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Abstract/First Paragraph:  19 

The social cost of carbon (SCC) is a commonly employed metric of the expected 20 

economic damages expected from carbon dioxide (CO2) emissions. While useful in 21 

an optimal policy context, a world-level approach obscures the heterogeneous 22 

geography of climate damages and vast differences in country-level contributions 23 

to global SCC, as well as climate and socio-economic uncertainties, which are 24 

larger at the regional level.  Here we estimate country-level contributions to SCC 25 

using recent climate model projections, empirical climate-driven economic damage  26 

estimations, and socioeconomic projections. Central specifications show high 27 

global SCC values (median: 417 $/tCO2, 66% confidence intervals: 177 – 805 $/tCO2) 28 

and country-level SCC which are unequally distributed. However, the relative 29 

ranking of countries is robust to different specifications: countries incurring large 30 

fractions of the global cost consistently include India, China, Saudi Arabia and the 31 

United States. 32 

 33 



UNDER REVIEW – DO NOT CITE  2/21 

The social cost of carbon (SCC) represents the economic cost associated with climate 34 

damage (or benefit) resulting from the emission of an additional ton of CO2. One way to 35 

compute it is by taking the net present value of the difference between climate change 36 

damages along with a baseline climate change pathway and the same pathway with an 37 

additional incremental pulse release of carbon dioxide. The SCC provides an economic 38 

valuation of the marginal impacts of climate change. It has been estimated hundreds of 39 

times in the past three decades10 using a range of assumptions about uncertain 40 

parameters (such as social discount rate, economic growth, and climate sensitivity).  41 

Recent estimates1–6 of SCC range from approximately $10/tonne of CO2 to as much as 42 

$1000/tCO2. A recent report issued by the US National Academies highlighted the many 43 

challenges and opportunities associated with improving estimates of SCC.11  44 

  45 

Among the state-of-the-art contemporary estimates of SCC are those calculated by the 46 

US Environmental Protection Agency (EPA). The latest figures equal to $12, $42 and $62 47 

per metric tonne of CO2 emitted in 2020 for 5, 3 and 2.5 percent discount rates 48 

respectively1. These estimates are used, among other purposes, to inform US 49 

environmental rulemakings.  Various alternative approaches to estimating SCC have been 50 

employed over the years, including more sophisticated treatments of time, risk and equity 51 

preferences12–17, as well as those that incorporate more recent representations of climate 52 

damages and feedbacks18–21. A recent expert elicitation of climate scientists and 53 

economists2 found a mean SCC of approximately $150–200 per tonne of CO2. 54 

 55 

The global SCC captures the externality of CO2 emissions, and is thus the right value to 56 

use from a global welfare perspective. Nonetheless, country level contributions to the SCC 57 

are important for various reasons. Mapping domestic impacts can allow quantifying non-58 

cooperative behavior, and thus better understand the determinants of international 59 

cooperation. The governance of climate agreements22,23 is a key issue for climate change. 60 

The nationally determined architecture of the Paris climate agreement – and its 61 

vulnerability to changing national interests- is one important example. Country level 62 

estimates can also allow better understand regional impacts, which are important for 63 

adaptation and compensation measure. Finally, higher spatial resolution estimation of 64 

climate damage and benefits can impact estimates of net global climate damage24,25, and 65 

its sensitivity to climate and socio-economic drivers. 66 

 67 
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Existing studies agree on the significant gap between domestic and global values of the 68 

SCC, but provide limited agreement on the distribution of the SCC by region26. Due to 69 

limitations on the availability of country-level climate and economic inputs, no previous 70 

analysis has partitioned global SCC into country-level contributions from each individual 71 

nation (CSCC). In this paper, we draw upon recent developments in physical and 72 

economic climate science to estimate country-level and aggregate SCC and quantify 73 

associated uncertainties. The CSCC captures the amount of marginal damage (or, if 74 

negative, the benefit) expected to occur in an individual country as a consequence of an 75 

additional CO2 emission. While marginal impacts do not capture all information relevant to 76 

climate decision making, the distribution of the CSCC provides useful insights into 77 

distributional impacts of climate change and national strategic incentives.  78 

 79 

Methodological Approach 80 

Following the recommendations of the recent report by the US National Academies of 81 

Science, we execute our calculations of social cost of carbon through a process with four 82 

distinct components11: a socioeconomic module wherein the future evolution of the 83 

economy, including projected emissions of carbon dioxide, is characterized absent the 84 

impact of climate change; a climate module wherein the earth system responds to 85 

emissions of carbon dioxide and other anthropogenic forcings; a damages module, 86 

wherein the economy’s response to changes in the Earth system are quantified; and a 87 

discounting module, wherein a time series of future damages is compressed into a single 88 

present value. In our analysis, we explore uncertainties associated with each module at 89 

the global and country level. We focus only on climate impacts, and do not carry out a full-90 

fledged cost benefit analysis which would require modeling mitigation costs.  91 

 92 

We develop a method for calculating social cost of carbon that is oriented towards 93 

partitioning and quantifying uncertainties. While it follows the same module structure as 94 

the integrated assessment models that have been conventionally used to calculate SCC, 95 

rather than building reduced-form models of the climate or economy, we use country-level 96 

climate projections taken directly from gridded, ensemble climate model simulation data 97 

as well as country-level economic damage relationships taken directly from empirical 98 

macroeconomic analyses. Because climate and economic quantities are empirical in this 99 

analysis, these uncertainties are probabilistic in our output. Socioeconomic and 100 
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discounting uncertainties are assessed parametrically using five socioeconomic scenarios 101 

and twelve discounting schemes. 102 

 103 

Socioeconomic module: For the socio-economic projections, we use the shared 104 

socioeconomic pathway scenarios (SSPs)9. The SSPs provide five different storylines of 105 

the future (Supplementary Table S1). We use the GDP and population assumptions of the 106 

