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Abstract

This paper aims to count arbitrary objects in images.

The leading counting approaches start from point annota-

tions per object from which they construct density maps.

Then, their training objective transforms input images to

density maps through deep convolutional networks. We

posit that the point annotations serve more supervision pur-

poses than just constructing density maps. We introduce

ways to repurpose the points for free. First, we propose

supervised focus from segmentation, where points are con-

verted into binary maps. The binary maps are combined

with a network branch and accompanying loss function to

focus on areas of interest. Second, we propose supervised

focus from global density, where the ratio of point annota-

tions to image pixels is used in another branch to regularize

the overall density estimation. To assist both the density

estimation and the focus from segmentation, we also intro-

duce an improved kernel size estimator for the point anno-

tations. Experiments on six datasets show that all our con-

tributions reduce the counting error, regardless of the base

network, resulting in state-of-the-art accuracy using only a

single network. Finally, we are the first to count on WIDER

FACE, allowing us to show the benefits of our approach in

handling varying object scales and crowding levels. Code is

available at https://github.com/shizenglin/

Counting-with-Focus-for-Free

1. Introduction

This paper strives to count objects in images, whether

they are people in crowds [10,35,40], cars in traffic jams [7]

or cells in petri dishes [22]. The leading approaches for

this challenging problem count by summing the pixels in a

density map [13] as estimated with a convolutional neural

network, e.g. [3, 11, 14, 22]. While this line of work has

shown to be effective, the rich source of supervision from

the point annotations is only used to construct the density

maps for training. The premise of this work is that point

annotations can be repurposed to further supervise counting

optimization in deep networks, for free.

The main contribution of this paper is summarized in

Focus from segmentation Non-uniform density map Focus from global density

Image Point annotations

Figure 1: Focus for free in counting. From point supervi-

sion, we learn to obtain a focus from segmentation, a focus

from global density, and an improved density maps. Com-

bined, they result in better counting estimation irrespective

of the base network.

Figure 1. Besides creating density maps, we show that

points can be exploited as free supervision signal in two

other ways. The first is focus from segmentation. From

point annotations, we construct binary segmentation maps

and use them in a separate network branch with an ac-

companying segmentation loss to focus on areas of inter-

est only. The second is focus from global density. The

relative amount of point annotations in images is used to

focus on the global image density through another branch

and loss function. Both forms of focus are integrated with

the density estimation in a single network trained end-to-

end with a multi-level loss. In standard attention mecha-

nisms [9,12,19,33], the weighing map is indirectly learned

from a task-specific objective, e.g.image classification or

object counting. We also rely on task-specific supervision,

but we explicitly add novel supervised network branches

for the segment and density weighting maps. We derive the

necessary supervision from provided point annotations and

name it focus for free.

Overall, we make three contributions in this paper: (i)

We propose supervised focus from segmentation, a network

branch which guides the counting network to focus on ar-

eas of interest. The supervision is obtained from the al-

ready provided point annotations. (ii) We propose super-

vised focus from global density, a branch which regular-

izes the counting network to learn a matching global den-
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sity. Again the supervision is obtained for free from the

point annotations. (iii) We introduce a new kernel density

estimator for point annotations with non-uniform point dis-

tributions. For the deep network, we design an improved

encoder-decoder network to deal with varying object scales

in images. Experimental evaluation on six counting datasets

shows the benefits of our focus for free, kernel estimation,

and end-to-end network architecture, resulting in state-of-

the-art counting accuracy. To further demonstrate the po-

tential of our approach for counting under varying object

scales and crowding levels, we provide the first counting re-

sults on WIDER FACE, normally used for large-scale face

detection [35].

2. Related Work

Density-based counting. Deep convolutional networks are

widely adopted for counting by estimating density maps

from images. Early works, e.g. [24, 30, 37, 40], advocate

a multi-column convolutional neural network to encourage

different columns to respond to objects at different scales.

Despite their success, these types of networks are hard to

train due to structure redundancy [14] and conflicts result-

ing from optimization among different columns [1, 27].

