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Abstract 

 

The squeeze film flow characteristics of a couple stress fluid between porous 

circular disks is investigated. The modified Reynold’s equation is derived using 

Stokes microcontinuum theory and is solved analytically. The expressions for the 

squeeze film pressure and the squeeze film force are obtained in terms of 

Fourier-Bessel series. Numerical results are presented for the sinusoidal motion of 

the upper porous disk. Further, the equation for the gap width between the disks is 

obtained by considering a constant force squeezing state and is solved numerically. 

The effects of couple stresses and the porous facing on the squeeze film behaviour 

are analysed through the squeeze film pressure, force and the film thickness as a 

function of response time. 
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1 Introduction 
 

   Squeeze film mechanism is commonly observed in many areas of engineering 

and applied sciences, such as bearings in automotive and aircraft engines, turbo 

machinery, squeeze film dampers, etc. A squeeze film is a thin layer of fluid 
situated between surfaces that are approaching each other. This approaching action of 
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the surfaces, forces the fluid layer to move towards less constrained surroundings. 

As the fluid layer is very thin, the viscous forces become dominant and offer high 

resistance to such fluid motion inhibiting the approach of the bounding surfaces 

which in turn reduces the wear and tear of the parts. Thus a squeeze film plays a 

major role in many lubrication problems. Many investigations discuss about the 

squeeze film characteristics of Newtonian or non-Newtonian fluids in non-porous 

geometries [5, 6, 11, 14, 15]. 

 Porous bearings have been widely used in industry for a long period of time. 

Porous bearings contain the porous medium filled with lubricating oil so that the 

bearings require no further lubrication during the whole life of the machine. 

Self-lubricated bearings or oil retaining bearings exhibit this feature. There have 

been numerous studies on various types of porous bearings considering the 

lubricant as a Newtonian fluid. The squeeze film behavior of a Newtonian fluid 

has been analyzed between porous rectangular plates [17], porous journal bearings 

[4] and porous circular disks [7]. 

 Owing to the development of modern machinery, the use of fluids blended 

with various kinds of additives has received a great attention in literature. Many 

micro-continuum theories [1, 2] have been developed to explain the peculiar 

behavior of these kinds of non-Newtonian fluids. Among all, Stokes theory [13] is 

considered as the simplest generalization of the classical continuum theory which 

accounts for the polar effects such as couple stresses, body couples and 

non-symmetric stress tensors. Many investigators have applied this couple stress 

fluid model to study the hydrodynamic bearing characteristics [12, 16]. These 

investigations have shown the significance of couple stress effects on the squeeze 

film behavior in non-porous geometries. 

 Several investigations reveal the combined effects of couple stresses and 

surface roughness between various geometries with one porous facing [3, 8, 9].  

Naduvinamani et al. [10] have examined the rheological effects of the couple 

stress fluids on the squeeze film behavior in porous journal bearings.  

 In this paper, the flow of couple stress fluid between porous circular disks is 

considered. On the basis of Stokes micro-continuum theory, the modified 

Reynold’s equation is derived and is solved analytically. The equation for the gap 

width is obtained by considering a constant force squeezing state. The results are 

obtained assuming a sinusoidal motion of the upper disk. The effects of couple 

stresses and porosity are investigated through the squeeze film pressure, squeeze 

film force and the film thickness as a function of response time.  

 

2 Mathematical Formulation 
 

   Figure 1 shows the squeeze film geometry between circular disks of radius ra 

lubricated with an incompressible couple stress fluid. The upper disk with porous 

facing at z = h(t) is approaching the lower impermeable disk at z = 0 with a 

normal velocity dh/dt. 
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Figure 1 Squeeze Film in Porous Circular Geometry 

 

 Using the hydrodynamic lubrication theory, the flow is assumed to be 

axisymmetric and laminar and the body forces are assumed to be absent. 

According to Stokes microcontinuum theory, the body couples are also assumed 

to be absent. Under these assumptions, the governing equations of motion of the 

incompressible couple stress fluid flow are 
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where u and w are the velocity components in the radial and axial directions 

respectively, p is the squeeze film pressure,  is the fluid density,  is the shear 

viscosity and  is the new material constant responsible for the couple stress 

property with the dimension of momentum.  