SSPs as well as subsequent work to estimate the emissions associated with each SSP 107 

absent climate mitigation policies27.  108 

 109 

Climate module: We match emissions profiles of the SSPs to those of the Representative 110 

Concentration Pathways (RCPs28) modeled in the fifth Coupled Model Intercomparison 111 

Project (CMIP5)7 to estimate baseline warming (see Methods).To estimate the response 112 

of the climate system to a pulse release of carbon dioxide, we combine results from CMIP5 113 

and a carbon cycle model intercomparison project29 (Supplementary Tables S2 and S3).  114 

Carbon cycle uncertainty is represented by using the global-scale decay of atmospheric 115 

carbon dioxide after a pulse release of CO2 into the present-day atmosphere. Climate 116 

system response uncertainty is calculated at the population-weighted country level using 117 

gridded output from the CMIP5 abrupt4xco2 experiment in which atmospheric CO2 is 118 

instantaneously quadrupled from preindustrial. By convoluting the results from these 119 

experiments (as in30, but at the population-weighted country-mean level) we derive a 120 

range of country-specific transient warming responses to an incremental emission of CO2. 121 

To test the sensitivity of our results to the uncertain feedbacks between economic growth 122 

and emissions, we perform the calculations for RCPs 4.5, 6.0 and 8.5 for all SSPs. 123 

 124 

Damages module: We convert country-level temperature and precipitation changes into 125 

country-level damages using empirical macroeconomic relationships derived by Burke et 126 

al8 and Dell et al31.  Their econometric approaches exploit interannual climate variability in 127 

historical observations to estimate the impact of climate on economic growth. Estimating 128 

the economic damages associated with a given level of warming is a notoriously 129 

challenging problem for which there is no perfect state-of-the-art solution11,32. Gross 130 

domestic product (GDP) is an informative, but highly imperfect measure of welfare33. 131 

Among its advantages, an empirical macroeconomic approach: captures interactions and 132 

feedbacks among sectors of the economy; captures effects of climate on the economy 133 

that have been neglected or are difficult to partition and quantify; has higher geographical 134 
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resolution (country-level) than existing alternatives; is empirically validated and has 135 

confidence intervals which allow to do uncertainty analysis; and is completely transparent 136 

and replicable. Because results are sensitive to the econometric specifications, e.g. 137 

whether lags are included to capture long run effects, and countries are distinguished 138 

between rich and poor to account for different capability to adapt 8, we compare all the 139 

existing empirical specifications. (See Methods and Supplementary Information) 140 

 141 

Discounting module: We apply these damage functions to our country-level temperature 142 

pulse response, SSP and RCP projections, including associated climate and damage 143 

function uncertainty bounds (see Methods and Supplementary Figure S1) and then 144 

compress the time series of output into country-level SCC values using discounting. 145 

Discounting assumptions have consistently been one of the biggest determinants of 146 

differences between estimations of the social cost of carbon13,35. While intuitive, the use 147 

of a fixed discounting rate is not appropriate, particularly when applied universally to 148 

countries with highly disparate growth rates and with significant economic losses due to 149 

climate change. We thus use growth adjusted discounting determined by the Ramsey 150 

endogenous rule36 with a range of values for the elasticity of marginal utility and the pure 151 

rate of time preference, but also report fixed discounting results in order to demonstrate 152 

the sensitivity of SCC calculations to discounting methods. 153 

 154 

Global results 155 

Global SCC (GSCC) is the sum of country-level SCCs. We calculate CSCC for each set 156 

of scenario, parameter and model specification assumptions, establishing an uncertainty 157 

range based on a bootstrap resampling method (see Methods and Supplementary 158 

Methods) and then aggregate to the global level.  The median estimates of the global SCC 159 

(Figure 1) are significantly higher than the IAWG estimates, primarily due to the higher 160 

damages associated with the empirical macroeconomic production function8, though 161 

similar SCC have been estimated in the past using other methodologies14,21. Under the 162 

‘middle of the road’ socioeconomic scenario (SSP2) and its closest corresponding climate 163 

scenario (RCP6.0), and the central specification of BHM damage function (short run, no 164 

income differentiation) we estimate a median global SCC of $417/tCO2 (rate of time 165 

preference=2%, elasticity of marginal utility=1.5). 166 

  167 
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The choice of both socioeconomic and climate scenario has an impact on estimated 168 

GSCC (Figure 1 and Supplementary Figure S2). For a given RCP, scenarios with strong 169 

economic growth and reduced cross-country inequalities (SSP1 and SSP5) have smaller 170 

GSCC than worlds with low productivity and persistent or even increasing global inequality 171 

(SSP3 and SSP4). For a given SSP, higher emission scenarios lead to higher global SCC.  172 