Due to their architectural simplicity and training effi-

ciency, single column deep networks have received increas-

ing interest e.g. [3, 14, 20, 21, 28]. Cao et al. [3] , for

example, propose an encoder-decoder network to predict

high-resolution and high-quality density maps using a scale

aggregation module. Li et al. [14] combine a VGG net-

work with dilated convolution layers to aggregate multi-

scale contextual information. Liu et al. [21] rely on a sin-

gle network by leveraging abundantly available unlabeled

crowd imagery in a learning-to-rank framework. Shi et al.

[28] train a single VGG network with a deep negative cor-

relation learning strategy to reduce the risk of over-fitting.

We also employ single column networks, but rather than fo-

cusing solely on density map estimation, we repurpose the

point annotations in multiple ways to improve counting.

Recently, multi-task networks have shown to reduce the

counting error [1,10,19,25–27,29]. Sam et al. [26], for ex-

ample, train a classifier to select the optimal regressor from

multiple independent regressors for particular input patches.

Ranjan et al. [25] rely on one network to predict a high reso-

lution density map and a helper-network to predict a density

map at a low resolution. In this paper, we also investigate

counting from a multi-task perspective, but from a differ-

ent point of view. We posit that the point annotations serve

more purposes than just constructing density maps, and we

propose network branches with supervised focus from seg-

mentation and global density to repurpose the point anno-

tations for free. Our focus for free benefits counting re-

gardless of the base network, and is complementary to other

state-of-the-art solutions.

Counting with attention. Attention mechanisms [34]

have enabled progress in a wide variety of computer vision

challenges [4,6,15,39,41]. Soft attention is the most widely

used since it is differentiable and thus can be directly incor-

porated in an end-to-end trainable network. The common

way to incorporate soft attention is to add a network branch

with one or more hidden layers to learn an attention map

which assigns different weights to different regions of an

image. Spatial and channel attention are two well explored

types of soft attention [4, 33]. Spatial attention learns a

weighting map over the spatial coordinates of the feature

map, while channel attention does so for the feature chan-

nels of the map.

A few works have investigated density-based counting

with spatial attention [8, 12, 19]. Liu et al. [19], for exam-

ple, estimate the density of a crowd by generating separate

detection- and regression-based density maps. They fuse

these two density maps guided by an attention map, which is

implicitly learned together with the density map regression

loss. While we share the notion of assisting the density-

based counting with a focus, we show in this work that

such an attention does not need to be learned from scratch

and instead can be derived from the existing point annota-

tions. More specifically, we construct a segmentation map

and a global density derived from the ground-truth anno-

tated points as two additional, yet free, supervision signals

for better counting.

3. Focus for Free

We formulate the counting task as a density map estima-

tion problem, see e.g. [13,28,40]. Given N training images

{(Xi,Pi)}
N
i=1, with Xi ⊂ X the input image and Pi a set

of point annotations, one for each object, we use the point

annotations to create a ground-truth density map by con-

volving the points with a Gaussian kernel,

Di(p) =
∑

P∈Pi

N (p|µ = P, σ2
P ), (1)

where p denotes a pixel location, P denotes a single point

annotation and N (p|µ = P, σ2
P ) is a normalized Gaus-

sian kernel with mean P and an isotropic covariance σ2
P .

The global object count Ti of image Xi can be obtained by

summing all pixel values within the density map Di, i.e.,

Ti =
∑

p∈Xi
Di(p). Learning a transformation from input

images to density maps is done through deep convolutional

networks. Let Ψ(X) : R3×W×H 7→ R
W×H denote such

a mapping given an arbitrary deep network Ψ for image

X , with W and H the width and height of the image. In

this paper, we investigate two ways that repurpose the point

annotations to help supervising the network Ψ from input

images to density maps. An overview of our approach, in

which multiple branches are combined on top of a base net-

work, is shown in Figure 2.
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Figure 2: Overview of our approach. Top branch: focus from segmentation learns a focus map Vs with the aid of a

segmentation map (Section 3.1). Bottom branch: focus from global density learns a focus map Vd with the aid of a global

density (Section 3.2). Both supervision signals are obtained from the same point-annotations, for which we introduce an

improved kernel estimator (Section 3.3). Both branches with focus for free are integrated with the output of a base network

by element-wise multiplication and end-to-end optimized through a multi-level loss (Section 3.4).

