of these 6-vints, as considered
in Method 2(C), cannot see vertices of RC edges. Therefore, in this case, the charge is
reduced by at least 3 · 1

2
= 11

2
. We conclude that in either case the bound on the total

charge goes further down by at least 11
6
.

Hence, so far the total charge is at most

30
387

700
− 1 − 1

1

6
= 28

811

2100
.

We next consider the possible charges of the two 5-vints and the four 6-vints that were
previously ignored:

• A 5-vint with a support of 2. The level-2 vertex of the 5-vint is in its non-visible terrain,
since otherwise it would have a support of at least tr(bc)+tr(ap) = 2+1 = 3 (as depicted
in Figure 36(d)). This implies that the 5-vint can be extended into an 8-vint with the
same support, using the additional RC edges. The 6-vint which extends the 5-vint
using A has a support of at least 4, since it holds two non-adjacent flippable edges.
The overall charge from the 5-vint, its two extending 6-vints, and their extensions into
larger vints, cannot exceed 1

2
(2 · 1 + 1 · 1 − 1 · 1) + 1

4
= 11

4
.

• A 5-vint with a support of 3. The 6-vint which extends the 5-vint using A has a support
of at least 5 (four triangulations as before, plus an additional triangulation where the
level-1 edge of the 5-vint is flipped). The overall charge from the 5-vint, and its two
extending 6-vints, cannot exceed 1

3
(2 · 1 + 1 · 1) + 1

5
= 11

5
.

The above implies that when at least one of these two 5-vints is missing, the total charge
cannot exceed 28 811

2100
+ 11

4
= 29334

525
. We may therefore assume that both 5-vints are

present, which implies that there is at least one handicapped 5-vint (see Section 5). We
can use this 5-vint to modify the above use of Method 2, and raise the negative charge
attained by it from 11

6
up to 12

3
, as follows (see Method 2(B)).

Consider the two 5-vints, which use a rigid level-1 edge and a non-rigid level-1 edge.
When both 5-vints have a support of 2, we can extend two 6-vints from the non-rigid
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subtre into 8-vints with the same support (according to Method 2); we can also extend
a 5-vint from the non-rigid subtree into a 9-vint with the same support. The negative
charge in this case is at least 1 · 1

2
· 2 + 2 · 1

2
= 2.

If both 5-vints have a support of 3, there are seven 6-vints which we previously con-
sidered to have a support of at least 2, and now have a support of at least 3. Namely,
we have two 6-vints using A, Y , and a child of A, two using A, Z, and a child of A, one
using A, Y , and Z, one using A, Z, and X, and one using A, Z, and W . However, we
ignore one of the 6-vints using Y , A, and a child of A, in order not to clash with Method
1, and recall that, as above, another such 6-vint (using Z) was ignored in the application
of Method 1. (Note that there are two additional 6-vints which extend these 5-vints, but
they were already considered as having a higher support.) Thus, in this case, the bound
on the total charge decreases by

(
1
2
− 1

3

)
(2 · 2 + 1 · 6) = 12

3
.

If only the 5-vint using Y and A has a support of 3, we can still extend the two 6-
vints from the non-rigid subtree (those considered in the first case, where the two 5-vints
have a support of 2) into 8-vints with the same support, but not necessarily the 5-vint.
Therefore, in this case, the charge goes down by at least 1

2
· 2 +

(
1
2
− 1

3

)
(2 · 1 + 1 · 2) = 12

3

(the second term represents the change in the bound on the supports of the 5-vint and of
two other 6-vints that extend it).
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Figure 37

If only the 5-vint using Z and A has a support of 3, we can extend two 6-vints
from the non-rigid subtree into 8-vints with a double support, using the edges of the
handicapped 5-vint in the subtree of Y (as depicted in Figure 37(a), where the 6-vint is
shaded and the extending edges are ac and ad), and thus, the charge goes down by at
least 1

4
·2+

(
1
2
− 1

3

)
(2 ·1+1 ·5) = 12

3
(the second term represents the change in the bound

on the supports of the 5-vint and of five other 6-vints that extend it).
In either case, we lose a charge of at least 12

3
, which implies that the total charge

(including the previously ignored vints) is at most

28
811

2100
+

(

1
2

3
− 1

1

6

)

+ 1
1

4
· 2 = 30

811

2100
.