When using fixed time discounting (Supplementary Figure S2), results are significantly 173 

different. In particular, global SCCs are lower across scenarios, and the ranking to SSPs 174 

and RCPs is often reversed. This highlights the importance of using the appropriate 175 

endogenous discounting rules to capture the feedback of climate on the economy. 176 

 177 

Figure 1 also shows the sensitivity to the impact function specification. Under most 178 

socioeconomic scenarios, global SCC is significantly higher and more uncertain when 179 

calculated with a long-run (lagged) damage model specification (BHM-LR). This 180 

somewhat counterintuitive result indicates that whether climate’s primary impact on the 181 

economy is through growth or level effects, the negative cumulative effect of climate 182 

change on long-term growth is substantial and robust. The GSCC is always lower using 183 

the rich/poor specifications of the damages model with confidence intervals that, in most 184 

cases, extend into the negative SCC range. The DJO specification of the economic impact 185 

function31 yields significantly higher GSCC value. 186 

 187 

Confidence intervals (66%) illustrated in Figure 1 emphasize the large degree of empirical 188 

uncertainty surrounding SCC estimates, even if scenario and structural uncertainties are 189 

disregarded. These stem from both the uncertainties of the climate system response to 190 

CO2 (climate sensitivity) and uncertainties in economic harm expected from climate 191 

change (damage function). The latter are especially significant for the long-run 192 

specifications, which by construction have larger confidence intervals.   193 

 194 

 195 

 196 

 197 
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 198 

Figure 1 | Global Social Cost of Carbon in 2020 under various assumptions and 199 

scenarios. Median estimates and 16.7% to 83.3% quantile bounds for global SCC 200 

under SSPs 1-5, and RCPs 4.5, 6.0 and 8.5. For each SSP, darker colors indicate the 201 

SSP-RCP pairing with superior consistency (see Methods and Supplementary Table 202 

S4). Five specifications of damage function: BHM (Short Run, SR, and Long Run, LR;  203 

pooled and with Rich and Poor, RP, distinction) and DJO. Values displayed assume 204 

growth-adjusted discounting with a pure rate of time preference of 2% per year and an 205 

inter-temporal elasticity of substitution of 1.5. Supplementary Figure S2 shows results 206 

with fixed discounting. 207 

 208 

Country-level results 209 

These global estimates conceal substantial heterogeneity in country-level contributions to 210 

SCC (CSCCs). Figure 2a shows the spatial distribution of CSCCs under a reference 211 

scenario (SSP2-RCP6, standard BHM specification). All fixed discounting, alternative 212 

scenario, parameterization and specification results are available as a part of the database 213 

included in the Supplementary Information.   214 

 215 

India’s CSCC is highest (86 [49–157] $/tCO2; 21% [20–30%] of global SCC), followed by 216 

the USA (48 $/tCO2 [1–118]; 11% [0–15%] of global SCC) and Saudi Arabia (47 [27–86] 217 

$/tCO2; 11% [11–16%] of global SCC). Three countries follow at above 20$/tCO2: Brazil 218 
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(24 [14–41] $/tCO2), China (24 [4–50] $/tCO2) and United Arab Emirates (24 [14–48] 219 

$/tCO2). Northern Europe, Canada, and the Former Soviet Union have negative CSCC 220 

values since their current temperatures are below the economic optimum. These results 221 

are among the most sensitive in the analysis, as under the BHM long-run and DJO 222 

damage model specifications all countries have positive CSCC. Under the reference case 223 

and other short-run model specifications, about 90% of the world population have a 224 

positive CSCC. While the magnitude of CSCC varies considerably depending on scenario 225 

and discount rate, the relative distribution is generally robust to these uncertainties. 226 

Damage function uncertainty is a larger contributor to overall uncertainty, but at the 227 

country level, either climate or damages uncertainty may be larger. The alternative 228 

economic damage functions confirms the broad heterogeneity of CSCCs and relative 229 

country ranking (see Figure 2b and Supplementary Figure S5). 230 

 231 

 232 

Figure 2 | Country-level social costs of carbon (CSCCs). (a) Spatial distribution of 233 

median estimates of the CSCC computed for the reference case of scenario 234 

SSP2/RCP60, short-run pooled specification of BHM impact function (BHM-SR), and a 235 

growth adjusted discount rate with 2% pure rate of time preference and IES of 1.5. 236 

Stippling indicates countries where BHM damage function is not statistically robust8 (b) 237 

CSCCs for alternative scenarios and damage function specification combinations for the 238 

five smallest and six largest CSCCs in the reference case (blue open circles).  239 

 240 

Consistent with past work on the geography of climate damages4,8,37, we find that the 241 

international distribution of SCC is inequitable (Lorenz curves in Figure 3). The magnitude 242 

of the inequality is sensitive to the model specification of the economic impact function. 243 

As discussed above, there is an unsettled debate as to whether empirical evidence points 244 

towards the influence of climate on the economy operating primarily via growth or level 245 
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effects, something that has been analyzed without definitive conclusion in BHM and follow-246 

up work38. Our results indicate that this uncertainty is consequential from a strategic 247 

perspective (i.e., in determining relative gains and losses to particular countries). In 248 

particular, with long-run (LR) and DJO specifications all countries have positive CSCCs. 249 

This results in higher (almost twice as much) global values of the SCC (as already 250 

observed in Figure 1) and lower inequality with respect to the short terms specification. 251 

