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Figure 1: Coupled 3D reconstruction of sparse facial hair and skin applied to various different facial hair styles.

Abstract

Although facial hair plays an important role in individual expres-
sion, facial-hair reconstruction is not addressed by current face-
capture systems. Our research addresses this limitation with an
algorithm that treats hair and skin surface capture together in a cou-
pled fashion so that a high-quality representation of hair fibers as
well as the underlying skin surface can be reconstructed. We pro-
pose a passive, camera-based system that is robust against arbitrary
motion since all data is acquired within the time period of a sin-
gle exposure. Our reconstruction algorithm detects and traces hairs
in the captured images and reconstructs them in 3D using a multi-
view stereo approach. Our coupled skin-reconstruction algorithm
uses information about the detected hairs to deliver a skin surface
that lies underneath all hairs irrespective of occlusions. In dense
regions like eyebrows, we employ a hair-synthesis method to cre-
ate hair fibers that plausibly match the image data. We demonstrate
our scanning system on a number of individuals and show that it
can successfully reconstruct a variety of facial-hair styles together
with the underlying skin surface.
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1 Introduction

Since facial appearance plays such an important role in human com-
munication, mastering the human face has long been a central goal
of computer graphics. The characteristics of someone’s face are a
core component of their individuality and help make their physi-
cal appearance unique from every other person. While many fa-
cial characteristics are difficult to change, facial hair is one feature
that is easily adapted. Some individuals meticulously sculpt their
eyebrows hair-by-hair to ensure that the overall shape is perfectly
formed and symmetric. A clean-shaven male face can look boyish
and innocent. Many men instead choose to convey a more rugged,
masculine appearance through a nearly unlimited variety of facial-
hair styles, including beards, mustaches, and sideburns of all shapes
and sizes. The popularity of these different facial-hair styles can
fluctuate just as rapidly as fashion trends and varies dramatically
from region to region, making facial hair a core piece of popular
culture.

Despite the important role that facial hair plays in individual expres-
sion, existing face-capture technology does not easily accommo-
date facial-hair features. The problem setting is especially difficult
because the hair and the underlying skin are often both visible, and
a faithful face reconstruction must deliver accurate geometry for
both the hair fibers and the underlying skin geometry. An accurate
scan of a person with a scruffy beard should include each visible
beard hair together with a high-fidelity representation of the skin
underneath. Capture algorithms that focus on skin only will often
deliver a skin surface that is “shrink-wrapped” around the facial-
hair features, rather than reconstructing them as individual fibers
on top of a skin surface. On the flip side, algorithms specialized
for hair reconstruction typically focus on statistical properties of a
thick head of hair that fully obscures the underlying scalp. These
assumptions obviate the need for skin reconstruction or the con-
sideration of individual fibers in isolation, making the algorithms
unsuited for facial-hair reconstruction. As a result, existing scan-
ning systems quietly ignore the huge variety of facial hair styles,
treating them as error cases rather than as unique forms of human
expression that deserve accurate reconstruction.
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http://portal.acm.org/ft_gateway.cfm?id=2185613&type=pdf
http://graphics.ethz.ch/publications/papers/paperBee12.php
http://graphics.ethz.ch/Downloads/Publications/PaperVideos/2012/Bee12-SIGGRAPH2012-CoupledHairSkinReconstruction.mp4


Our research improves the state-of-the-art of face capture with an
algorithm that treats hair and skin surface capture together in a cou-
pled fashion so that a high-quality representation of hair fibers as
well as the underlying skin surface can be reconstructed. Since in-
dividual hair features are extremely fine and can vary greatly with
head movement, we propose a single-shot capture system that uses
consumer digital cameras without the need of multiple exposures or
active illumination. Our hardware setup supports a variable number
of cameras, so that additional face coverage is achieved simply by
adding more cameras. All imagery needed for accurate reconstruc-
tion is captured within the time period of a single exposure.

Our reconstruction algorithm processes the captured images using
a steerable filter kernel for explicit hair detection and produces a
hair map for each image. Within these hair maps individual hairs
are traced and then reconstructed and refined in 3D using multi-
view stereo. We then employ a skin reconstruction algorithm that
uses information about detected hair pixels and the reconstructed
hair fibers to deliver a skin surface that lies underneath all hairs
irrespective of hair occlusions. In sparse regions where individual
hairs are clearly visible in the captured images, our algorithm recon-
structs each and every detected hair as a collection of line segments.
In dense regions, such as the eyebrows, where many hairs overlap
and obscure one another, our algorithm employs a hair-synthesis
method to create hair fibers that plausibly match the image data.
Likewise, when skin is visible through sparse hair, our system ac-
curately reconstructs it, and when skin is obscured our system pro-
poses a plausible solution. We demonstrate this algorithm with a
collection of scans of individuals exhibiting a variety of different
facial-hair styles.