If the non-visible subtree of Z, X, and W is the non-rigid subtree, we can ignore our
previous use of the two methods, and instead, extend each 5-vint and 6-vint from the non-
rigid subtree into an 8-vint with the same support (adding RC edges from the subtree of Z
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cannot increase the support). This increases the negative charge by 1
2
·(2+5)−

(
1 + 12

3

)
=

5
6
, and thus, the total charge cannot exceed 30 811

2100
− 5

6
= 29387

700
. We may therefore assume

that the non-visible subtree of Z, X, and W is the subtree of Y .
Consider the 6-vint using Y and its two child edges, as depicted in Figures 37(b) and

37(c). When both 5-vints from the subtree of Y have a support of 2 (as depicted in Figure
37(b)), the chord bc must be present in every triangulation of the hole of the 6-vint, and
thus, the 6-vint has a support of at most C3 = 5 (the number of triangulations of the
pentagon bqpoc). When one of the 5-vints has a support of 3 (as depicted in Figure 37(c);
the other 5-vint is handicapped, and thus, must have a support of 2), the support is at
most tr(bc) + tr(ao + bo) = 5 + 2 = 7. We can ignore our previous use of Rule 7 (which
implied that we can ignore the 6-vint) and extend the 6-vint into two 8-vints and one
9-vint with the same support, using RC edges (due to the assumption on the non-visible
subtree of Z). The change in the charge is at most 1

7
(1 · 1 − 1 · 2 − 2 · 1) = −3

7
, and

therefore, the charge cannot exceed

30
811

2100
− 3

7
= 29

2011

2100
.
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RC 2d, as depicted in Figure 38(a).

• The four 6-vints which consist of a rigid level-1 edge, a non-rigid level-2 edge, and a
level-3 edge, meet the conditions of Rule 8. By the rule, their overall charge cannot
exceed 4 · 1

1400
= 1

350
.

• Each of the four 6-vints, which consist of a rigid level-1 edge, a rigid level-2 edge, and
a level-3 edge, can be extended into an 8-vint, using the additional RC edges. By Rule
5, at least two of these 6-vints are entirely in their non-visible terrains, and thus, each
of their corresponding 8-vints has the same support as the 6-vint it extends. For each
of the other two 6-vints, by Table 2 of Section 6.5 (the part where the level-2 edge is
rigid), either the 6-vint has a support of at most 3 and the 8-vint has the same support,
or the 6-vint has a support of 4 and the 8-vint has a support of at most 7. Thus, the
overall charge from these vints cannot exceed 2

(
1
4
− 1

7

)
= 3

14
.

As in the previous cases, we first ignore some of the vints. This time, we ignore the two
5-vints using a rigid level-1 edge and a non-rigid level-2 edge, and the six 6-vints which
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extend one of these 5-vints with either a level-1 edge or a level-2 edge. We have already
accounted for eight 6-vints (different from those ignored). Each of the other vints has a
support of at least 2 (apart from the two rigid 4-vints, three rigid 5-vints, and two rigid
6-vints), and therefore, we get a charge of at most

4 · 1 + 3

(

2 +
1

2

)

+ 2

(

3 +
1

2
· 4

)

+ 1

(

2 +
1

2
· 12

)

+
3

14
+

1

350
= 29

251

350
.

We can use Method 1 in a manner completely identical (and essentially verbatim) to the
one presented in RC 2c. This lowers the bound on the total charge by at least 1.

We next consider the two 5-vints which consist of a rigid level-1 edge and a non-rigid
level-1 edge. When both 5-vints have a support of 2, according to Method 2(A), we can
extend a 5-vint from the non-rigid subtree into a 9-vint with the same support, by using
RC edges. According to Method 1(C), we can extend each of the two 6-vints, which
extend this 5-vint with a level-3 edge, into an 8-vint with the same support. Therefore,
in this case, the charge is reduced by at least 1

2
(2 · 1 + 1 · 2) = 2.