The distinction between income groups in the impact function (rich and poor countries) 252 

has smaller impacts, reducing global SCC and either leaving inequality unchanged (for 253 

the short-term specification) or lowering it (for the long-term one). 254 

 255 

 256 

Figure 3 | Lorenz curve and Gini coefficients for the country-level contributions to 257 

the Global SCC in 2020. (a) Cumulative global population plotted versus cumulative 258 

SCC, with countries ranked by CSCC per capita, produces a Lorenz curve for the 259 

reference case of scenario SSP2/RCP60, short-run pooled specification of BHM impact 260 

function (BHM-SR), and a growth adjusted discount rate with 2% pure rate of time 261 

preference and IES of 1.5. The red and purple shaded areas illustrate the quantities 262 

required to calculate the Gini coefficient, a synthetic metric of heterogeneity/inequality, 263 

which is equal to the purple area divided by the sum of the purple and red areas. (b) 264 

shows Gini coefficients for all four damage model specifications from top to bottom: the 265 

BHM short-run pooled model (SR), short run rich-poor specification (SR-RP), long-run 266 

pooled (LR) and the long-run rich-poor (LR-RP). Shared Socioeconomic Pathways 267 
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(SSPs) are distinguished by color for both fixed (open) discounting with rates 2.5%, 3% 268 

and 5% and growth-adjusted (solid) discounting with prtp=(1%,2%) and ies=(0.7,1.5).  269 

The reference case (Gini coefficient=0.62) is illustrated with a large, solid blue point.  270 

 271 

Figure 3(b) summarizes the inequality of CSCC across all scenarios through Gini 272 

coefficients39,40 a synthetic measure of global heterogeneity. Under the BHM-SR 273 

specification, Gini values increase moderately with the RCP forcing. It is higher for SSP1 274 

and SSP5, and significantly lower for SSP3, which is also the socio-economic scenario 275 

with the highest global SCC value. Socioeconomic uncertainty also becomes more 276 

important to future outcomes under a long-run economic impact models, whereas the rich-277 

poor distinction plays a smaller role. The discounting method also plays an important role: 278 

fixed discounting leads to significantly lower Gini coefficients for CSCC for most 279 

specifications.  280 

 281 

Figure 4 highlights a mapping of winners and losers from climate change among G20 282 

nations. While the magnitude of CSCC is subject to considerable uncertainty, the shares 283 

of global SCC allocated among world powers remains relatively stable (Supplementary 284 

Figures S7-S9) in all short-run impact model specifications. Russia dominates all other 285 

nations in gains from emissions, while India is consistently dominated by all other large 286 

economies with large losses. Other developing economies, such as Indonesia and Brazil, 287 

will accrue a significantly greater share of global SCC than their current share of global 288 

emissions. The world’s biggest emitters -China and the US- both stand to accrue a smaller 289 

share of global SCC than their share of emissions, but are consistently dominated by the 290 

EU, Canada, South Korea and -- in the case of the US -- Japan.  291 

 292 

Relative ranking of SCC is highly consistent among most of the 276 scenario-impact-293 

discounting uncertainty cases with the notable exception of the relative positions of major 294 

world powers occurs under the long-run impact model specifications (Supplementary 295 

Figures S7-S9). Countries like Russia, Canada, Germany and France that have negative 296 

CSCC under the reference case switch to having among the highest positive CSCCs 297 

(Supplementary Figure S9). After the short- and long-run differences, the largest shifts in 298 

country-order relative to our reference case occur under the high-emissions SSP5 299 

scenario and in the transition between growth-adjusted and fixed discounting 300 

(Supplementary Figure S8).  301 



UNDER REVIEW – DO NOT CITE  11/21 

 302 

 303 

 304 

Figure 4 | ‘Winners’ and ‘Losers’ of climate change among G20 nations. Country-305 

level shares of global SSC (i.e., CSCC/GSCC) versus shares of 2013 CO2 emissions. 306 

CSCC is the median estimate with growth adjusted discounting for SSP2/RCP6.0, BHM-307 

SR reference specification (short run, pooled countries). Bubble size corresponds to the 308 

country’s GDP (log(USD)) and the color indicates per-capita CSCC ($/MtCO2/person). 309 

Diagonal lines show the ratio of global SCC share to emissions share. Ratios greater 310 

than 1:1 indicate that a country’s share of global SSC exceeds it share of global 311 

emission. Grey box in left panel indicates the bounds of the detail shown in right panel. 312 

 313 

Discussion 314 

The discord between country-level shares in CO2 emissions and country-level shares in 315 

the social cost of carbon illustrates an important reason why significant challenges persist 316 

in reaching a common climate agreement. If countries were to price their own carbon 317 

emissions at their own CSCC, approximately only 5% of the global climate externality 318 

would be internalized. At the same time, our results consistently show that the three 319 

highest emitting countries (China, the U.S. and India) also have the among the highest 320 

country-level economic impacts from a CO2 emission. These high emitter CSCCs are on 321 

par with carbon prices foreseen by detailed process IAMs for climate stabilization 322 

scenarios (see Supplementary Figure S10). That is, internalizing the domestic SCC in 323 

some major emitters could result in emissions pathways for those countries which are 324 
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consistent with 1.5 -2 °C temperature pathways. Fully internalizing the CO2 externality 325 

