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�e problem of couple stress squeeze �lms considering viscosity pressure dependence (VPD) has been analysed in a curved
circular geometry. Using Stokes microcontinuum theory and the Barus formula, the Reynolds type equation has been derived.
�e approximate analytical expressions for the squeeze �lm pressure and load carrying capacity are obtained using a perturbation
technique.�e numerical solutions for the squeeze �lm pressure and load carrying capacity are presented for the sinusoidal motion
of the upper curved disk, assuming an exponential form for the curvature. �e e	ects of curvature, the non-Newtonian couple
stresses, and VPD and their combined e	ects are investigated through the squeeze �lm pressure and the load carrying capacity of
the squeeze �lm.

1. Introduction

Many areas of Engineering and Science such as lubricated
joints, gears, viscous dampers, bearings, and automotive
and aircra
 engines witness the major role of squeeze �lm
phenomena. Squeeze �lm is a thin layer of viscous �uid
between approaching surfaces. As the viscous lubricant is
contained between the surfaces, it takes certain time for
these surfaces to come into contact with each other and the
lubricant cannot be squeezed out instantaneously. Since the
viscous lubricant has a resistance to extrusion, a pressure is
built up during this interval and then the load is supported
by the lubricant �lm.

In most of the studies of classical hydrodynamic lubrica-
tion, it is assumed that the lubricant behaves as a Newtonian
�uid as studied by Pinkus and Sternlicht [1] and Jones and
Wilson [2]. In recent years, experimental results show that
the addition of a small amount of long-chained polymers
to a Newtonian �uid gives the most desirable lubricant. It
has been experimentally showed by Spikes [3] that base oil
blended with viscosity index improvers can enhance the
behaviour of the lubricants in hydrodynamic contacts. Many

microcontinuum theories have been developed by Ariman
and Sylvester [4, 5] and Stokes [6] to describe the rheological
behaviour of such non-Newtonian lubricants. Among these,
the Stokes microcontinuum theory is considered as the
simplest generalisation of the classical continuum theory of
�uids, which allows the polar e	ects such as the presence
of couple stresses and body couples. Several investigators
such as Ramanaiah [7], Bujurke and Naduvinamani [8],
and Alyaqout and Elsharkawy [9] considered Stokes micro-
continuum theory for the study of various bearing systems
because of its relative mathematical simplicity. In literature,
investigations on the couple stress squeeze �lms between
�at circular disks between a sphere and a �at plate and
between porous surfaces have been carried out by Lin and
Hung [10], Lin [11], andNaduvinamani et al. [12], respectively.
However, the curved plate geometry is representative ofmany
practical machineries involving hydrodynamic lubrication. It
is observed that in a squeeze �ow problem, the gap width
between the approaching surfaces is small, when compared
with the dimensions of the surfaces. �us even if the order
of waviness in the curved plates is small, the e	ects of non-
�atness on the squeeze �lm �ow is not necessarily negligible
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as shown by Gupta and Kapur [13], Usha and Vimala [14,
15]. �erefore, the e	ects of curvature on the squeeze �lm
behaviour are also signi�cant in this study.

�e study of variation of viscosity with pressure on the
isothermal, incompressible squeeze �lms between parallel
disks by Butler [16] shows that the predicted �uid pressure
is higher when VPD is taken into consideration than in
the isoviscous case. �e e	ects of variation of viscosity with
pressure and temperature have been studied by Gould [17]
and it has been shown that the above e	ects play a major role
in squeeze �lm behaviour. Kalogirou et al. [18] have studied
VPD in incompressible Poiseuille �ow of Newtonian liquids.
Lu and Lin [19] have studied the combined e	ects of couple
stresses and VPD for the sphere-plate squeeze �lm system
and observed that these e	ects enhance the load carrying
capacity of the squeeze �lm.

�e circular squeeze �lm system can be used in biolu-
bricated joints such as synovial joints and clutch plates in
automotive transmission. In this paper, a squeeze �lm �ow
of couple stress �uids between a �at circular �xed disk and a
curved circular moving disk is considered taking VPD into
account. Using Stokes microcontinuum theory and the Barus
formula, the nonlinear Reynolds type equation is derived.
�e approximate analytical expressions for the squeeze �lm
pressure and the load carrying capacity are obtained using a
perturbation technique. Numerical results are obtained for
the sinusoidal motion of the upper curved disk with the
curvature described by an exponential form. �e e	ects of
couple stresses, curvature, and variation of viscosity with
pressure and their combined e	ects on the squeeze �lm
characteristics are investigated.