3.1. Focus from segmentation

The first way to repurpose the point annotations is to

provide a spatial focus. Intuitively, pixels that are within

a specific range of any point annotation should be of high

focus, while pixels in undesired regions should be mostly

disregarded. In the standard setup where the optimization

is solely dependent on the density map, each pixel counts

equally to the network loss. Given that only a fraction of

the pixels are near point annotations, the loss will be domi-

nated by the majority of irrelevant pixels. To overcome this

limitation, we reuse the point annotations to create a binary

segmentation map and exploit this map to provide the fo-

cused supervision through a stand-alone loss function.

Segmentation map. The binary segmentation map is

obtained as a function of the point annotations and their es-

timated variance. The binary value for each pixel p in train-

ing image i is determined as:

Si(p) =

{

1 if ∃P∈Pi

(

||p− P ||2 ≤ σ2
P

)

,

0 otherwise.
(2)

Equation 2 states that a pixel p obtains a value of one if at

least one point P is within its variance range σP as specified

by a kernel estimator.

Segmentation focus. Let V ∈ R
C×W×H denote the

output of the base network. We add a new branch on top

of the network denoted as Fs with network parameters θs.

Furthermore, let θn denote the parameters of the base net-

work. We propose a per-pixel weighted focal loss [17] to

obtain a supervised focus from segmentation for input im-

age X:

Ls(X; θn, θs) =
∑

l∈{0,1}

−αlSl

(1−Fs(X; θn, θs))
γs log(Fs(X; θn, θs)),

(3)

where αl = 1 − |Sl|
|S| . The focal parameter γs is set to 2

throughout this network, as recommended by [17]. The seg-

mentation branch is visualized at the top of Figure 2.

Network details. After the output of the base network,

we perform a 1 × 1 convolution layer with parameters

θs ∈ R
C×2×1×1, followed by a softmax function δ to gener-

ate a per-pixel probability map Pi = δ(θsV ) ∈ R
2×W×H .

From this probability map, the second value along the first

dimension represents the probability of each pixel being

part of the segmentation foreground. We furthermore tile

this slice C times to construct a separate output tensor

Vs ∈ R
C×W×H , which will be used in the density esti-

mation branch itself.

3.2. Focus from global density

Next to a spatial focus, point annotations can also be re-

purposed by examining their context. It is well known that

low density crowds exhibit coarse texture patterns while

high density crowds exhibit very fine texture patterns. Here,

we exploit this knowledge for the task of counting. Given a

network output V ∈ R
W×H×C , we employ a bilinear pool-

ing layer [5, 18] to capture the feature statistics in a global

context, which is known to be particularly suitable for tex-

ture and fine-grained recognition [5, 18]. In this work, we

match global contextual patterns to the distribution of points

in training images to obtain a supervised focus from global

density.

Global density. For patch j in training image i, its

global density is given as:

Gj,i =
|Pj,i|

L
, (4)

where |Pj,i| denotes the number of point annotations in

patch j and L denotes the global density step size, which
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is computed for a dataset as:

L =

⌊

max
i=1,..,N

( |Pi|

Zi

· Zj,i

)

/M

⌋

+ 1, (5)

with Zi and Zj,i the number of pixels in image i and patch

j respectively. Intuitively, the step size computes the maxi-

mum global density over image patches and M states how

many global density levels are used overall.

Global density focus. With V ∈ R
C×W×H again the

output of the base network, we add a second new branch

Fc with network parameters θc. We propose the following

global density loss function:

Lc(X;θn, θc) =
∑

l∈{0,1,..,M}

−Gl

(1−Fc(X; θn, θc))
γc log(Fc(X; θn, θc)),

(6)

where γc is set to 2 as well. The above loss function aims to

match the global density of the estimated density map with

the global density of the ground truth density map. The cor-

responding global density branch is visualized at the bottom

of Figure 2.

Network details. For network output V , we first per-

form an outer product B = V V T ∈ R
C×C , followed by a

mean pooling along the second dimension to aggregate the

bilinear features over the image, i.e. B̂ = 1
C

∑C

i=1 B[:, i] ∈

R
C×1. The bilinear vector B̂ is ℓ2-normalized, followed

by signed square root normalization, which has shown to

be effective in bilinear pooling [18]. Then we use a fully

connected layer with parameters θc ∈ R
C×M followed

by a softmax function δc to make individual prediction

C = δc(θcB̂) ∈ R
M×1 for the global density. Furthermore,

another fully-connected layer with parameters θd ∈ R
C×C

followed by sigmoid function δd also on top of the bilinear

pooling layer is added to generate global density focus out-

put D = δd(θdB̂) ∈ R
C×1. We note that this results in a

focus over the channel dimensions, complementary to the

focus over the spatial dimensions from segmentation. Akin

to the focus from segmentation, we tile the output vector

into Vd ∈ R
C×W×H , also to be used in the density estima-

tion branch.