 The flow of couple stress fluid in the porous matrix is governed by the 

modified form of Darcy’s law which accounts for polar effects given by  
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where 
*u  and 

*w  are respectively the radial and axial components of the fluid 

velocity in the porous region, 
*p  is the film pressure in the porous region,  is 

the permeability of the porous facing and the parameter    // is the ratio of 

microstructure size to the pore size. The ratio  /  has a dimension of length 

square and this length may be regarded as the chain-length of the polar additives.  
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If 1..,/   ei , then the microstructure additives present in the lubricant, 

block the pores in the porous layer and thus reduce the Darcy flow through the 

porous matrix. When the microstructure size is very small when compared to the 

pore size, i.e. β≪1, the additives percolate into the porous matrix which is the 

ideal situation. 

 Due to the continuity of flow in the porous region, the velocity components 

in the porous region given in (2.4) and (2.5) satisfy the continuity equation (2.1). 

This results in a Laplace equation in polar form for the squeeze film pressure in 

the porous region given by   
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The boundary conditions for the velocity components are the no-slip conditions 

on z = 0 and slip condition on z = h(t) given by 
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and the no-couple stress conditions given by 
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The boundary conditions for the squeeze film pressure are 
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The film pressure p* in the porous matrix satisfies the following conditions 
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where *h is the thickness of the porous layer. As the film pressure must be 

continuous at the disk film interface, we have 
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3 Solution Methodology 
 

(2.6) is solved for the film pressure in the porous matrix using the method of 

separation of variables and using the boundary conditions for film pressure in the 

porous matrix given in (2.11)-(2.13). The expression for the film pressure in the 

porous matrix is given by 
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where J0(nr) is the zeroth order Bessel function and αn is the nth eigenvalue that 

satisfies  
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The axial momentum equation (2.3) reveals that the pressure p in the film region 

is independent of z. Then the radial momentum equation (2.2) is solved using the 

boundary conditions for u given in (2.7) and (2.8). This yields the expression for 

the radial velocity component u as 
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where   2/1/l  is the couple stress parameter. Substituting the expression of u 

from (3.3) into the continuity equation (2.1) and integrating across the film 

thickness we get  
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Substituting the boundary conditions for the axial velocity component from (2.7) 

into (3.4), we obtain 
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Using the expression for w* from (2.5), the modified Reynolds equation is derived 

as 
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From (3.1), we get 
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equation (3.6) yields 
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Integrating (3.8) twice with respect to r and using boundary conditions (2.9) and 

(2.12), the squeeze film pressure is obtained as 
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Substitution of (3.1) and (3.9) in the interface condition (2.14) yields 
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The constants cn can be determined using the orthogonality of Bessel functions as 
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The squeeze film force is found by integrating the squeeze film pressure over the 

disk surface and is given by 
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Introducing the following non-dimensional quantities 
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where h0 is the initial film thickness and 1/ω is the characteristic time and 

substituting (3.11) in (3.9) and applying the non-dimensional quantities given in 

(3.13), the squeeze film pressure in the non-dimensional form is given by  
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The non-dimensional form of the squeeze film force is given by 
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where 42
0
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 The squeeze film pressure and force are obtained for a sinusoidal motion of 

the upper porous disk h(t)= h0+esint, where h0  is the initial film thickness, e is 

the amplitude and  is the angular frequency of the sinusoidal motion. On using 

the non-dimensional quantities given in (3.13), the dimensionless form of h(t), 

with 0/ heE  , is given by   

(3.16)   TETH sin1 . 

 

4 Constant Force Squeezing State 
 

     Considering constant force squeezing state, the inverse problem is solved 

and the film thickness and time relation is obtained as  
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where the non-dimensional time is 42
0

/ asq rthfT  . (4.1) is solved numerically 

for H by fourth order Runge Kutta method using the initial conditions given by 
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5 Results and Discussion 
 

    In this analysis, the effects of couple stresses on the squeeze film behaviour 

between porous circular disks have been studied on the basis of Stokes 

microcontinuum theory. The couple stress effects on the squeeze film 

characteristics is observed through the non-dimensional couple stress parameter L 

and the effects of permeability through the non-dimensional permeability 

parameter ψ. The squeeze film pressure and load carrying capacity have been 

computed using (3.14) and (3.15) for the sinusoidal motion of the upper porous 

disk. 

 Figures 2-5 show the variation of non-dimensional squeeze film pressure P 

as a function of radial co-ordinate R for T=3, β=0.2 and H*=0.01. Figures 2 and 3 

present the squeeze film pressure P with of ψ =0.001 for different values of 

couple stress parameter L, considering the amplitude of the sinusoidal motion as 

E=0.2 and E=0.4 respectively. It is observed that the squeeze film pressure P 

increases for increasing values of couple stress parameter L. Comparing Figures 2 

and 3 the squeeze film pressure is more pronounced for larger values of the 

amplitude of the sinusoidal motion. 