When both 5-vints have a support of 3, there are seven 6-vints which we previously
considered to have a support of at least 2, and now have a support of at least 3. Namely,
we have two 6-vints using A, Y , and a child of A, two using A, Z, and a child of A, one
using A, Y , and Z, one using A, Y and X, and one using A, Z, and W . However, we
ignore one of the 6-vints, say one of the two using Y , A, and a child of A, in order not to
clash with Method 1, and recall that, as above, another such 6-vint (using Z) was ignored
in the application of Method 1. (Note that there are two additional 6-vints which extend
these 5-vints, but they were already considered as having a higher support.) Thus, in this
case, the charge decreases by at least

(
1
2
− 1

3

)
(2 · 2 + 1 · 6) = 12

3
.

When exactly one 5-vint has a support of 2, we can still extend the two 6-vints from
the non-rigid subtree (those considered in the first case, where the two 5-vints have a
support of 2), but not necessarily the 5-vint. Therefore, in this case, the charge is reduced
by at least 1

2
· 2 +

(
1
2
− 1

3

)
(2 · 1 + 1 · 3) = 15

6
(the second term represents the change in

the bound on the supports of the 5-vint and of three other 6-vints that extend it).
In either case, the bound on the total charge goes further down by at least 12

3
, which

implies that the total charge is at most

29
251

350
− 1 − 1

2

3
= 27

53

1050
.

We next consider the possible charges of the two 5-vints and the six 6-vints that were
previously ignored:

• A 5-vint with a support of 2. The 6-vint which extends the 5-vint using A has a support
of at least 4, since it holds two non-adjacent flippable edges. The 5-vint can be extended
into an 8-vint with the same support, using RC edges. The overall charge from the 5-
vint and the three 6-vints which extend it cannot exceed 1

2
(2 · 1 + 1 · 2− 1 · 1) + 1

4
= 13

4
.

• A 5-vint with a support of 3. Without loss of generality, we refer to the 5-vint using
Y and its non-rigid child edge. The 6-vint which extends the 5-vint using A has a
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support of at least 5 (four triangulations as before, plus an additional triangulation
where the level-1 edge of the 5-vint is flipped). Moreover, by rule 5(b), the two 6-
vints using Y , X, and a level-3 edge are entirely in their non-visible terrain. This
implies that each of these 6-vints can be extended into an 8-vint with the same support
using Z and W (as depicted in Figure 38(b), where bc and ac correspond to Y and Z,
respectively). This lowers the bound on the total charge by 1

4
− 1

7
= 3

28
(which was the

previous bound on the charge of those two 6-vints). Finally, consider the 8-vint which
extends the 5-vint using the other RC edges, as depicted in Figure 38(c) (where bc and
ac correspond to Y and Z, respectively, and the 5-vint is shaded). Notice that bp is
present in every triangulation, which implies that the support of this 8-vint is at most
tr(bc) + tr(ao) = C2 + C ′

3 = 2 + 3 = 5. We conclude that the charge of this 5-vint and
its extensions is at most 1

3
(2 · 1 + 2 · 1) + 1

5
− 3

28
− 1

5
= 119

84
(the second term represents

the 6-vint using A, the third term represents the decrease in the two 6-vints that use a
level-3 edge, and the last term represents the 8-vint that was discussed above).

The above implies that when at least one of these two 5-vints is missing, the total charge
cannot exceed 27 53

1050
+ 13

4
= 281681

2100
. We may therefore assume that both 5-vints are

present. We divide the rest of the analysis according to the supports of these two 5-vints:

• Both 5-vints have a support of 3. The total charge cannot exceed

27
53

1050
+ 1

19

84
· 2 = 29

88

175
.

• Both 5-vints have a support of 2. Consider the 9-vint which consists of the edges of
both 5-vint and of the additional RC edges (as depicted in Figure 38(d), where one
of the 5-vints is shaded). Since all of these edges are in their non-visible terrains, the
support of the 9-vint is the product of the supports of the two 5-vints, which is 2 ·2 = 4.
By removing either X or W , we generate an 8-vint with the same support. The total
charge cannot exceed

27
53

1050
+ 1

3

4
· 2 − 1

4
(2 · 1 + 1 · 2) = 29

289

525
.
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• Exactly one 5-vint has a support of 2. We once again consider the two 8-vints which
were analyzed in the previous case. Such an 8-vint is depicted in Figure 39(a), where
the 5-vint with a support of 3 is shaded and the RC edge that is not used is the one
adjacent to this 5-vint. Since p cannot see a, and e cannot see f , the support of such
an 8-vint is smaller than C ′′

6 = C6 − C5 · 2 + C4 = 132 − 42 · 2 + 14 = 62. The second
8-vint can be analyzed in a similar manner (albeit not symmetric to the previous case).
Therefore, the total charge cannot exceed

27
53

1050
+ 1

3

4
+ 1

19

84
− 1

62
· 2 = 29

2312

2325
.