3.3. Non­uniform kernel estimation

Both the density estimation itself and the focus from

segmentation require a variance estimation for each point

annotation, where the variance corresponds to the size of

the object. Determining the variance σP for each point P
is difficult because of object-size variations caused by per-

spective distortions. A common solution is to estimate the

size (i.e. the variance) of an object as a function of the K
nearest neighbour annotations, e.g. the Geometry-Adaptive

Kernel of Zhang et al. [40]. However, this kernel is effec-

tive only under the assumption that objects in images are

uniformly distributed, which typically does not happen in

counting practice. As such, we introduce a simple kernel

that estimates the variance of a point annotation P by split-

ting an image into local regions:

σP =
1

|R(w,h)|

∑

a∈R(w,h)

βd̄a, d̄a =
1

K

K
∑

k=1

dk,a (7)

where w and h are the hyper-parameters which determine

the range of point annotation P -centered local region R,

and we set their value to one-eighth of image size in our ex-

periments. a denotes an arbitrary point annotation located

in R. |R(w,h)| means the number of p. d̄p indicates the

average distance between annotated point p and its k near-

est neighbors, and β is a user-defined hyper-parameter. By

estimating the variance of point annotations locally, we no

longer have to assume that points are uniformly distributed

over the whole image.

3.4. Architecture and optimization

Network. To maximize the ability to focus and use the

most accurate kernel estimation, we want the network out-

put to be of the same width and height as the input im-

age. Recently, encoder-decoder networks have been trans-

ferred from other visual recognition tasks [16, 36] to count-

ing [3, 25, 27, 38]. We found that to make the encoder-

decoder architectures better suited for counting, the wide

variation in object-scale under perspective distortions needs

to be addressed. As such, in our encoder-decoder archi-

tecture a distiller module is added between the step from

encoder to decoder. The purpose of this module is to aggre-

gate multi-level information from the encoder by distilling

the most vital information for counting.

For the encoder, we make the original dilated residual

network [36] suitable for our task by changing the chan-

nel of the feature maps after level 4 from 256/512 to 96

to reduce the model’s parameters for the sake of avoid-

ing over-fitting, given the low amount of training examples

in counting. After the encoder, the distiller module fuses

the features from level 4, 5, 7 and 8 in the encoder mod-

ule by using skip connections and a concatenation opera-

tion. Then four convolution layers are used to further pro-

cess the fused features to obtain a more compact represen-

tation. The reason why we do not fuse the features from

level 6 is that level 6 comprises convolution layers with

large dilation rates, which is prone to cause gridding arti-

facts [31, 36]. Compared to other works which fuse multi-

ple networks with different kernels to deal with object-scale

variations [24, 30, 40], the proposed network aggregates the

features from different layers which have different recep-

tive fields, and is much more efficient and easy to train. The

decoder module uses 3 deconvolution layers with a kernel

size of 4 × 4 and a stride size of 2 × 2 to progressively
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recover the spatial resolution. To avoid the checkerboard

artifact problem caused by regular deconvolutional opera-

tion [23, 31], we add two convolution layers after each de-

convolution layer. We provide a detailed ablation on the

encoder-distiller-decoder network in the supplementary ma-

terial.

Multi-level loss. The final counting network with a fo-

cus for free contains three branches, Fr for the pixel-wise

density estimation, Fs for the binary segmentation, and Fc

for the global density prediction. Let (θn, θr, θs, θc, θd)
denote the network parameters for the base network and

the branches. For the density estimation, we first com-

bine the outputs of the base network V with the tiled out-

puts Vs and Vd from the focus for free. We fuse the three

sources of information by element-wise multiplication and

feed the fusion to a 1× 1 convolution layer with parameters

θr ∈ R
C×1×1×1, resulting in an output density map.