As a useful geometric construct for the system, we introduce the
concept of the skin episurface (see Figure 2). In the case where
there is no hair or low density hair over visible skin, the skin episur-
face is a close approximation to the true skin surface. In the case
where the hair is dense and no skin is visible, the skin episurface is
a postulated 3D surface below the top layer of visible hair. While
it is not a true surface, the motivation for the construct is that it
enables a unified approach to the processing, across areas of clear
skin and dense beard. Note that it should not be thought of as a
dilation of the skin surface - in the case of protruding facial hair,
something like a goatee, the episurface will also form a protruding
shape. In addition to the technical building blocks of our solution,
we also show that the fidelity of face scans is enhanced when fa-
cial hair is accurately reconstructed and provides a more faithful
representation of an individual’s unique look.
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Figure 2: The skin episurface is a pseudo-surface that closely
matches the real skin surface when the skin is clearly visible and
passes below the visible hairs when the hair is dense.

2 Related Work

Because hair and faces are very important parts of virtual human
characters, a good deal of effort has gone into methods for capturing
models of the surface of the face, and of volumes of hair.

Capturing face geometry was one of the first applications of laser
triangulation scanners in computer graphics. For example, a Cy-
berware face scanner was used to construct models for the ground-
breaking computer-generated visual effects in the 1989 film The
Abyss. The technology for scanning faces has improved since, and
faces have been captured by faster and higher resolution laser scan-
ners [Blanz and Vetter 1999]; structured white light scanners [De-
bevec et al. 2000; Weyrich et al. 2006; Alexander et al. 2009],
gradient-based illumination [Ma et al. 2007; Ghosh et al. 2011],
and more recently, multi-view stereo systems [Furukawa and Ponce
2009; Bradley et al. 2010; Beeler et al. 2010; Beeler et al. 2011]. To
capture the skin surface in this paper, we use the method of Beeler
et al. [2010].

Driven by the difficulty of modeling hairstyles realistically by hand,
various research has worked on capturing models of scalp hair.
Grabli et al. [Grabli et al. 2002] introduced the idea of identify-
ing 3D hair orientation from moving-light image sequences by the
specular reflection peak and image-space orientation. Several other
projects have since addressed the problem of modeling an entire
head of hair from many views, with or without structured or con-
trolled lighting [Paris et al. 2004; Wei et al. 2005; Paris et al. 2008].
All these methods have focused on creating a model of the large-
scale geometry, normally by constructing a smooth vector field in
3D that represents fiber orientation and then growing random fibers
through this field. Because they focus on capturing whole-head
hairstyles, capturing each hair would be prohibitive at the required
scale. Recently Jakob et al. [2009] took a different approach, us-
ing depth-from-focus and triangulation to capture the geometry of
individual fibers in a smaller area of hair. In this paper we take
the latter approach, since we are capturing smaller hair volumes
than the traditional hair capture papers with their goal of capturing
whole heads of long hair.

3 Overview

This section contains a system overview for the 3D reconstruction
of the skin episurface plus individual hairs. Many traditional 3D
reconstruction algorithms treat the whole of a scene in an undiffer-
entiated way. In contrast, the algorithm described here works by
explicitly differentiating the skin episurface and the hair, and pro-
cessing each of them in a distinct way.

The pipeline is -

(a) separate hairs and skin in the captured images, extract 2D hair
fibers using a growing algorithm and remove the detected hairs
from the images using inpainting;

(b) reconstruct, filter, refine and grow 3D fibers in 3-space based
on the extracted 2D fibers using multi-view stereo (MVS);

(c) compute the skin episurface combining traditional MVS and
the estimated roots of the 3D fibers;

(d) synthesize hairs in areas where image data indicates the pres-
ence of hair, but individual hairs are indistinct and cannot be
reconstructed.

Figure 3 illustrates the pipeline. Section 4 will describe stages (a)
and (b), and Section 5 will describe stages (c) and (d).