Figures 4 and 5 present the variation of non-dimensional squeeze film 

pressure P as a function of R with L=0.2 for different values of permeability 

parameter ψ. Figure 4 shows that there is a significant reduction in pressure with 

increasing permeability of the porous facing for the amplitude of the sinusoidal  
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motion E=0.2. Also, it has been observed from the graph that there is no 

significant difference in the pressure distribution between ψ= 0 and ψ= 0.001. 

Thus ψ= 0.001 indicates a very low permeability almost close to the non-porous 

case. Similar trend is observed in Figure 5 for E=0.4. Comparing Figures 4 and 5 

the squeeze film pressure is more significant for higher values of E although there 

is a decrease in pressure with increase in permeability. 

 Figures 6-9 display the variation of non-dimensional squeeze film force Fsq 

as a function of response time T at β=0.2 and H*=0.01. Figures 6 and 7 present the 

variation of non-dimensional load carrying capacity Fsq with response time T at 

ψ= 0.001  for different values of couple stress parameter L at E=0.2  and E=0.4 

respectively. A significant increase in the load carrying capacity is observed with 

an increase in the value of couple stress parameter L. i.e. larger the value of 

couple stress parameter greater is the load carrying capacity. Further, it is 

observed that the increase in the load carrying capacity is more pronounced for 

larger values of the amplitude of the sinusoidal motion. 

Figures 8 and 9 describe the variation of non-dimensional squeeze film force 

Fsq with response time T for different values of permeability parameter ψ with 

L=0.2 at E=0.2 and E=0.4 respectively. It has been observed form Figs 8 and 9 the 

effect of permeability parameter ψ is to decrease the load carrying capacity as 

compared to the rigid case (ψ= 0) and increase in the load carrying capacity is 

obtained by increasing the amplitude of the sinusoidal motion. Thus, with a 

suitable amplitude of the sinusoidal motion, the decrease in the load carrying 

capacity can be overcome. 

The variation of non-dimensional squeeze film thickness H as a function of 

response time T has been obtained using (4.1) from the constant force squeezing 

state. Figure 10 presents the gap width as a function of response time for different 

values of the couple stress parameter L with H*=0.1, ψ=0.001 and β=0.2. It is 

observed that, for attaining a particular height there is an increase in the response 

time with an increase in the couple stress parameter L, i.e. couple stress fluids 

sustain higher load for a longer time. Figure 11 shows the gap width as a function 

of response time for various values of the permeability parameter ψ with H*=0.01, 

L =0.2 and β=0.2. It is found that the time required for film thickness to reach any 

particular value is greatly reduced as the permeability parameter increases. 
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5 Conclusion 
 

 The theoretical study of rheological effects of squeeze film flow of a non- 

Newtonian couple stress fluid between porous circular disks is presented. On the 

basis of Stokes microcontinuum theory, the modified Reynolds equation is 

derived and is solved analytically. The numerical results are presented for the 

sinusoidal motion of the upper disk. An increase in the squeeze film pressure and 

load carrying capacity is observed for larger values of the couple stress parameter. 

Further increase of squeeze film pressure and load carrying capacity is obtained 

by increasing the amplitude of the sinusoidal motion. Although the effect of 

porous facing on the disk surface decreases the load carrying capacity, the same 

can be improved by suitably choosing lubricant and amplitude of the sinusoidal 

motion.   Also, it is observed from the inverse problem, the effects of couple 

stresses provide a longer response time even though the effects of permeability 

decreases the film thickness. On the whole, the porous squeeze film bearing 

performance can be improved by the proper choice of lubricants.   
 

 

References 
 

[1] T. T. Ariman and N. D. Sylvester, Microcontinuum fluid mechanics - A 

review, Int. J. Eng. Sci., 11 (1973), 905-930. 

http://dx.doi.org/10.1016/0020-7225(73)90038-4  

 

[2] T. T. Ariman and N. D. Sylvester, Application of microcontinuum fluid 

mechanics, Int. J. Eng. Sci., 2 (1974), 273-293. 

http://dx.doi.org/10.1016/0020-7225(74)90059-7  

 

[3] N. M. Bujurke and D. P. Basti, Surface roughness effects on squeeze film 

behaviour in porous circular disks with couple stress fluid, Trans. Porous Med., 

71 (2008), 185-197. http://dx.doi.org/10.1007/s11242-007-9119-2  

 

[4] C. Cusano, Lubrication of porous journal bearings, ASME Trans. J. Lub. Tech., 

94 (1972), 69-73. http://dx.doi.org/10.1115/1.3451638  

 

[5] E. A. Hamsa, The magnetohydrodynamic squeeze film, ASME Trans. J. Tribol. 