(ie., pricing carbon at global SCC) would allow meeting the Paris Agreement goal and 326 

beyond. 327 

 328 

Empirical, macroeconomic damage functions have advantages and disadvantages 329 

compared to the approaches that have typically been used to estimate social cost of 330 

carbon in the past. Strengths include transparency, a strong empirical basis and capacity 331 

to account for interactions among all sectors of the economy, and for impacts difficult to 332 

isolate and quantify. However, there are a number of long-term effects of climate change 333 

that are not captured by this type of relationship. We present a number of these excluded 334 

contributors in Supplementary Table S5, along with an indication of the likely sign of 335 

impacts on CSCCs and global SCC. For example, adjustment costs associated with 336 

adaptation are not accounted for in this model. Such costs could be high or, given that 337 

climate change is not a surprise, could be modest compared to the type of effects 338 

that are represented (and which are demonstrably large). Already in our analysis, impacts 339 

from climate change are large enough in some countries to lead to negative discount rates 340 

(see Supplementary Figure S11).  Most of these additional contributors would be expected 341 

to increase the global social cost of carbon.  342 

 343 

Globalisation and the many avenues by which countries fortunes are linked mean that 344 

high CSCC in one place may result in costs as the global climate changes even in places 345 

where CSCC is nominally negative. For many countries, the effects of climate change may 346 

be felt more greatly through transboundary effects, such as trade disruptions41, large-scale 347 

migration42, or liability exposure43 than through local climate damage. While CSCC in 2020 348 

is negative for many rich, northern countries, if the non-linear climate damages hold over 349 

time, CSCC will become positive in most countries as the planet continues to warm. 350 

Furthermore, reducing greenhouse gas emissions can yield positive synergies on other 351 

environmental goals, such as improving air quality, which have large welfare impacts 352 

already now44. These considerations suggest that country-level interests may be more 353 

closely aligned to global interests than indicated by contemporary country level 354 

contributions to the social cost of carbon. What’s more, climate decision making does not 355 

occur in a vacuum. Some countries, such as northern Europe and Canada, are leaders 356 

on climate policy despite potentially negative SCCs, while other countries with the highest 357 
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CSCCs, like USA and India, lag behind. Clearly, a host of other strategic and ethical 358 

considerations factor into the international relations of climate change mitigation.  359 

 360 

The recent U.S. National Academy of Sciences report on social cost of carbon, the 361 

Working Group cites three essential characteristics for future social cost of carbon 362 

estimates: scientific basis, uncertainty characterization and transparency11. Our work 363 

includes improvements upon past estimates of SCC on all three counts.  Past estimates 364 

of social cost of carbon were based on reduced form climate modules and damage 365 

function calibration with limited empirical support45, while ours uses output from an 366 

ensemble of state-of-the-art coupled climate model simulations and two independently-367 

generated empirical damage functions. Past estimates of SCC have included limited 368 

uncertainty analysis, focusing mostly on a limited set of parameters such as the social 369 

discount rate, while our estimates include quantified uncertainty bounds for carbon cycle, 370 

climate, economic and demographic uncertainties, while also providing disaggregation to 371 

the national level.  In addition, past estimates of SCC were often generated using opaque 372 

models and/or proprietary software. We provide all of our source code and the full output 373 

of our analysis for complete transparency (see Supplementary Data).  374 

 375 

The high values and profound inequalities highlighted by the country-level estimates of 376 

the social costs of carbon provide a further warning of the perils of unilateral or fragmented 377 

climate action. We make no claim here regarding the utility of country-level social cost of 378 

carbon in setting climate policies. Carbon dioxide emissions are a global externality.  379 

Despite “deep uncertainty”46 about discounting, socioeconomic pathways and appropriate 380 

models of coupling between climate and economy, by all account the estimates of global 381 

SCC made by the Interagency Working Group on Social Cost of Greenhouse Gases, 382 

United States Government (ref. 1) appear much too low. More research is needed to 383 

estimate the geographical diversity of climate change impacts and to help devise policies 384 

which align domestic interests to the global good. However, large uncertainties in the 385 

precise magnitudes of social cost of carbon, both national and global, cannot overshadow 386 

the robust indication that some of the world’s largest emitters also have the most to lose 387 

from their effects. 388 

 389 

Methods 390 
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We combine socio-economic, climate and impact data to estimate country-level social 391 

costs of carbon, that is the marginal damages from CO2 emissions, for each of the 392 

possible scenarios SSP-RCP, using exogenous and endogenous discounting. Lemoine 393 

and Kapnick (2016) uses a similar methodology to calculate growth rate impacts rather 394 

than CSCCs based on SSPs and damage estimates in Dell et al (2012).37 The 395 

sequential process for calculating each CSCC is summarised in Supplementary Figure 396 

S1. Global SCC is calculated by summing all CSCCs. 397 

 398 

Suppl. Table 1 summarises the underlying narratives, which cover different challenges to 399 

mitigation and adaptation. Several integrated assessment models have recently 400 

completed the implementation of the SSPs, computing for each of them future emissions 401 

as well as climate outcomes based on the medium complexity MAGICC6 model.27 This 402 

allows us to map the SSPs onto four different carbon dioxide emission pathways known 403 

as representative concentration pathways (RCPs). 404 

 405 

Data. The SSP database provides the socio-economic projections at country-level for 406 

the 5 SSP narratives (available at https://tntcat.iiasa.ac.at/SspDb32). The GDP 407 

projections were produced by the Organisation for Economic Co-operation and 408 

Development (OECD), and the population projections were generated by the 409 

International Institute for Applied Systems Analysis (IIASA). We compute annual GDP 410 

per capita growth rates for each country. The population-weighted average temperature 411 

increase at country-level is calculated for three Representative Concentration Pathways 412 