A preliminary step to the processing below is to obtain a first esti-
mate of the 3D model of the face using the method in [Beeler et al.
2010], without any use of special algorithms for facial hair. We will
use the terminology shrink-wrap surface below to refer to this first
estimate of the 3D model, because it has the effect of wrapping the
surface around the hairs. The shrink-wrap model will be used in
Sections 4 and 5.
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Figure 3: Main stages of the algorithm. A preliminary step to the
processing is to obtain a first estimate of the 3D model using the
method in [Beeler et al. 2010]. The algorithm then explicitly de-
tects and reconstructs hair fibers (top flow) and uses this informa-
tion to provide a better estimate of the underlying surface (bottom
flow). This surface, called the skin episurface, is in return used by
the hair reconstruction to synthesize new hairs.

4 Computing 3D Hair

This section describes the computation of hair maps in the image,
stereo matching to compute 3D hairs, and a final cleanup step to
remove outliers and refine the recovered 3D hairs. We perform the
reconstruction independently for left and right sides of the face and
merge the hairs prior to the refinement. To increase robustness we
start by reconstructing long hair in a first pass (> 5 mm) and shorter
hair in a second.

4.1 2D Processing

The first stage of the processing is to detect hair in the images, and
seek piecewise linear segments as the first step towards obtaining
long fibers of hair. An overview of this process is shown in Figure 4.
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Figure 4: 2D Processing. Given a set of input images, each image
is filtered in order to produce a hair map H (4.1a) used to grow
2D-hair fibers (4.1b).

(a) Computing a ‘Hair Map’ for each Image

Our experience is that neither hair color nor hair diameter are uni-
form across a subject’s face. These properties moreover vary along
an individual hair, which precludes approaches that assume unifor-
mity. We observed that hair and skin exhibit larger contrast in satu-
ration and value than in hue. Thus images are converted from RGB
to HSV space, and the S and V channels are used to discriminate
hair. Figure 5 shows the original image I in RGB as well as the S
and V channels.

Paris et al. [2004] show that oriented filters are well suited to esti-
mating the local orientation of hair. They employ different filters at

multiple scales and determine the best score based on the variance
of the filters. This provides an efficient way to estimate a dense ori-
entation field for a dense hair volume. For sparse hair, the situation
is different as the hair fibers cover only parts of the image and we
need to identify which parts. As we have a good prior on the size
of the structural element (the hair thickness) we use only a single
oriented filter kernel. An oriented filter kernel Kθ is a kernel that is
designed to produce a high response for structures that are oriented
along the direction θ when it is convolved with an image. We tried
several different filters, such as Gabor and Second Order Gaussians,
and found their performance to be very similar in practice. In the
following, we use the real part of a Gabor filter. The wavelength
λ and standard deviation σ of the filter are set according to the ex-
pected hair thickness (λ = 4, σ = 3 pixels).

Figure 5: Images used during reconstruction: I: input image, S:
saturation channel, V : value channel, O: orientation map, F : Ga-
bor filter response, C: confidence map, M : binary mask, H: hair
map.

The S and V channels are both convolved with the filter kernel
Kθ for different θ (we use 18 different orientations, one every

10 degrees) and the orientation θ̃ that produces the highest score
F (x, y) = |Kθ̃ ∗ V |

(x,y)
+ |Kθ̃ ∗ S|

(x,y)
at a pixel (x, y) is stored

in the orientation map O(x, y) = θ̃. As can be seen in Figure 5
(F ) the filter generates ringing artifacts around the true location of
the hair. To suppress these artifacts we propose a non-maximum
suppression strategy [Canny 1986]. The pixel is suppressed unless
its score is the maximum score in direction orthogonal to θ over
the extent of the filter. The resulting confidence map C is shown in
Figure 5 (C).

The confidence map C is thresholded using hysteresis [Canny
1986]. The upper and lower thresholds applied are 0.07 and 0.05.
From the binary mask M a hair map H is computed according to
H(x, y) = 1/(1+d(x, y)) where d(x, y) is the euclidean distance
at (x, y) to the closest foreground pixel in M . The hair map H
shown in Figure 5 (H) has a value of 1 where hairs are suspected.
The value decays quickly when moving away from suspected hair
pixels allowing for accurate and robust matching. The hair map is of
central importance in matching and growing and is a key difference
as opposed to other multi-view stereo systems which usually rely
solely on intensity variation. The appearance of hair fibers in dif-
ferent viewpoints can vary substantially due to specularity, translu-
cency, camera focus and of course occlusion through other fibers.
The hair map proves to be more reliable under these conditions and
permits robust matching of the hair fibers.

