# Counting Unbranched Subgraphs 

DAVID RUELLE<br>ruelle@ihes.fr<br>IHES, 91440 Bures sur Yvette, France

Received May 30, 1997; Revised January 16, 1998


#### Abstract

Given an arbitrary finite graph, the polynomial $Q(z)=\sum_{F \in \mathcal{U}} z^{\operatorname{card} F}$ associates a weight $z^{\operatorname{card} F}$ to each unbranched subgraph $F$ of length $\operatorname{card} F$. We show that all the zeros of $Q$ have negative real part.


Keywords: counting polynomial, graph, unbranched subgraph

A graph $(V, E, v)$ consists of a finite set $V$ of vertices, a finite set $E$ of edges, and a map $v$ of $E$ to the two-element subsets of $V$. If $a \in E$ and $v(a)=\{j, k\}$, we say that the edge $a$ joins the vertices $j, k$. (We impose that $j \neq k$, but allow different edges to join the same two vertices. We assume that each vertex $j$ is in $v(a)$ for some $a \in E)$.

For our purposes a subgraph of $(V, E, v)$ will be a graph $(V, F, \phi)$ where $F \subset E$ and $\phi=v \mid F$. We shall now fix ( $V, E, v$ ), and say that $F$ is a subgraph of $E$ if $F \subset E$ (this defines ( $V, F, \phi$ ) uniquely). We define the subset $\mathcal{U}$ of unbranched subgraphs of $E$ by

$$
\mathcal{U}=\{F \subset E:(\forall j) \operatorname{card}\{a \in F: v(a) \ni j\} \leq 2\}
$$

## Proposition 1 The polynomial

$$
Q_{\mathcal{U}}(z)=\sum_{F \in \mathcal{U}} z^{\operatorname{card} F}
$$

has all its zeros in $\left\{z: \operatorname{Re} z \leq-2 / n(n-1)^{2}\right\}$ where $n \geq 2$ is the largest number of edges ending in any vertex $j$.

The proof is given below. This result is related to a well-known theorem of Heilman and Lieb [2] on counting dimer subgraphs (for which $\operatorname{card}\{a \in F: v(a) \ni j\} \leq 1$ ).

Let us consider an edge $a$ as a closed line segment containing the endpoints $j, k \in v(a)$. Also identify a subgraph $F \subset E$ with the union of its edges. Then $F$ is the union of its connected components, and if $F \in \mathcal{U}$, these are homeomorphic to a line segment or to a circle. We call $b(F)$ the number of components homeomorphic to a line segment, therefore

$$
2 b(F)=\operatorname{card}\{j \in V: v(a) \ni j \text { for exactly one } a \in F\}
$$

Let us define

$$
Q_{\mathcal{U}}(z, t)=\sum_{F \in \mathcal{U}} z^{\operatorname{card} F} t^{b(F)} .
$$

We see that

$$
Q_{\mathcal{U}}(z, 1)=Q_{\mathcal{U}}(z) .
$$

Proposition 2 If $t$ is real $\geq 2-2 / n$, then $Q_{\mathcal{U}}(z, t)$ has all its zeros (with respect to $z$ ) on the negative real axis.

The proof is given below. For $t \geq 2$, this is a special case a theorem of Wagner [6] as pointed out by the referee (take $Q_{v}(y)=1+s y+y^{2} / 2$ for each vertex $v$ in Theorem 3.2 of [6]).

We shall use the following two lemmas.
Lemma 1 Let A, B be closed subsets of the complex plane $\mathbf{C}$, which do not contain 0 . Suppose that the complex polynomial

$$
\alpha+\beta z_{1}+\gamma z_{2}+\delta z_{1} z_{2}
$$

can vanish only when $z_{1} \in A$ or $z_{2} \in B$. Then

$$
\alpha+\delta z
$$

can vanish only when $z \in-A B$.
This is the key step in an extension (see Ruelle [5]) of the Lee-Yang circle theorem [3]. Note that in applications of the lemma, the coefficients $\alpha, \beta, \gamma, \delta$ are usually polynomials in variables $z_{j}$ (different from $z_{1}, z_{2}, z$ ).

Lemma 2 Let $Q(z)$ be a polynomial of degree $n$ with complex coefficients and $P\left(z_{1}, \ldots, z_{n}\right)$ the only polynomial which is symmetric in its arguments, of degree 1 in each, and such that

$$
P(z, \ldots, z)=Q(z) .
$$

If the roots of $Q$ are all contained in a closed circular region $M$, and $z_{1} \notin M, \ldots, z_{n} \notin M$, then $\left.P\left(z_{1}, \ldots, z_{n}\right) \neq 0\right)$.

This is Grace's theorem, see Polya and Szegö [4] V, Exercise 145.
Proof of Proposition 1: If $a \in E$, and $v(a)=\{j, k\}$, we introduce complex variables $z_{a j}, z_{a k}$. For each $j \in V$, let $p_{j}$ be the polynomial in $Z^{(j)}=\left(z_{a j}\right)_{v(a) \ni j}$ such that

$$
p_{j}\left(Z^{(j)}\right)=1+\sum_{a} z_{a j}+\sum_{a \neq b} z_{a j} z_{b j}
$$