2. Mathematical Formulation

�e unsteady, axi-symmetric laminar �ow of an incompress-
ible couple stress �uid between a �at circular lower disk at� = 0 and a curved circular upper disk at � = ℎ(�, �) of radius�� is shown in Figure 1.�e upper curved disk approaches the
lower �at disk with a squeezing velocity �� = −ℎ� = −�ℎ/��.

Assuming that the body forces and body couples are
absent, the governing equations ofmotion of the incompress-
ible couple stress �uid in the axi-symmetric case using Stokes
microcontinuum theory take the form

1
�
� (��)
�� + �	

�� = 0,
�

�� = �

�� (���
��) − ��4�

��4 ,
�

�� = 0,

(1)

where � and 	 are the velocity components in � and �
directions, respectively, 
 is the �lm pressure, � is the �uid
density, � is the shear viscosity, and � represents the new
material constant with the couple stress property. To consider
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Figure 1: Curved squeeze �lm geometry.

the variation of viscosity with pressure, the Barus formula for
isothermal VPD is

� = �0 exp (�
) , (2)

where �0 is the viscosity at ambient pressure and at constant
temperature and � is the pressure-viscosity coe�cient. �e
boundary conditions for the velocity components are the no-
slip conditions given by

� = 0, 	 = 0, at � = 0,
� = 0, 	 = −��, at � = ℎ (�, �) , (3)

and the no-couple stress conditions given by

�2�
��2 = 0, at � = 0, at � = ℎ (�, �) . (4)

�e boundary conditions for the squeeze �lm pressure are


 = 0, on � = ��,
�

�� = 0, at � = 0. (5)

3. Nondimensional Form of the Problem

Introduce the following nondimensional quantities

� = �
�� ,

� = �
ℎ0 ,

� = ℎ
ℎ0 ,

� = �
ℎ0 ,

� = ℎ0����� ,
� = 	

�� .

(6)
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Here � = √�/� is the couple stress parameter of dimension
length and this length may be regarded as the chain-length
of polar additives in the lubricant. Using (2) and (6), the
nondimensional formof the governing equations given by (1),
take the form

1
�

� (��)
�� + ��

�� = 0, (7)

��
�� = �

�� (exp (��) ��
��) − �2 �4���4 , (8)

��
�� = 0, (9)

where the nondimensional form of squeeze �lm pressure �
is given by � = 
ℎ30/��2��� and the viscosity parameter is

� = �0��2���/ℎ30. On nondimensionalization, the boundary
conditions of the velocity components and pressure become

� = 0, � = 0, on � = 0,
� = 0, � = −1, on � = � (�, �) , (10)

�2�
��2 = 0, on � = 0;
�2�
��2 = 0, on � = � (�, �) ,

(11)

� = 0, on � = 1;
��
�� = 0, at � = 0. (12)

Solving (8) with the boundary conditions (10) and (11), the
radial velocity component is obtained as

� = exp (−2��)
2

��
��

⋅ {�2 − ��
exp (��) + 2�2 − 2�2

⋅ cosh [(2� − �) /2� exp (−0.5��)]
cosh (�/2� exp (−0.5��)) } .

(13)

Integrating the continuity equation (7) with respect to � and
using the boundary conditions of axial velocity component
from (10) and (11), the non-Newtonian Reynolds type equa-
tion is obtained as

�
�� [$ (�, �, �, �) ���

��] = −12�, (14)

where $(�, �, �, �) = �3 exp(−��) − 12�2� exp(−2��) +24�3 exp(−2.5��) tanh(� exp(0.5��)/2�).
To �nd the approximate analytical solution for the

highly nonlinear equation (14), the squeeze �lm pressure is
expanded, using a small perturbation, in the form

� = �0 + ��1 + �2�2 + ⋅ ⋅ ⋅ (15)

with 0 ≤ � ≪ 1. Substituting (15) in the Reynolds type
equation (14) and in the pressure conditions the zero order
problem becomes

*
*� [$0 (�, �) ���0�� ] = −12�, (16)

where $0(�, �) = �3 − 12�2� + 24�3 tanh(�/2�). �e
pressure conditions are given by

�0 = 0, on � = 1;
��0�� = 0, at � = 0. (17)

By solving (16) along with the boundary conditions given by
(17), the zero order solution is obtained as

�0 = 6∫1
�

�
$0 *�. (18)