(b) Growing Hair in 2D

At the scale we are capturing hair, fibers are essentially one-
dimensional structures. Thus the only reasonable neighborhood
suited for matching is a one-dimensional neighborhood along the
hair itself. We start reconstruction by identifying this neighborhood
in an image using a line growing algorithm.

Hair growing in 2D produces a chain of 2D hair segments. A hair
segment s(ps, θ, ℓ) is a linear segment of length ℓ starting at ps
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Figure 6: 2D hair growth. Hair growing in 2D makes use of the
hair map H . (a) Starting point ps and an initial estimate of the
growth direction θ are given by the previous segment. The apex of
a growth cone Λ(r, γ) with growth resolution r and opening angle
2γ is placed at ps and oriented along θ. For all possible target
pixels a score is computed and the pixel with highest score is added
to the hair. This process is repeated until the matching score drops
below a threshold. (b) An example of a traced hair overlaid the
input image.

in direction of θ. P(s) denotes the set of pixels covered by the
segment s. Growing is based on the hair map H and works as
follows. First, a pixel ps = (xs, ys) in H with H(ps) = 1 that is
not yet part of a hair is selected as seed and the growing direction
is determined from the orientation map O. We define a growth
cone Λ(r, γ) with growth resolution r and opening angle 2γ. The
cone defines a set of possible next segments that form an angle of
less than γ with the axis of the cone and whose distance to the
apex is r. See Figure 6 for a schematic. The parameters chosen
for the growth cone are r = 10 pixels and γ = 60 degrees. When
growing a segment, the axis of the growth cone is oriented along the
direction θ of the last segment and the apex of the cone is placed at
ps. For each potential growth direction in the growth cone a score
is computed as

ξ(dθ) =

(

1 −
|dθ|

2γ

)

ψ(P(sdθ)), (1)

where dθ is the angular direction relative to the axis of the cone and
P(sdθ) denotes the set of pixels covered by the segment sdθ . The
function ψ is given as

ψ(P) =
1

‖P‖

∑

pi∈P

H(pi) − ν

1 − ν
(2)

and will also be used in later sections when operating on the hair
map. The parameter ν is defined within [0, 1[ and controls how
tolerant the score is. The higher ν the more restrictive the score is
regarding deviation from the detected hair — but at the same time
it will also become less robust. We set ν = 0.4. The pixel p̃ that
produces the highest score is kept as the next segment of the hair
and the process is repeated until ξ(p̃) falls below a given threshold.
The threshold was set to 0.5. See Figure 6(b) for an example of a
grown 2D hair.

4.2 Matching Hair Segments in 3D

In Section 4.1 hair segments were computed separately in each im-
age. This section describes the use of the detected segments in
matching across images.

Once the neighborhood has been established, the hair segment is
matched in 3D using multi-view stereo. The view in which the 2D
hair was grown will be referred to as the reference view c̃. The cam-
eras used for matching are denoted as C. A point p in the reference
view c̃ describes a ray r(p) in space. Given a constrained search

space in depth, either computed from the shrink-wrap surface or
given by the calibration, the ray r(p) is constrained to a line seg-
ment. The projection of this 3D line segment generates an epipolar
line segment in every other view c ∈ C. From the view containing
the longest epipolar line segment we find the set of potential 3D
positions by creating rays through every pixel on the epipolar line
segment and intersecting them with r(p). These potential 3D po-
sitions are converted into potential depths dj along r(p). We then
sample the hair segment and compute a matching matrix that con-
tains for every sample pi at every depth dj the highest matching
score ζij . The matching score is computed from the hair map H
using Equation 2 and the V -channel of the image as

ζij =

(

1

|C|

∑

c∈C

ψ
(

P c
ij

)

)(

1 −
1

|C|

∑

c∈C

∥

∥V (P c
ij) − V (P c̃

ij)
∥

∥

)

,

(3)
where P c

ij is shorthand for the projection of the point Pij into cam-
era c. Pij is the point on the ray r(pi) at depth dj .

The longest contiguous ridge in the matching matrix is detected and
kept as 3D hair consisting of a piecewise linear chain of 3D hair seg-
ments. A 3D hair segment is defined either via start and end points
as S(P0, P1) or via length ℓ from P0 in direction ω as S(P0, ω, ℓ).
Both notations will be used in the following. Figure 7 shows the
projections of the reconstructed hair into one of the views.