(RCP4.5, RCP6.0 and RCP8.5) using the gridded temperature projections provided by a 413 

total of 26 global climate models contributing to the fifth phase of the Coupled Model 414 

Intercomparison Project (CMIP5). See Suppl. Table 2. GDP per capita growth rates and 415 

temperature increases cover the period 2020-2100. The population-weighted average 416 

temperature response over time at country-level to the addition of 1 GtCO2 in the 417 

atmosphere is obtained by combining the results from the CMIP5 model's outcomes and 418 

a total of 15 carbon-cycle models from a carbon-cycle modelling project30 (available at 419 

http://climatehomes.unibe.ch/~joos/IRF_Intercomparison/). Additionally, baseline 420 

temperature at the country-level is computed as the annual population-weighted average 421 

temperature increases from 1980 to 2010 from the Willmott and Matsuura gridded 422 

observational temperature data set47.   423 

 424 

https://tntcat.iiasa.ac.at/SspDb
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Climate projections. Population-weighted country-level temperature time series are 425 

calculated for all RCP warming scenarios as well as the abrupt4xco2 experiment.  426 

Projections are bias corrected using a 1980-2010 observational baseline47. To remove 427 

the influence of interannual variability, for the purposes of the SCC calculations, RCP 428 

scenario time series represented as a quadratic polynomial fit and abrupt4xco2 time 429 

series were represented as a 3-exponential fit. Carbon cycle response to a CO2 pulse 430 

was also represented with a 3-exponential fit.   431 

 432 

Impact projections. We follow the same procedure described in Ref 8 to project the 433 

economic impacts from the temperature increase. GDP per capita in country 𝑖 at year 𝑡 434 

is 𝐺𝑖,𝑡 = 𝐺𝑖,𝑡−1 (1 + 𝜂𝑖,𝑡 + 𝛿(𝑇𝑖,𝑡)), where 𝜂{𝑖,𝑗} is the growth rate coming from the data, in 435 

which no climate change occurs. 𝛿(𝑇𝑖,𝑡) is a response function of the temperature 436 

increase at year t. The projected warming effect is adjusted by the baseline temperature 437 

effect (see Ref 8). When applying a BHM rich-poor model, we specify the impact 438 

function recursively. Because a number of countries transition from poor to rich within 439 

the course of a given century-long simulation, for each year simulated, if a country is 440 

“rich” the rich-country impact function is applied and if it is “poor” the poor-country impact 441 

function is applied. For more details about the application of the alternative climate 442 

impact functions, see the Supplementary Information. 443 

 444 

The Country-level Social Cost of Carbon. The difference in GDP per capita, including 445 

the temperature change impacts, between the scenario with and without pulse provide 446 

the yearly compound of the CSCC until 2100 (see Supplementary Figure S12). After 447 

2100, the compound is kept constant to its value in 2100 until 2200 (or set to zero, see 448 

sensitivity analysis in Supp. Table S6). The CSCC is the net present value of the yearly 449 

compound multiplied by the population projection.   450 

 451 

Discounting. 452 

CSCCs were calculated using both exogenous and endogenous12 discounting. For 453 

conventional exogenous discounting, two discount rates were used: 3 and 5%.  Results 454 

under endogenous discounting were calculated using two rates of pure time preference 455 

(=1, 2%) and two values of elasticity of marginal utility of consumption (=0.7, 1.5) for 456 

four endogenous discounting parameterizations.  457 
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 458 

Reference scenarios 459 

Recent work (Ref. 28) calculated the forcing paths associated with SSPs by 5 marker 460 

models.  For each SSP, we consider the RCP forcing scenario with the minimum 461 

Euclidian distance between the SSP as a reference scenario (Supplementary Figure 462 

S13 and Supplementary Table S4).  463 

 464 

Uncertainty. 465 

The uncertainty analysis uses a full ensemble of carbon and climate model combinations 466 

to represent climate uncertainty (210-345 model combinations, varying according to the 467 

scenarios).  Damage function uncertainty is analysed via bootstrapping (1,000 sets of 468 

parameter values).  The combined uncertainty is obtained by convolution. At the end, a 469 

Bayesian bootstrap resampling analysis is conducted to provide the estimates of the 470 

median and the quantiles along with their confidence interval.  471 

 472 

Lorenz curves and Gini coefficients 473 

Lorenz curves are generated using the classical approach39.  The Gini coefficients are 474 

generated using the method of Raffinetti et al (2015)40 which developed a coherent 475 

approach to incorporating negative income into measurement of inequality, adhering to 476 

the principle that 0 designates perfect equality and 1 maximum inequality.  477 

 478 

Code and data availability 479 

All scripts used to calculate CSCCs and global SCC are available as a part of the 480 