For the density estimation, the L2 loss is a common

choice, but it is also known to be sensitive to outliers, which

hampers generalization [2]. We prefer to learn the density

estimation branch by jointly optimizing the L2 and L1 loss,

which adds robustness to outliers:

Lr(X; θn, θr, θd) =
1

2
‖ Fr(X; θn, θr, θd)− Y ‖22 +

‖ Fr(X; θn, θr, θd)− Y ‖1,
(8)

where Y denotes the ground truth density map. Empirically,

we also find that this combined loss is preferred over only

using the L1 or L2 loss. The loss functions of the three

branches are summed to obtain the final objective function:

L(X; θn, θr, θs, θc, θd) = λrLr(X; θn, θr, θd)+

λsLs(X; θn, θs) + λcLc(X; θn, θc),
(9)

where (λr, λs, λc) denote the weighting parameters of the

different loss functions. Throughout this work these param-

eters are set to (1, 10, 1), since the loss values of the seg-

mentation branch are typically an order of magnitude lower

than the others.

4. Experimental Setup

4.1. Datasets

ShanghaiTech [40] consists of 1198 images with

330,165 people. This dataset is divided into two parts:

Part A with 482 images in which crowds are mostly dense

(33 to 3139 people), and Part B with 716 images, where

crowds are sparser (9 to 578 people). Each part is di-

vided into a training and testing subset as specified in [40].

TRANCOS [7] contains 1,244 images from different roads

to count vehicles, varying from 9 to 105. We train on the

given training data (403 images) and validation data (420

images) without any other datasets, and we evaluate on the

test data (421 images). Dublin Cell Counting (DCC) [22]

is a cell microscopy dataset, consisting of 177 images, with

a cell count from 0 to 100. For training 100 images are

used, the remaining 77 form the test set. UCF-QNRF [10]

is a recent large-scale crowd dataset, consisting of 1,535 im-

ages, with the count ranging from 49 to 12,865. For train-

ing 1201 images are used, the remaining 334 form the test

set. WIDER FACE [35] is a face detection benchmark. In

this paper, we repurpose it for counting as a complemen-

tary crowd dataset. Compared to ShanghaiTech [40] and

UCF-QNRF [10], WIDER FACE is more challenging due

to large variations in scale, occlusion, pose, and background

clutter. Moreover, it contains more images, in total 32, 203,

divided in 40% training, 10% validation and 50% testing.

The ground truth of the test set is unavailable, so we report

on the validation set. Each face is annotated by a bounding

box, instead of a point, which enables us to evaluate our ker-

nel estimator and allows for ablation under varying object

scales and crowding levels.

4.2. Implementation details

Pre-processing. For all datasets, we normalize the input

RGB images by dividing all values by 255. During training,

we augment the images by randomly cropping 128 × 128
patches. No cropping is performed during testing.

Network. We implement our method with TensorFlow

on a machine with a single GTX 1080 Ti GPU. The network

is trained using Adam with a mini-batch of 16. We set the

β1 to 0.9, β2 to 0.999 and the initial learning rate to 0.0001.

Training is terminated after a maximum of 1000 epochs.

Kernel computation. For datasets with dense objects,

i.e. ShanghaiTech Part A, TRANCOS and UCF-QNRF, we

use our proposed kernel with β = 0.3 and k = 5. For

ShanghaiTech Part B and DCC, we set the Gaussian ker-

nel variance to σ = 5 and σ = 10 respectively, follow-

ing [14, 28]. For WIDER FACE, we obtain the Gaussian

kernel variance by leveraging the box annotations. For the

focus from global density, we use M = 8 density levels for

ShanghaiTech Part A and UCF-QNRF, and 4 for the other

datasets.

4.3. Evaluation metrics

Count error. We report the Mean Absolute Error (MAE)

and Root Mean Square Error (RMSE) metrics given count

estimates and ground truth counts [28, 37, 40]. Since these

global metrics ignore where objects have been counted,

we also report results using the Grid Average Mean abso-

lute Error (GAME) metric. [7]. GAME aggregates count

estimates over local regions as: GAME(L) = 1
N

·
∑N

n=1(
∑4L

l=1 |(y
l
n − ỹln)|), with N the number of images

and yln and ỹln the ground truth and the estimated counts in

a region l of the nth image. 4L denotes the number of grids,

non-overlapping regions which cover the full image. When
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Table 1: Effect of focus from segmentation in terms of

MAE on ShanghaiTech Part A and WIDER FACE. Across

both datasets and across multiple object scales (small,

medium, large), our approach outperforms the base net-

work, even when adding spatial attention.