Similarly, the �rst order problem becomes

*
*� [$0 (�, �) ��1�� − $1 (�, �) �0 ��0�� ] = 0, (19)

where $1(�, �) = �3 − 6�2�[4 + sech2(�/2�)] +60�3 tanh(�/2�) with
�1 = 0, on � = 1;

��1�� = 0, at � = 0. (20)

�e �rst order solution is obtained as

�1 = 36�∫1
�

�2$1$20 ∫1
�2

�1$0 *�1*�2, (21)

where �1 and �2 are dummy variables of integration repre-
senting the radial coordinate�. Substituting�0 and�1 in (15),
the approximate squeeze �lm pressure � is obtained as

� = 6∫1
�

�1$0 *�1 + 36�∫1
�

�2$1$20 ∫1
�2

�1$0 *�1*�2. (22)

�e dimensionless load carrying capacity is now obtained by
integrating the �lm pressure given in (22) as

7sq = 28∫1
0

��*�

= 128∫1
0

�2 ∫
1

�2

�1$0 *�1*�2
+ 728�∫1

0
�3 ∫
1

�3

�2$1$20 ∫1
�2

�1$0 *�1*�2*�3,

(23)

where �1, �2, and �3 are dummy variables of integration
representing � and the nondimensionalization for the load

carrying capacity $sq is given by 7sq = $sqℎ30/�0�4���.
Equations (22) and (23) give the squeeze �lm pressure and
the load carrying capacity for an arbitrary shape of the upper
curved disk.
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4. Solution for Sinusoidal Motion

Assuming a speci�c formof ℎ(�, �) given by ℎ(�, �) = ℎ1(�):(�)
the problem is analysed. Here ℎ1(�) represents the central
�lm thickness and :(�) is the curvature pro�le of the curved
disk. �e solution is obtained for a sinusoidal motion ℎ1(�) =ℎ10 + < sin>� of the upper curved disk. Here ℎ10 is the initial
central �lm thickness and < and > are the amplitude and
the angular frequency of the sinusoidal motion, respectively.
Here the curvature pro�le is assumed to take an exponential

form :(�) = <−�̂�2 where @̂ is the curvature parameter with@̂ > 0 for concave disk, @̂ < 0 for convex disk, and @̂ = 0 for a
�at disk. Using the nondimensional quantities from (6) along
with

�1 = ℎ1ℎ10 ,
C = <

ℎ10 ,
� = >�

(24)

the dimensionless form of ℎ(�, �), ℎ1(�), and :(�) is given by

�(�, �) = �1 (�) : (�) ,
�1 (�) = 1 + C sin�,
: (�) = <−��2 ,

(25)

where @ = @̂�2� . �e con�guration of the curved disk for
various values of the curvature parameter @ is shown in
Figure 2. �e dimensionless squeeze �lm pressure and force
can be obtained from (22) and (23) using (25). Considering
the �at disk case, the gap-width becomes independent of
the radial coordinate; that is, ℎ(�, �) = ℎ(�). In this case,
the squeeze �lm pressure and the load carrying capacity are
obtained from (22) and (23) as

� = 3
$0 (1 − �2) + 9�$1$30 [1

2 − �2 (1 − �2
2 )] , (26)

7sq = 38
2$0 (1 + �$1$20 ) . (27)

5. Results and Discussions

�e combined e	ects of curvature, couple stresses, and
variation of viscosity with pressure on the squeeze �lm
behaviour are analysed using Stokes microcontinuum theory
and Barus formula for VPD. �e e	ects of couple stresses
on the squeeze �lm characteristics are observed through the
nondimensional couple stress parameter �, the curvature
e	ects through the curvature parameter @, and the variation
of viscosity with pressure through the viscosity parameter �.
Considering the sinusoidal motion of the upper curved disk,
the squeeze �lm characteristics for the �ow in the �at disk
case are obtained, respectively, from (26) and (27). Here, a
small amplitude C = 0.2 is taken for the sinusoidal motion
and time � = 0.8 is chosen for a squeezing state.
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Figure 2: Curvature pro�le.
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Figure 3: Couple stress e	ects on the squeeze �lm pressure-�at disk
case.
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Figure 4: E	ects of VPD on the squeeze �lm pressure-�at disk case.