RC 2e, as depicted in Figure 39(b).

• Each of the eight 6-vints, which use a rigid level-1 edge and a level-3 edge, meets the
conditions of Rule 8. By the rule, their overall charge 6-vints cannot exceed 8· 1

1400
= 1

175
.

• The 6-vint using A and B has a support of at least 4, since it holds two non-adjacent
flippable edges.

So far, we have accounted for nine 6-vints. Each of the other vints has a support of at
least 2 (apart from the two rigid 4-vints, four rigid 5-vints, four rigid 6-vints, and one
rigid 8-vint), and therefore, we get a charge of at most

4 · 1 + 3

(

2 +
1

2

)

+ 2

(

4 +
1

2
· 5

)

+ 1

(

4 +
1

2
· 15

)

− 1 · 1 +
1

175
+

1

4
= 35

179

700
.

If the non-rigid subtree is the non-visible subtree of Z, we can extend each of the five
6-vints and two 5-vints from the non-rigid subtree into an 8-vint with the same support.
We can also extend the 5-vint which consists of A and Y , the 6-vint which consists of
A, Y , and X, and the two 6-vints which consist of A, Y , and a child-edge of A, each
into an 8-vint with the same support (a case of a 6-vint which consists of A, Y , and a
child-edge of A is depicted in Figure 39(c), where ab, bc, and ac correspond to A, Z,
and Y , respectively, and the 6-vint is shaded). Thus, the total charge cannot exceed
35179

700
− 1

2
· 11 = 29529

700
. (Note that in this analysis, we assume that all these eleven 5-vints

and 6-vints are present. If any of them is missing, we lose at least as much positive charge
as negative charge, so the total charge can only decrease.) We may therefore assume that
the non-visible subtree of Z is the subtree of Y .

If B is present in the flip-tree, it generates a positive charge by participating in a
5-vint and three 6-vints (we ignore two additional 6-vints which use a level-3 edge, since
we consider, somewhat loosely, their charge as part of the term 1

175
, even when B is not

present). We can extend the 5-vint into a 9-vint with the same support, using X, Z, W ,
and U (by Rule 2, appending X cannot increase the support of the vint; such a 9-vint is
depicted in Figure 40(a), where ab and bc correspond to Y and Z, respectively, and the
5-vint is shaded). Similarly, we can extend the 5-vint into three 8-vints (each obtained by
removing a single RC edge from the 9-vint), which more than neutralize the charge of the
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three 6-vints (each of the three 8-vints has the same support as the 5-vint, and at least
one 6-vint has a higher support, since it is using the flippable edge A). We conclude that
adding B to the flip-tree can only decrease the bound on the total charge, and we may
therefore assume that B is not present in the flip-tree.

Hence, we now consider the flip-tree depicted in Figure 40(b), and so far, the charge
cannot exceed

4 · 1 + 3

(

2 +
1

2

)

+ 2

(

4 +
1

2
· 4

)

+ 1

(

4 +
1

2
· 13

)

− 1 · 1 +
1

175
= 33

1

175
.

Once again, we can use Method 1 in a manner completely identical (and essentially
verbatim) to the one presented in RC 2c. This lowers the bound on the total charge by
at least 1.

We next consider the two 5-vints which consist of a rigid level-1 edge and a non-rigid
level-1 edge. When both 5-vints have a support of 2, according to Method 2(A), we can
extend a 5-vint from the non-rigid subtree into a 9-vint with the same support, by using
RC edges. According to Method 1(C), we can extend each of the two 6-vints, which
extend this 5-vint with a level-3 edge, into an 8-vint with the same support. Therefore,
in this case, the charge is reduced by at least 1

2
(2 · 1 + 1 · 2) = 2.