Part A WIDER FACE

overall small medium large overall

Base network 74.8 9.2 2.7 2.2 4.7

w/ Spatial attention [4] 84.5 8.7 2.6 3.1 4.8

w/ Segmentation focus 72.3 8.6 2.3 2.0 4.3

L is set to 0 the GAME is equivalent to the MAE.

Density map quality. Finally, we report PSNR (Peak

Signal-to-Noise Ratio) and SSIM (Structural Similarity in

Image [32]), to evaluate the quality of the predicted density

maps. We only report these on ShanghaiTech Part A be-

cause they are not commonly reported on the other datasets.

5. Results

5.1. Focus from segmentation

We first analyze the effect of focus from segmentation

on both ShanghaiTech Part A and WIDER FACE. We com-

pare to two baselines. The first performs counting using the

base network, where the loss is only optimized with respect

to the density map estimation. Unless stated otherwise, the

encoder-distiller-decoder network is used as base network

in all experiments. The second baseline adds a spatial at-

tention on top of this base network, as proposed in [4]. The

results are shown in Table 1.

For ShanghaiTech Part A, the base network obtains an

MAE of 74.8. The addition of spatial-attention increases the

count error to 84.5 MAE, as it fails to emphasize relevant

features. In contrast, focus from segmentation can explicitly

guide the network to focus on task-relevant regions and it

reduces the count error from 74.8 to 72.3 MAE.

For WIDER FACE, the box annotations allow us to per-

form an ablation on the accuracy as a function of the ob-

ject scale. We define the scale levels of each image as

Iscale = Fs

Fn
, where Fs and Fn denote face size and face

number. We sort the test images in ascending order accord-

ing to their scale level. Finally, the test images are divided

uniformly into three sets: small, medium and large. In Table

1, we provide the results across multiple object scales. We

observe that across all object scales, our approach is pre-

ferred, reducing the MAE from 4.7 (base network) and 4.8

(with spatial attention) to 4.3. The ablation also reveals why

spatial attention is not very effective overall; while improve-

ments are obtained when objects are small, spatial attention

performs worse when objects are large. Segmentation focus

from reused point annotations avoids such issues.

Table 2: Effect of focus from global density in terms of

MAE on ShanghaiTech Part A and WIDER FACE. Our ap-

proach is preferred for both datasets. The ablation study on

WIDER FACE shows our focus from global density is most

effective when scenes are sparse in number of objects.

Part A WIDER FACE

overall sparse medium dense overall

Base network 74.8 2.1 2.5 9.5 4.7

w/ Channel attention [4] 73.4 1.6 2.3 7.8 3.9

w/ Squeeze-and-excitation [9] 72.6 1.7 1.6 7.8 3.7

w/ Global-density focus 71.7 0.9 1.6 8.0 3.5

5.2. Focus from global density

Next, we demonstrate the effect of our proposed focus

from global density. For this experiment, we again com-

pare to two baselines. Apart from the base network, we

compare to the channel attention of [4] and the squeeze-

and-excitation block of [9]. For fair comparison, we replace

the mean pooling used in the channel attention of [4] with

bilinear pooling as used in our method for the sake of bet-

ter encoding global context cues. The counting results are

shown in Table 2. Channel-attentions can reduce the error

(from 74.8 to 73.4 and 72.6 MAE) in ShanghaiTech Part A

compared to using the base network only, since the attention

maps are learned on top of a pooling layer which encodes

global context cues. Our focus from global density reduces

the count error further to 71.7 MAE due to more specific

focus from free supervision.

To demonstrate that our focus has a lower error on dif-

ferent crowding levels, we perform a further ablation on

WIDER FACE. We define the crowding levels of each im-

age as Icrowding = Fs

Is
∗ Fn

Is
, where Fs, Is, and Fn denote

face size, image size, and face number respectively. Then

we sort the test images in ascending order according to their

global density level. Finally, the test images are divided uni-

formly into three sets, sparse, medium and dense. As shown

in Table 2, our method achieves the lowest error especially

when scenes are sparse.