Figure 7: The reconstructed hairs projected into one of the views.

4.3 Refinement and Outlier Removal

The processing so far has generated 3D piecewise linear segments
for the hairs, with connectivity between the hair segments. Because
of the discrete nature of the matching as well as noise and other
imperfections, these hair segments are jagged and contain outliers.
This section describes a refinement process, including a refinement
of the computed 3D data, and a reanalysis of the 3D connectivity.
The final step is the removal of 3D outliers. An overview of the
individual steps is given in Figure 8.

Remove Outliers Fix Map

3D Refinement

3D Refinement

Remove Connections Add Connections

a b c

d e f

Figure 8: Overview of the refinement and outlier removal steps
described in Section 4.3.



The following steps are carried out in sequence:

(a) 3D Refinement of Computed Hair Segments.

This step does a more careful computation of the 3D data for the
hair segments, taking the existing 3D hair segments as the start
point for the refinement. The computation is a minimization in-
volving a data term that seeks consistency between the images, and
a smoothness term that seeks low curvature of the reconstructed hair
segment. See Figure 9 for a schematic. A point P0 on the hair with
neighbors P− and P+ is refined on the plane normal to P+ − P−.
An update is computed as

P ′
0 =

wPp + λPs

w + λ
, (4)

where Pp denotes the position that highest data fidelity in a lo-
cal neighborhood defined by the resolution τ and Ps denotes the
position that has highest smoothness given by the projection of
0.5(P− + P+) into the neighborhood. λ is a regularization pa-
rameter and the weight w is computed as

w =
Ξ(S(P−, Pp)) + Ξ(S(Pp, P+))

Ξ(S(P−, Ps)) + Ξ(S(Ps, P+))
− 1, (5)

where Ξ is the matching score defined in Equation 6. The refine-
ment is run for 20 iterations with parameters τ = 0.1mm and
λ = 0.01.

Figure 9: The refinement stage. The point P0 with neighbors P+

and P− is refined on the plane normal to P+ −P−. The refinement
computes within a local neighborhood the point Pp that has highest
data fidelity and the point Ps that has highest smoothness. The
refined position P ′

0 is computed as the weighted average of these
two points as described in Section 4.3(a).

(b) Removal of Low-Confidence Connectivity.

Due to the projection of the hairs into the image plane, it may hap-
pen that the 2D hair tracing algorithm (Section 4.1) traces multiple
hairs as a single one. If these hairs differ in depth, the 3D matching
(Section 4.2) will only match and reconstruct one of the hairs. If
they do not differ in depth but only in direction, then there will be
a point of direction change where one touches the other. This step
removes the connectivity of two connected hair segments if the dif-
ference in orientation computed by the scalar product is above a
fixed threshold (45◦).

(c) Addition of New Connectivity. This step involves an explicit
search for additional connectivity among the hair segments. Fig-
ure 10 illustrates the three cases. Firstly, two segments are marked
as connected if they satisfy these conditions: the segments have un-
connected endpoints with the segments on opposite sides of those
endpoints, and the unconnected endpoints are close in space, and
the segments have consistent direction. Secondly, two segments are
marked as connected if they satisfy the following conditions: the
segments have unconnected endpoints with the segments on oppo-
site sides of those endpoints, and the segments are overlapping and
have consistent direction. Thirdly, shorter hairs that are completely
enclosed by longer hairs are merged into the longer ones.

We allow linking hairs whose tips are closer than 1mm and enclose
an angle of < 20◦. We allow merging segments that are closer than
0.1 mm and enclose an angle of < 20◦.

a b c

Figure 10: Identification of connectivity between hair segments.
(a) Hairs with tips that are spatially close and enclose a small angle
are linked. (b) Hairs that have overlapping parts are merged. (c)
Hairs that fall completely into an other hair are removed.

(d) Repeat Refinement. Step (a) is repeated.

(e) Removal of 3D Outliers. Outlier removal is done by creating
a grid for the 3D workspace, counting the number of hairs in each
voxel, and deleting hairs which are distant from the surface and in
voxels with a low count (distant from other hairs). This is a basic
approach but sufficient for the kind of outliers that are observed—
single isolated hairs away from the true surface.