110 (1988), 375-377. http://dx.doi.org/10.1115/1.3261636  

 

[6] D. C. Kuzma, Fluid inertia effects in squeeze films, Appl. Sci. Res., 18 (1968), 

15-20. http://dx.doi.org/10.1007/bf00382330  

 

[7] P. R. K. Murti, Squeeze film behaviour in porous circular disks, ASME Trans. 

J lub Tech., 96 (1974), 206-209. 

 

 

http://dx.doi.org/10.1016/0020-7225%2873%2990038-4
http://dx.doi.org/10.1016/0020-7225%2874%2990059-7
http://dx.doi.org/10.1007/s11242-007-9119-2
http://dx.doi.org/10.1115/1.3451638
http://dx.doi.org/10.1115/1.3261636
http://dx.doi.org/10.1007/bf00382330


Couple stress fluids in porous circular squeeze films                    3237   

 

 

[8] N. B. Naduvinamani and A. Siddangouda, Combined effects of surface 

roughness and couple stresses on squeeze film lubrication between porous circular 

stepped plates, Proc. IMechE partJ:J; Engg Tribol , Vol. 221, 2007, 525-534. 

http://dx.doi.org/10.1243/13506501jet204  

 

[9] N. B. Naduvinamani and A. Siddangouda, Effects of surface roughness on the 

hydrodynamic lubrication of porous step slider bearings, Tribol. Int. 40 (2007), 

780-793. http://dx.doi.org/10.1016/j.triboint.2006.07.003  

 

[10] N. B. Naduvinamani, P. S. Hiremath and G. Gurubasavaraj, Squeeze film 

lubrication of a short porous journal bearing with couple stress fluids, Tribol. Int., 

34 (2001), 739-747. http://dx.doi.org/10.1016/s0301-679x(01)00064-0   

 

[11] O. Pinkus and B. Sternlicht, Theory of Hydrodynamic Lubrication, Mc-Graw 

Hill Book Company Inc., New York, 1961. 

 

[12] G. Ramanaiah, Squeeze films between finite plates lubricated by fluids with 

couple stress, Wear, 54 (1979), 315-320. 

http://dx.doi.org/10.1016/0043-1648(79)90123-6  

 

[13] V. K. Stokes, Couple stress in fluids, Phys. Fluids., 9 (1966), 1709-1715. 

http://dx.doi.org/10.1063/1.1761925  

 

[14] J. A. Tichy and W. O. Winer, Inertial considerations in parallel circular 

squeeze film bearings, ASME Trans. J. Lub. Tech., 92 (1970), 588-592. 

http://dx.doi.org/10.1115/1.3451480  

 

[15] J. A. Tichy, Non-Newtonian lubrication with the convected Maxwell model, 

ASME Trans. J. Lub. Tech., 118 (1996), 344-348. 

http://dx.doi.org/10.1115/1.2831307  

 

[16] Vimala Manivasakan and G. Sumathi, Theoretical investigations of couple 

stress squeeze films in a curved circular geometry, ASME Trans. J. Tribol. 133 

(2001), 041701-1-8. http://dx.doi.org/10.1115/1.4004099  

 

[17] H. Wu, An analysis of the squeeze film between porous rectangular plates, 

ASME Trans. J. Lub. Tech, 94 (1972), 64-68. http://dx.doi.org/10.1115/1.3451637 

 

 

Received: December 15, 2014; Published: April 20, 2015 

http://dx.doi.org/10.1243/13506501jet204
http://dx.doi.org/10.1016/j.triboint.2006.07.003
http://dx.doi.org/10.1016/s0301-679x%2801%2900064-0
http://dx.doi.org/10.1016/0043-1648%2879%2990123-6
http://dx.doi.org/10.1063/1.1761925
http://dx.doi.org/10.1115/1.3451480
http://dx.doi.org/10.1115/1.2831307
http://dx.doi.org/10.1115/1.4004099