5.3. Combined focus for free

In the aforementioned experiments, we have shown that

each focus matters for counting. In this experiment, we

combine them. The results are shown in Table 3. The com-

bination achieves a reduced MAE of 67.9 on ShanghaiTech

Part A, and obtains a reduced MAE of 3.2 on WIDER

FACE. We compare to alternative combined attention base-

lines, i.e., spatial-channel attention [4] and the convolu-

tional block attention module [33]. While the combinations

of attentions achieves better results than using the base net-

work alone, our approach is preferred across datasets, object

scales, and crowding levels.

The focus for free is agnostic to the base network. To

demonstrate this capability, we have applied it to four dif-
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Table 3: Effect of combined focus in terms of MAE on ShanghaiTech Part A and WIDER FACE. Across dataset, object

scale, and crowding level our approach outperforms the base network and a combined spatial and channel attention variant.

Part A WIDER FACE

overall small medium large sparse medium dense overall

Base network 74.8 9.2 2.7 2.2 2.1 2.5 9.5 4.7

w/ Spatial- & channel-attention [4] 71.6 8.3 2.0 2.3 1.8 2.6 8.2 4.2

w/ Convolutional block attention module [33] 73.5 8.4 2.0 1.1 1.2 1.8 8.5 3.8

w/ Our combined focus 67.9 7.7 1.3 0.6 0.9 1.4 7.3 3.2

Table 4: Focus for free across base networks on Shang-

haiTech Part A and WIDER FACE. Base network results

based on our reimplementations. Regardless of the base

network, our combined focus from segmentation and global

density lowers the count error.

Part A WIDER FACE

Network from base w/ our focus base w/ our focus

Zhang et al. [40] 114.5 110.1 7.1 6.1

Cao et al. [3] 75.2 72.7 8.5 8.2

Li et al. [14] 74.0 72.4 4.3 3.9

This paper 74.8 67.9 4.7 3.2

ferent base networks. Apart from our base network, we

consider the multi-column network of Zhang et al. [40],

the deep single column network of Li et al. [14] and the

encoder-decoder network of Cao et al. [3]. We have re-

implemented these networks and use the same experimental

settings as in our base network. The results in Table 4 show

that our focus for free lowers the count error for all these

networks on ShanghaiTech Part A and WIDER FACE.

5.4. Non­uniform kernel estimation

Next, we study the benefit of our proposed kernel for

generating more reliable ground-truth density maps. For

this experiment, we compare to the Geometry-Adaptive

Kernel (GAK) of Zhang et al. [40]. For WIDER FACE,

the spatial extent of objects is provided by the box anno-

tations and we use this additional information to measure

the variance quality of our kernel compared to the base-

line. The counting and variance results are shown in Table

5. The proposed kernel has a lower count error than the

commonly used GAK on both ShanghaiTech Part A and

WIDER FACE. To show that this improvement is due to

the better estimation of the object size of interest, we com-

pare the estimated variances σ obtained by different meth-

ods with the ground truth variance obtained by leveraging

the box annotations of WIDER FACE. Our kernel reduces

the MAE of σ from 2.6 to 2.2 compared to GAK.

5.5. Comparison to the state­of­the­art

Global count comparison. Table 6 shows the proposed

approach outperforms all other models in terms of MAE

Table 5: Benefit of our kernel on ShanghaiTech Part A and

WIDER FACE. A network with our kernel obtains lower

count error than with GAK [40] (see MAE (n) columns). To

show this improvement is due to better object size estima-

tion, we compare our kernel to the ground-truth on WIDER

FACE, see MAE (σ) column, which indicates a lower size

error than with GAK.

Part A WIDER FACE

Kernel from MAE (n) MAE (n) MAE (σ)

GAK [40] 67.9 4.2 2.6

This paper 65.2 3.6 2.2

Ground-truth n.a. 3.2 n.a.

on all six datasets. The proposed method achieves a new

state of the art on ShanghaiTech Part B, and a competitive

result on ShanghaiTech Part A in terms of RMSE. Shen et

al. [27] achieve the lowest RMSE on ShanghaiTech Part A,

but their approach is not competitive on Part B. Moreover,

they rely on four networks with a total of 4.8 million pa-

rameters, while our proposal just needs a single network

with 2.6 million parameters. On TRANCOS our method

reduces the count error from 3.6 (by Issam et al. [11] and

Li et al. [14]) to 2.0. A considerable reduction. For the

DCC dataset proposed by Marsden et al. [22], we predict

a more accurate global count without any post-processing,

reducing the error rate from 8.4 to 3.2. On UCF-QNRF

we achieve a much better MAE and RMSE than Idrees et

al. [10]. For WIDER FACE, we evaluate using MAE and

a normalized variant (NMAE). For NMAE, we normalize

the MAE of each test image by the ground-truth face count.