When both 5-vints have a support of 3, there are eight 6-vints which we previously
considered to have a support of at least 2, and now have a support of at least 3. Namely,
we have two 6-vints using A, Y , and a child of A, two using A, Z, and a child of A, one
using A, Y , and Z, one using A, Y , and X, one using A, Z, and U , and one using A,
Z, and W . However, we ignore one of the 6-vints using Y , A, and a child of A, in order
not to clash with Method 1, and recall that, as above, another such 6-vint (using Z) was
ignored in the application of Method 1. (Note that there is an additional 6-vint which
extends these 5-vints, but it was already considered as having a higher support.) Thus,
the charge decreases by at least

(
1
2
− 1

3

)
(2 · 2 + 1 · 7) = 15

6
.

When only the 5-vint using A and Z has a support of 2, we can still use Z, U , and W
to extend the 5-vint and two 6-vints from the non-rigid subtree (those considered in the
first case, where the two 5-vints have a support of 2) into respective 8-vints with the same
support. Therefore, in this case, the charge is reduced by at least 1

2
·3+

(
1
2
− 1

3

)
(2·1+1·4) =

21
2

(the second term represents the change in the bound on the supports of the 5-vint that
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uses A and Y and of four other 6-vints that extend it).
When only the 5-vint using A and Y has a support of 2, we can still use Y and

X to extend the two 6-vints from the non-rigid subtree, but not necessarily the 5-vint.
Therefore, in this case, the charge is reduced by at least 1

2
· 2 +

(
1
2
− 1

3

)
(2 · 1 + 1 · 4) = 2

(the second term represents the change in the bound on the supports of the 5-vint that
uses A and Z and of four other 6-vints that extend it).

In either case, the bound on the total charge goes further down by at least 15
6
, which

implies that the total charge is at most

33
1

175
− 1 − 1

5

6
= 30

181

1050
.

Consider the two 8-vints which consist of A, X, Y , Z, and a child-edge of Z (as depicted in
Figure 40(c), where bc, ab, and ac correspond to A, Y , and Z, respectively). The number
of triangulations of the hole of such an 8-vint is at most tr(bc) + tr(ad) = 1 + C ′

3 · C ′
3 =

1 + 3 · 3 = 10. Therefore, the total charge cannot exceed

30
181

1050
− 1

10
· 2 = 29

1021

1050
.
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Extensions of the previous cases. We start by treating additional level-2 RC edges.
There remains a single case that has not yet been handled — an RC with four level-2
edges (it is depicted in Figure 40(d) and we refer to it as RC 2e+). We analyze this case
by showing that adding a level-2 edge to RC 2e cannot increase the bound on its charge
(without loss of generality, we assume that this level-2 edge is T ). The following proof
is very similar to the one in the extensions part of λ1 = 3. The positive charge gained
from the change in the RC comes from the 5-vint using Y and T , the two 6-vints which
extend this 5-vint with a level-3 edge, the two 6-vints which extend it with a level-1 edge,
and the 6-vint which extends it with X. In the analysis of RC 2e, by Rule 8, the charge
from the two 6-vints using a level-3 edge was bounded by 1

1400
· 2 = 1

700
, and this remains

valid after the change. Thus, we only need to consider the change in the charges coming
from the 5-vint and the three other 6-vints. By extending the 5-vint with the additional
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RC edges, we create a 9-vint (as depicted in Figure 41(a), where the 5-vint is shaded).
If before the change the 5-vint had a support of m ≥ 2, this 9-vint had a support of
at least m. The change in the overall charge coming from these two vints is at most
2
(
1 − 1

m

)
− 2

(
1 − 1

m

)
= 0 (the first term represents the change in the 5-vint, and the

second term represents the change in the 9-vint). This implies that the 9-vint neutralizes
the change in the charge coming from the 5-vint. We can use a similar argument to
neutralize the change in the charges coming from the 6-vint using Y , T , and X, and
from the 6-vint using Y , T , and Z (by using two out of the three 8-vints that extend
the 5-vint with additional RC edges). We are left with the 6-vint using T , Y , and A,
and with the third 8-vint that extends the 5-vint with RC edges. After the change, the
6-vint has a support of at least 2, which implies that the change raised its charge by less
than 1

2
. Similarly, after the change, the 8-vint has a support of 1, which implies that the

change raised its (negative) charge by at least 1
2
, more than neutralizing the change in

the charge coming from the 6-vint. In conclusion, adding another level-2 edge to RC 2e
cannot increase the bound on its charge.