Supplementary Materials.  The database of country-level SCCs with uncertainty bounds 481 

under all scenarios, model specifications and discounting schemes is available as a part 482 

of the Supplementary Materials. 483 

 484 

References  485 

1. IAWG, U. Technical support document: Technical update of the social cost of carbon 486 

for regulatory impact analysis under executive order 12866. Interag. Work. Group 487 

Soc. Cost Carbon U. S. Gov. Wash. DC (2013). 488 

2. Pindyck, R. S. The Social Cost of Carbon Revisited. (National Bureau of Economic 489 

Research, 2016). 490 



UNDER REVIEW – DO NOT CITE  17/21 

3. Anthoff, D. & Tol, R. S. J. The uncertainty about the social cost of carbon: A 491 

decomposition analysis using fund. Clim. Change 117, 515–530 (2013). 492 

4. Moore, F. C. & Diaz, D. B. Temperature impacts on economic growth warrant 493 

stringent mitigation policy. Nat. Clim. Change 5, 127–131 (2015). 494 

5. Nordhaus, W. Estimates of the Social Cost of Carbon: Concepts and Results from the 495 

DICE-2013R Model and Alternative Approaches. J. Assoc. Environ. Resour. Econ. 1, 496 

273–312 (2014). 497 

6. Bansal, R., Kiku, D. & Ochoa, M. Price of Long-Run Temperature Shifts in Capital 498 

Markets. (National Bureau of Economic Research, 2016). 499 

7. Taylor, K. E., Stouffer, R. J. & Meehl, G. A. An Overview of CMIP5 and the 500 

Experiment Design. Bull. Am. Meteorol. Soc. 93, 485–498 (2012). 501 

8. Burke, M., Hsiang, S. M. & Miguel, E. Global non-linear effect of temperature on 502 

economic production. Nature 527, 235–239 (2015). 503 

9. O’Neill, B. C. et al. A new scenario framework for climate change research: the 504 

concept of shared socioeconomic pathways. Clim. Change 122, 387–400 (2013). 505 

10. Tol, R. S. J. The Social Cost of Carbon. Annu. Rev. Resour. Econ. 3, 419–443 506 

(2011). 507 

11. National Academies of Sciences, E. Valuing Climate Damages: Updating 508 

Estimation of the Social Cost of Carbon Dioxide. (2017). doi:10.17226/24651 509 

12. Anthoff, D., Tol, R. S. J. & Yohe, G. W. Risk aversion, time preference, and the 510 

social cost of carbon. Environ. Res. Lett. 4, 024002 (2009). 511 

13. Weitzman, M. L. Tail-Hedge Discounting and the Social Cost of Carbon. J. Econ. 512 

Lit. 51, 873–882 (2013). 513 

14. Ackerman, F. & Stanton, E. A. Climate Risks and Carbon Prices: Revising the 514 

Social Cost of Carbon. Econ. Open-Access Open-Assess. E-J. 6, 1 (2012). 515 



UNDER REVIEW – DO NOT CITE  18/21 

15. Hope, C. Discount rates, equity weights and the social cost of carbon. Energy 516 

Econ. 30, 1011–1019 (2008). 517 

16. Cai, Y., Judd, K. L. & Lontzek, T. S. The Social Cost of Carbon with Economic 518 

and Climate Risks. ArXiv150406909 Q-Fin (2015). 519 

17. Adler, M. et al. Priority for the worse-off and the social cost of carbon. Nat. Clim. 520 

Change 7, 443–449 (2017). 521 

18. Moyer, E., Woolley, M., Glotter, M. & Weisbach, D. Climate Impacts on Economic 522 

Growth as Drivers of Uncertainty in the Social Cost of Carbon. (2013). 523 

19. Kopp, R. E., Golub, A., Keohane, N. O. & Onda, C. The Influence of the 524 

Specification of Climate Change Damages on the Social Cost of Carbon. (Social 525 

Science Research Network, 2012). 526 

20. Nordhaus, W. Estimates of the Social Cost of Carbon: Concepts and Results 527 

from the DICE-2013R Model and Alternative Approaches. J. Assoc. Environ. Resour. 528 

Econ. 1, 273–312 (2014). 529 

21. Cai, Y., Judd, K. L. & Lontzek, T. S. The Social Cost of Stochastic and 530 

Irreversible Climate Change. (National Bureau of Economic Research, 2013). 531 

22. Barrett, S. Self-Enforcing International Environmental Agreements. Oxf. Econ. 532 

Pap. 46, 878–894 (1994). 533 

23. Carraro, C. & Siniscalco, D. Strategies for the international protection of the 534 

environment. J. Public Econ. 52, 309–328 (1993). 535 

24. Adams, R. M., McCarl, B. A. & Mearns, L. O. The Effects of Spatial Scale of 536 

Climate Scenarios on Economic Assessments: An Example from U.S. Agriculture. in 537 

Issues in the Impacts of Climate Variability and Change on Agriculture (ed. Mearns, L. 538 