Again, our method achieves best results on both MAE and

NMAE compared to the existing methods.

Local count comparison. Figure 3 shows the results

obtained by various methods in terms of the commonly

used GAME metric on TRANCOS. The higher the GAME

value, the more counting methods are penalized for local

count errors. For all GAME settings, our method sets a new

state-of-the-art. Furthermore, the difference to other meth-

ods increases as the GAME value increases, indicating our

method localizes and counts extremely overlapping vehicles

more accurately compared to alternatives.

Density map quality. To demonstrate that our method
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Table 6: Comparison to the state-of-the-art for global count error on ShanghaiTech Part A, Part B, TRANCOS, DCC,

UCF-QNRF and WIDER FACE. Results on WIDER FACE based on our reimplementations. Results by Zhang et al. on

UCF-QNRF taken from Idrees et al. Our results set a new state-of-the-art on all six datasets for almost all metrics.

Part A Part B TRANCOS DCC UCF-QNRF WIDER FACE

MAE RMSE PSNR SSIM MAE RMSE MAE MAE MAE RMSE MAE NMAE

Zhang et al. [40] 110.2 173.2 21.4 0.52 26.4 41.3 - - 277.0 426.0 7.1 1.10

Marsden et al. [22] 85.7 131.1 - - 17.7 28.6 9.7 8.4 - - - -

Shen et al. [27] 75.7 102.7 - - 17.2 27.4 - - - - - -

Li et al. [14] 68.2 115.0 23.8 0.76 10.6 16.0 3.6 - - - 4.3 0.53

Cao et al. [3] 67.0 104.5 - - 8.4 13.6 - - - - 8.5 1.10

Idrees et al. [10] - - - - - - - - 132.0 191.0 - -

This paper 65.2 109.4 25.4 0.78 7.2 12.2 2.0 3.2 93.8 146.5 3.2 0.40
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Figure 3: Comparison to the state-of-the-art for local

count error on vehicles from TRANCOS. Note the differ-

ence to other methods increases as the GAME value grows,

indicating our method localizes and counts extremely over-

lapping vehicles more accurately.

also generates better quality density maps, we provide re-

sults on ShanghaiTech Part A for the PSNR and SSIM met-

rics. In agreement with the results in MAE and RMSE, our

method also achieves a better performance along this di-

mension. Compared to methods such as [14], which pro-

duces a density map with a reduced resolution and recovers

the resolution by bilinear interpolation, our method directly

learns the full resolution density maps with higher quality.

Success and failure cases. Finally, we show some suc-

cess and failure results in Figure 4. Even in challeng-

ing scenes with relatively sparse small objects or relatively

dense large objects, our method is able to achieve an ac-

curate count (first three rows). Our approach fails when

dealing with extremely dense scenes where individual ob-

jects are hard to distinguish, or where objects blend with the

context (last row). Such scenarios remain open challenges.

6. Conclusion

This paper introduces two ways to repurpose the point

annotations used as supervision for density-based counting.

Focus from segmentation guides the counting network to

focus on areas of interest, and focus from global density

regularizes the counting network to learn a matching global

(a) (b) (c)

Figure 4: Density map quality. (a) Sample images, (b)

predicted density map, and (c) the ground truth. When ob-

jects are individually visible, we can count them accurately.

Further improvements are required for dense settings where

objects are hard to distinguish.

density. Our focus for free aids density estimation from

a local and global perspective, complementing each other.

This paper also introduces a non-uniform kernel estimator.

Experiments show the benefits of our proposal across ob-

ject scales, crowding levels and base networks, resulting in

state-of-the-art counting results on five benchmark datasets.

The gap towards perfect counting and our qualitative anal-

ysis shows that counting in extremely dense scenes remains

an open problem. Further boosts are possible when count-

ing is able to deal with this extreme dense scenario.
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