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Counting Unbranched Subgraphs
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Abstract. Given an arbitrary finite graph, the polynomialQ(z) = ∑
F∈U zcardF associates a weightzcardF to

each unbranched subgraphF of length cardF . We show that all the zeros ofQ have negative real part.
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A graph(V, E, v) consists of a finite setV of vertices, a finite setE of edges, and a map
v of E to the two-element subsets ofV . If a ∈ E andv(a) = { j, k}, we say that the edge
a joins the verticesj , k. (We impose thatj 6= k, but allow different edges to join the same
two vertices. We assume that each vertexj is in v(a) for somea ∈ E).

For our purposes asubgraphof (V, E, v) will be a graph(V, F, φ) whereF ⊂ E and
φ = v | F . We shall now fix(V, E, v), and say thatF is a subgraph ofE if F ⊂ E (this
defines(V, F, φ) uniquely). We define the subsetU of unbranchedsubgraphs ofE by

U = {F ⊂ E : (∀ j ) card{a ∈ F : v(a) 3 j } ≤ 2}

Proposition 1 The polynomial

QU (z) =
∑
F∈U

zcardF

has all its zeros in{z : Rez ≤ −2/n(n− 1)2} where n≥ 2 is the largest number of edges
ending in any vertex j .

The proof is given below. This result is related to a well-known theorem of Heilman and
Lieb [2] on counting dimer subgraphs (for which card{a ∈ F : v(a) 3 j } ≤ 1).

Let us consider an edgea as a closed line segment containing the endpointsj, k ∈ v(a).
Also identify a subgraphF ⊂ E with the union of its edges. ThenF is the union of its
connected components, and ifF ∈ U , these are homeomorphic to a line segment or to a
circle. We callb(F) the number of components homeomorphic to a line segment, therefore

2b(F) = card{ j ∈ V : v(a) 3 j for exactly onea ∈ F}
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Let us define

QU (z, t) =
∑
F∈U

zcardF tb(F).

We see that

QU (z, 1) = QU (z).

Proposition 2 If t is real≥2− 2/n, then QU (z, t) has all its zeros(with respect to z) on
the negative real axis.

The proof is given below. Fort ≥ 2, this is a special case a theorem of Wagner [6] as
pointed out by the referee (takeQv(y) = 1+ sy+ y2/2 for each vertexv in Theorem 3.2
of [6]).

We shall use the following two lemmas.

Lemma 1 Let A, B be closed subsets of the complex planeC, which do not contain0.
Suppose that the complex polynomial

α + βz1+ γ z2+ δz1z2

can vanish only when z1 ∈ A or z2 ∈ B. Then

α + δz

can vanish only when z∈ −AB.

This is the key step in an extension (see Ruelle [5]) of the Lee-Yang circle theorem [3].
Note that in applications of the lemma, the coefficientsα, β, γ , δ are usually polynomials
in variableszj (different fromz1, z2, z).

Lemma 2 Let Q(z) be a polynomial of degree n with complex coefficients and
P(z1, . . . , zn) the only polynomial which is symmetric in its arguments, of degree1 in
each, and such that

P(z, . . . , z) = Q(z).

If the roots of Q are all contained in a closed circular region M, and z1 /∈ M, . . . , zn /∈ M,
then P(z1, . . . , zn) 6= 0).

This is Grace’s theorem, see Polya and Szeg¨o [4] V, Exercise 145.

Proof of Proposition 1: If a ∈ E, andv(a) = { j, k}, we introduce complex variables
zaj , zak. For eachj ∈ V , let pj be the polynomial inZ( j ) = (zaj )v(a)3 j such that

pj (Z
( j )) = 1+

∑
a

zaj +
∑
a6=b

zaj zbj
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(where we assumev(a) 3 j , v(b) 3 j ). Putting allzaj equal toz, we obtain a polynomial

qj (z) = 1+ nj z+ nj (nj − 1)

2
z2

wherenj > 0 is the number of edges ending inj . Defineζ ( j )
± = −1 whennj = 1 or 2, and

ζ
( j )
± =

−nj ±
√

2nj − n2
j

n j (nj − 1)

if nj ≥ 2. The zeros ofqj , considered as a polynomial of degreenj areζ ( j )
± , and∞ if

nj > 2. They are therefore contained in the closed circular regions (half-planes)

H ( j )
θ+ =

{
z : Re

[
e−i θ

(
z− ζ ( j )

+
)] ≤ 0

}
H ( j )
θ− =

{
z : Re

[
ei θ
(
z− ζ ( j )

−
)] ≤ 0

}
for 0 ≤ θ < π/4. By Lemma 2, we have thuspj (Z( j )) 6= 0 if zaj /∈ H ( j )

θ± for all a ∈ E
such thatj ∈ v(a).

If a polynomial is separately of first order in two variablesz1, z2, i.e., it is of the form

α + βz1+ γ z2+ δz1z2

theAsano contraction[1] consists in replacing it by the first-order polynomial

α + δz

in one variablez, as in Lemma 1. As already noted, the coefficientsα, β, γ , δ may depend
on variableszi different fromz1, z2, z. Let nowZ = (za)a∈E and

PU (Z) =
∑
F∈U

∏
a∈F

za.

If we take the product
∏

j∈V pj (Z( j )) and perform the Asano contraction

α + βzaj + γ zak + δzaj zak −→ α + δza

for all a ∈ E we obtainPU (Z). Using Lemma 1 iteratively, once for each edgea ∈ E, we
see thus thatPU (Z) has no zeros when for eacha ∈ E

za ∈ C
∖(−H ( j )

θ± H (k)
θ±
)

wherev(a) = { j, k} and

H ( j )
θ± H (k)

θ± =
{
uv : u ∈ H ( j )

θ± , v ∈ H (k)
θ±
}
.
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We have

C
∖(−H ( j )

θ± H (k)
θ±
) ⊃ C\(−Hθ±Hθ±)

where Hθ± is the largestH ( j )
θ± (obtained by replacingnj by n = maxj n j ). Note that

C\(−Hθ±Hθ±) is the interior of a parabola passing through−ζ 2
± and with axis passing

through 0 and making an angle±2θ with the positive real axis. When±θ varies between
−π/4 andπ/4, the parabola sweeps the region Rez > −Reζ 2

± = −2/n(n − 1)2. Since
QU (z) is obtained fromPU (Z) by putting allza equal toz, this proves Proposition 1. 2

Proof of Proposition 2: We proceed as for Proposition 1, defining here

pj (Z
( j )) = 1+ s

∑
a

zaj +
∑
a6=b

zaj zbj ,

qj (z, t) = 1+ nj sz+ nj (nj − 1)

2
z2.

If s ≥ √2− 2/nj , the roots ofqj are real negative, and the same type of argument used
for theorem 1 shows that all the zeros ofQU (z, s2) are real and negative. 2
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