O.) 131–148 (Springer Netherlands, 2003). doi:10.1007/978-94-017-1984-1_6 539 

25. Pizer, W. et al. Using and improving the social cost of carbon. Science 346, 540 

1189–1190 (2014). 541 



UNDER REVIEW – DO NOT CITE  19/21 

26. Nordhaus, W. D. Revisiting the social cost of carbon. Proc. Natl. Acad. Sci. 542 

201609244 (2017). 543 

27. Riahi, K. et al. The Shared Socioeconomic Pathways and their energy, land use, 544 

and greenhouse gas emissions implications: An overview. Glob. Environ. Change 545 

doi:10.1016/j.gloenvcha.2016.05.009 546 

28. Moss, R. H. et al. The next generation of scenarios for climate change research 547 

and assessment. Nature 463, 747–756 (2010). 548 

29. Joos, F. et al. Carbon dioxide and climate impulse response functions for the 549 

computation of greenhouse gas metrics: a multi-model analysis. Atmos Chem Phys 550 

13, 2793–2825 (2013). 551 

30. Ricke, K. L. & Caldeira, K. Maximum warming occurs about one decade after a 552 

carbon dioxide emission. Environ. Res. Lett. 9, 124002 (2014). 553 

31. Dell, M., Jones, B. F. & Olken, B. A. Temperature Shocks and Economic Growth: 554 

Evidence from the Last Half Century. Am. Econ. J. Macroecon. 4, 66–95 (2012). 555 

32. Diaz, D. & Moore, F. Quantifying the economic risks of climate change. Nat. 556 

Clim. Change 7, 774 (2017). 557 

33. Jones, C. I. & Klenow, P. J. Beyond GDP? Welfare across Countries and Time. 558 

Am. Econ. Rev. 106, 2426–2457 (2016). 559 

34. Blanc, E. & Schlenker, W. The Use of Panel Models in Assessments of Climate 560 

Impacts on Agriculture. Rev. Environ. Econ. Policy 11, 258–279 (2017). 561 

35. Guo, J., Hepburn, C., Tol, R. S. J. & Anthoff, D. Discounting and the social cost 562 

of carbon: a closer look at uncertainty. Environ. Sci. Policy 9, 216, 205 (2006). 563 

36. Ramsey, F. P. A Mathematical Theory of Saving. Econ. J. 38, 543–559 (1928). 564 

37. Lemoine, D. & Kapnick, S. A top-down approach to projecting market impacts of 565 

climate change. Nat. Clim. Change 6, 51–55 (2016). 566 



UNDER REVIEW – DO NOT CITE  20/21 

38. Burke, M., Davis, W. M. & Diffenbaugh, N. S. Large potential reduction in 567 

economic damages under UN mitigation targets. Nature 557, 549–553 (2018). 568 

39. Gastwirth, J. L. The Estimation of the Lorenz Curve and Gini Index. Rev. Econ. 569 

Stat. 54, 306–316 (1972). 570 

40. Raffinetti, E., Siletti, E. & Vernizzi, A. On the Gini coefficient normalization when 571 

attributes with negative values are considered. Stat. Methods Appl. 24, 507–521 572 

(2015). 573 

41. Oh, C. H. & Reuveny, R. Climatic natural disasters, political risk, and 574 

international trade. Glob. Environ. Change 20, 243–254 (2010). 575 

42. Bohra-Mishra, P., Oppenheimer, M. & Hsiang, S. M. Nonlinear permanent 576 

migration response to climatic variations but minimal response to disasters. Proc. 577 

Natl. Acad. Sci. 111, 9780–9785 (2014). 578 

43. Thornton, J. & Covington, H. Climate change before the court. Nat. Geosci. 9, 3–579 

5 (2016). 580 

44. Rao, S. et al. A multi-model assessment of the co-benefits of climate mitigation 581 

for global air quality. Environ. Res. Lett. 11, 124013 (2016). 582 

45. Pindyck, R. S. Climate Change Policy: What Do the Models Tell Us? J. Econ. Lit. 583 

51, 860–872 (2013). 584 

46. Lempert, R. J. Shaping the next one hundred years: new methods for 585 

quantitative, long-term policy analysis. (Rand Corporation, 2003). 586 

47. Matsuura, K. & Willmott, C. Terrestrial Air Temperature and Precipitation: 1900-587 

2006 Gridded Monthly Time Series, Version 1.01. Univ. Del. Httpclimate Geog Udel 588 

Educlimate (2007). 589 

 590 

Supplementary Information is available in the online version of the paper. 591 

 592 



UNDER REVIEW – DO NOT CITE  21/21 

Acknowledgments M.T. would like to thank Marshall Burke for an early discussion of 593 

these ideas and about the climate impact functions. K.R. thanks Craig McIntosh and 594 

Juan Moreno-Cruz for helpful discussions during the revisions of this manuscript. M.T. 595 

received funding from the European Research Council under the European Union’s 596 

Seventh Framework Programme (FP7/2007-2013) / ERC grant agreement n° 336155 - 597 

project COBHAM. L.D received funding from the EU’s Horizon 2020 research and 598 

innovation programme under grant agreement° 642147 (CD-LINKS). 599 

 600 

Author Contributions M.T. conceived of the study. K.R. performed the climate data 601 

analysis. L.D. replicated the economic damage functions and performed the CSCC 602 

calculations and uncertainty analysis. K.R., M.T. and L.D. analyzed the results. K.R. and 603 

M.T. wrote the manuscript. All authors discussed the results and provided input on the 604 

manuscript. 605 

 606 

Author Information Reprints and permissions information is available at 607 

www.nature.com/reprints. The authors declare no competing financial interests. 608 

Correspondence and requests for materials should be addressed to K.R. 609 

(kricke@ucsd.edu). 610 

 611 

 612 