(where we assume $v(a) \ni j, v(b) \ni j$ ). Putting all $z_{a j}$ equal to $z$, we obtain a polynomial

$$
q_{j}(z)=1+n_{j} z+\frac{n_{j}\left(n_{j}-1\right)}{2} z^{2}
$$

where $n_{j}>0$ is the number of edges ending in $j$. Define $\zeta_{ \pm}^{(j)}=-1$ when $n_{j}=1$ or 2 , and

$$
\zeta_{ \pm}^{(j)}=\frac{-n_{j} \pm \sqrt{2 n_{j}-n_{j}^{2}}}{n_{j}\left(n_{j}-1\right)}
$$

if $n_{j} \geq 2$. The zeros of $q_{j}$, considered as a polynomial of degree $n_{j}$ are $\zeta_{ \pm}^{(j)}$, and $\infty$ if $n_{j}>2$. They are therefore contained in the closed circular regions (half-planes)

$$
\begin{aligned}
H_{\theta+}^{(j)} & =\left\{z: \operatorname{Re}\left[e^{-i \theta}\left(z-\zeta_{+}^{(j)}\right)\right] \leq 0\right\} \\
H_{\theta-}^{(j)} & =\left\{z: \operatorname{Re}\left[e^{i \theta}\left(z-\zeta_{-}^{(j)}\right)\right] \leq 0\right\}
\end{aligned}
$$

for $0 \leq \theta<\pi / 4$. By Lemma 2, we have thus $p_{j}\left(Z^{(j)}\right) \neq 0$ if $z_{a j} \notin H_{\theta \pm}^{(j)}$ for all $a \in E$ such that $j \in v(a)$.

If a polynomial is separately of first order in two variables $z_{1}, z_{2}$, i.e., it is of the form

$$
\alpha+\beta z_{1}+\gamma z_{2}+\delta z_{1} z_{2}
$$

the Asano contraction [1] consists in replacing it by the first-order polynomial

$$
\alpha+\delta z
$$

in one variable $z$, as in Lemma 1. As already noted, the coefficients $\alpha, \beta, \gamma, \delta$ may depend on variables $z_{i}$ different from $z_{1}, z_{2}, z$. Let now $Z=\left(z_{a}\right)_{a \in E}$ and

$$
P_{\mathcal{U}}(Z)=\sum_{F \in \mathcal{U}} \prod_{a \in F} z_{a} .
$$

If we take the product $\prod_{j \in V} p_{j}\left(Z^{(j)}\right)$ and perform the Asano contraction

$$
\alpha+\beta z_{a j}+\gamma z_{a k}+\delta z_{a j} z_{a k} \longrightarrow \alpha+\delta z_{a}
$$

for all $a \in E$ we obtain $P_{\mathcal{U}}(Z)$. Using Lemma 1 iteratively, once for each edge $a \in E$, we see thus that $P_{\mathcal{U}}(Z)$ has no zeros when for each $a \in E$

$$
z_{a} \in \mathbf{C} \backslash\left(-H_{\theta \pm}^{(j)} H_{\theta \pm}^{(k)}\right)
$$

where $v(a)=\{j, k\}$ and

$$
H_{\theta \pm}^{(j)} H_{\theta \pm}^{(k)}=\left\{u v: u \in H_{\theta \pm}^{(j)}, v \in H_{\theta \pm}^{(k)}\right\} .
$$

We have

$$
\mathbf{C} \backslash\left(-H_{\theta \pm}^{(j)} H_{\theta \pm}^{(k)}\right) \supset \mathbf{C} \backslash\left(-H_{\theta \pm} H_{\theta \pm}\right)
$$

where $H_{\theta \pm}$ is the largest $H_{\theta \pm}^{(j)}$ (obtained by replacing $n_{j}$ by $n=\max _{j} n_{j}$ ). Note that $\mathbf{C} \backslash\left(-H_{\theta \pm} H_{\theta \pm}\right)$ is the interior of a parabola passing through $-\zeta_{ \pm}^{2}$ and with axis passing through 0 and making an angle $\pm 2 \theta$ with the positive real axis. When $\pm \theta$ varies between $-\pi / 4$ and $\pi / 4$, the parabola sweeps the region $\operatorname{Re} z>-\operatorname{Re} \zeta_{ \pm}^{2}=-2 / n(n-1)^{2}$. Since $Q_{\mathcal{U}}(z)$ is obtained from $P_{\mathcal{U}}(Z)$ by putting all $z_{a}$ equal to $z$, this proves Proposition 1 .

Proof of Proposition 2: We proceed as for Proposition 1, defining here

$$
\begin{gathered}
p_{j}\left(Z^{(j)}\right)=1+s \sum_{a} z_{a j}+\sum_{a \neq b} z_{a j} z_{b j}, \\
q_{j}(z, t)=1+n_{j} s z+\frac{n_{j}\left(n_{j}-1\right)}{2} z^{2} .
\end{gathered}
$$

If $s \geq \sqrt{2-2 / n_{j}}$, the roots of $q_{j}$ are real negative, and the same type of argument used for theorem 1 shows that all the zeros of $Q_{\mathcal{U}}\left(z, s^{2}\right)$ are real and negative.

## Acknowledgments

I am indebted to Jozsef Beck, Jeff Kahn, and Chris Godsil for their interest and advice, and to an anonymous referee for useful detailed criticism.

## References

1. T. Asano, "Theorems on the partition functions of the Heisenberg ferromagnets," J. Phys. Soc. Jap. 29 (1970), 350-359.
2. O.J. Heilmann and E.H. Lieb, "Theory of monomer-dimer systems," Commun. Math. Phys. 25 (1972),190232; 27 (1972), 166.
3. T.D. Lee and C.N. Yang, "Statistical theory of equations of state and phase relations. II. Lattice gas and Ising model," Phys. Rev. 87 (1952), 410-419.
4. G. Polya and G. Szegö, Aufgaben und Lehrsätze aus der Analysis, Vol. 2, 3rd edition, Springer, Berlin, 1964.
5. D. Ruelle, "Extension of the Lee-Yang circle theorem," Phys. Rev. Letters 26 (1971), 303-304.
6. D.J. Wagner, "Multipartition series," S.I.A.M. J. Discrete Math. 9 (1996), 529-544.