We next deal with the addition of level-3 edges to the basic RCs. By Rule 3, adding
a level-3 RC edge to RC 2c, RC 2d, or RC 2e (or RC 2e+), cannot increase the bound on
their charge. Moreover, we cannot add a level-3 RC edge to RC 2a, since it does not have
any level-2 RC edges. This implies that we only need to treat the addition of a single
level-3 RC edge to RC 2b (by Rule 3, adding a second level-3 edge to this RC cannot
increase the charge). This RC, denoted by RC 2b+, is depicted in Figure 41(b), where
W is the new RC edge. We modify our previous analysis of RC 2b so that it applies to
RC 2b+, as follows.

Making W rigid can only increase the positive charge by reducing the support of a
single 6-vint (the one using Z, X, and W ); we will refer to this 6-vint as u. In the original
analysis of RC 2b, we considered W to be part of the flip-tree only if the overall charge
from u and from the various extensions thereof was positive; otherwise, we would have
assumed that W is missing, in order to get a larger charge. Thus, it suffices to show that,
after the change, the overall charge from u and from its various extensions is non-positive;
this would imply that making W rigid can only decrease the overall charge.

In the original analysis of RC 2b, we show that if at least one of the three 5-vints using
a rigid level-1 edge and a non-rigid level-2 edge is not present in the flip-tree, the charge
cannot exceed 29 47

211
. While proving that claim, we consider u as having a support of at

least 2, and use the worst-case value 2 in the calculations. Moreover, we do not use W to
generate any extension vints. Thus, after the change, if at least one of these 5-vints is not
present in the flip-tree, the total charge cannot exceed 29 47

211
+(1− 1

2
) = 29305

422
(the second

term represents the change in the charge coming from u). We may therefore assume that
all three 5-vints are present in the flip-tree.

We next append the edges of the handicapped 5-vint in the subtree of Y to the edges
Z, X, and W . Since all of these edges are in their non-visible terrain, we get an 8-vint
with a support of 2 (as depicted in Figure 41(b), where the 5-vint is shaded). This leaves
a charge of 1 − 1

2
= 1

2
to neutralize. We divide the rest of the analysis into the following

two cases:
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• The 5-vint using Z and B has a support of 2. We can extend this 5-vint with Y , X,
and W , which will generate another 8-vint with a support of 2 (since all of the edges
of the 8-vint are in their non-visible terrains; see Section 6.1), neutralizing the rest of
the charge.

• The 5-vint using Z and B has a support of 3. In the analysis of RC 2b, we argued that
each of the 6-vints extending the 5-vint with a level-3 edge, and its possible extensions,
generate a positive charge of at most 1

4
(see the case of “A 5-vint with a support of

3” in RC 2b). By Rule 2, appending X and W to such a 6-vint (where now W is
rigid) cannot increase its support. Therefore, we can create two 8-vints that neutralize
the charge of these two 6-vints, which decreases the bound on the charge by at least
1
4
· 2 = 1

2
.

8 Conclusion

By a rather meticulous case analysis, we have shown that every set of n points in the
plane admits at most 30n different triangulations. We have also noted that our proof
technique cannot decrease the base below 2817

28
, so we are very close to the best base that

this approach can yield. Nevertheless, we strongly believe that the true upper bound is
much smaller. A major weakness of our machinery is that it caters to the worst possible
charge that a 3-vint can receive, as opposed to the average charge. Obtaining a sharper
upper bound on the average charge requires a totally different approach, which we leave
open for future research. For example, it might be possible to prove that for every 3-vint
with λ1 = 3, there must exist a 3-vint with λ1 = 1 (with bijective correspondence).

Still, we note that all the cases in our analysis actually yielded charges that were
strictly smaller than 30, and each of them could be further improved if we were to consider
further expansions of the flip-tree. It might therefore be interesting to find the best base
that this approach can yield, which might well be the “lower bound” 2817

28
. For this, an

exhaustive search by computer is probably the way to proceed. This in turn requires the
generation of all possible combinatorially distinct configurations of up to 25 points and
the flip trees that they generate. The existing databases of order types (see, e.g., [3]) are
not yet powerful enough to provide the data we need. However, it might be possible to
drastically decrease the number of relevant configurations by using heuristics.
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