Figures 3–5 present the squeeze �lm characteristics for
the �at disk case. Figure 3 shows the squeeze �lm pressure� as a function of radial coordinate � for a small amplitude
of sinusoidal motion C = 0.2 at time � = 0.8 and for the
viscosity parameter � = 0.02 and for various values of the
couple stress parameter �. Higher pressure is obtained for
larger values of � due to the rotations of higher number of
microstructures present in the �uid. Figure 4 shows � as a
function of � for C = 0.2, � = 0.8, and � = 0.2 and
for di	erent values of �. Higher �lm pressure is obtained by
considering VPD (� = 0.02), compared to the isoviscous
case (� = 0), and an increase in the squeeze �lm pressure
is observed with an increase in the viscosity parameter �.
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Figure 5: E	ects of couple stresses and VPD on the squeeze �lm
force-�at disk case.
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Figure 6: Couple stress e	ects on the squeeze �lm pressure. (a)
Concave disk and (b) convex disk.

Figure 5 describes the variation of the load carrying
capacity 7sq as a function of response time � for C = 0.2 and
for various values of � and � in the �at disk case. Compared
to the isoviscous Newtonian case with � = 0 and � = 0,
an increase in the load carrying capacity is observed with
an increase in the couple stress parameter with � = 0.1 and� = 0. Further increase is seen when considering VPD with� = 0.02 and � = 0.1. Combined e	ects of couple stresses
and VPD, with � = 0.2 and � = 0.04, further enhance the
load carrying capacity.

Figures 6–9 present the squeeze �lm characteristics of
the �ow in the curved disk case with the same amplitudeC = 0.2 of the sinusoidal motion. Figures 6(a) and 6(b)
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Figure 7: E	ects of VPD on the squeeze �lm pressure. (a) Concave
disk and (b) convex disk.

show the pressure graphs for � = 0.8, � = 0.02 and various
values of � in the concave (@ > 0) and convex (@ < 0)
disk cases, respectively. It is observed that in both the cases,
the squeeze �lm pressure increases with an increase in the
couple stress parameter �. Further, it is seen that the squeeze
�lm pressure is more signi�cant for larger values of � for the
concave nature of the upper curved disk. Figures 7(a) and
7(b) display the squeeze �lm pressure� as a function of radial
coordinate � with � = 0.8, � = 0.2 and for various values of� in the concave and convex disk cases, respectively. In both
concave and convex disk cases, higher squeeze �lm pressure
is observed by considering VPD with � = 0.02, compared
to the isoviscous case with � = 0 and a further increase
in the squeeze �lm pressure is observed with an increase in
the viscosity parameter �, particularly in the concave disk
case. Figures 8(a) and 8(b) describe the variation of load
carrying capacity 7sq as a function of response time � forC = 0.2 and various values of � and � in the concave (@ > 0)
and convex (@ < 0) disk cases, respectively. An increase in
the load carrying capacity is obtained with an increase in
the couple stress parameter �. Further increase in the load
carrying capacity is observedwhen consideringVPD for both
concave and convex nature of the upper curved disk. Figure 9
shows the variation of load carrying capacity as a function
of response time at � = 0.2, � = 0.02 and various values of
curvature parameter @. It is observed that the load carrying
capacity is higher in a concave disk than in a �at disk whereas
it is lower in a convex disk than in a �at disk.
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Figure 8: E	ects of couple stresses and VPD on the squeeze �lm force. (a) Concave disk and (b) convex disk.
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Figure 9: Curvature e	ects on the squeeze �lm force.

6. Conclusion

�e combined e	ects of couple stresses and VPD on the
curved squeeze �lm behaviour are studied through the
squeeze �lm pressure and load carrying capacity. Using
Stokes microcontinuum theory and the Barus formula, the
Reynolds type equation is derived. �e expressions for
squeeze �lm pressure and load carrying capacity are derived
using a perturbation technique. It is observed that the e	ects
of couple stresses, variation of viscosity with pressure, and
curvature and their combined e	ects strongly in�uence the
squeeze �lm behaviour. �at is, the larger the value of the
couple stress parameter, the greater the load carrying capacity
in the squeeze �lm. �is e	ect is more signi�cant when
the viscosity pressure dependence (VPD) is considered. �e
magnitude of the squeeze �lm pressure and load carrying
capacity on a concave disk is always more than that on a �at
disk whereas it is always less for a convex disk which suggests
that the load carrying capacity in the squeeze �lm is strongly
in�uenced by the curvature of the upper moving disk in
addition to VPD and couple stress parameters. On the whole
the combined e	ects of curvature VPD and couple stresses
on the squeeze �lm pressure and load carrying capacity are
seen to be more signi�cant in a concave disk.�us, a concave
disk is more suitable for practical applications of squeeze �lm
�ows with couple stress �uids.
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