(f) Fix Map. The image structure in the iris or the lips is locally
very similar to hair and so the system might reconstruct outlier
hairs in these areas. We remove these outliers by drawing two ‘Fix
Maps’, one for a center camera and one for a camera from below.
These Fix Maps are very sketchy binary masks that can be created
rapidly. Figure 11 shows example Fix Maps. Hairs that get pro-
jected mostly into the masked areas are removed. This is the only
manual step in our pipeline and could be automated using feature
detectors.

Figure 11: Fix Maps used to identify areas like eyes or lips where
no hairs should be detected. We provide Fix Maps for the two shown
viewpoints for all subjects. This is the only manual step in our
pipeline and could be automated using feature detectors.

4.4 Growing Hair in 3D

Hair growing in 3D is performed in a similar way to hair growing
in 2D (Section 4.1). A three-dimensional growing cone Λ(r, γ) is
used to determine potential segments. We set the growth resolution
to r = 1mm and γ = 30◦. The apex Ps of the cone is placed at
the tip of the last segment and the axis is aligned with its direction
ω = (θ, φ). For every potential segment Sω = S(Ps, ω, r) of the
growth cone with direction ω = (dθ, dφ) a score is computed using
all cameras C where the segment is expected to be visible

Ξ(Sω) =

∑

c∈C
ρc

ωψ (P (Sc
ω))

∑

c∈C
ρc

ω

(6)

where Sc
ω is shorthand for the projection of the segment Sω into

camera c, P denotes the pixels spanned by this projection and ρc
ω

denotes the angle the direction ω encloses with the optical axis of
the camera c. The growth is terminated when the score value drops
below a user defined threshold τ . The effect of varying τ can be
seen in Figure 12. We used values from 0.1-0.3 for the examples in
this paper.
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Figure 12: The effect of varying the threshold τ which termi-
nates the hair growth in 3D. The left column shows the input im-
age (top) and reconstructed hair fibers (bottom). The center and
right columns show different growth results obtained by varying the
threshold τ .

5 Computing Skin Episurface

The concept of the skin episurface was introduced in Section 1.
This section describes its computation, as depicted in Figure 13.
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Figure 13: Episurface reconstruction overview. The episurface is
reconstructed from the inpainted images (blue) where the surface is
visible and from the grown hairs (red) where it is covered with hair.
From the episurface, additional hairs can be synthesized.

5.1 Computing Visible Skin Episurface

The part of the skin episurface exposed to the cameras is recom-
puted using the first part of the method proposed in [Beeler et al.
2010]. This part performs pair-wise stereo reconstruction and pro-
duces a 3D point cloud. The difference from reconstructing the
shrink-wrap surface is that we now know where hair is to be ex-
pected. Using this knowledge we prepare the data as follows:

• Masking - Areas that contain denser hair are masked and
therefore excluded from reconstruction. We employ an open-
ing operation followed by a closing operation on the mask to
only exclude areas that have considerable amounts of hair. In-
dividual hairs will not be affected as they are removed by the
inpainting step.

• Inpainting - We employ a Gaussian filter to the image data
with spatially varying, anisotropic kernel. The orientation of
the filter is given by the orientation map O and the spatial
extent σ is computed depending on the hair map H . In areas
whereH is low, the spatial extent will be low as well (< 1px)
and no filtering occurs. In areas where H is high the image is
blurred, effectively inpainting individual hairs. This reduces
the strong image gradients produced by individual hairs and
prevents matching.

The reason for using inpainting instead of masking out individual
hairs is that the method proposed in [Beeler et al. 2010] uses image

pyramids to compute the stereo reconstruction. While the images
are subsampled linearly, the masks are subsampled using nearest
neighbor, which leads to a discrepancy of mask and image at higher
layers of the pyramid. Inpainting circumvents this. The effect of
inpainting is demonstrated in Figure 14.

a b c d

Figure 14: Effects of inpainting. Top row: inpainting reduces the
presence of hair while maintaining other facial features. Bottom
row: inpainting of sparse hair prevents the stereo reconstruction
from creating artifacts in these areas. (a) The captured image; (b)
the effect of inpainting as described in Section 5.1. (c,d) The recon-
structions based on the original and inpainted images. Note how
the areas of visible skin are the same, while (d) does not exhibit the
shrink-wrap artifacts in areas that contain hair.

5.2 Estimating Hidden Skin Episurface

The part of the skin episurface that is not exposed to the cameras is
estimated in the following way:

• Take each 3D hair computed in Section 4. The root of the hair
is designated as the end which is furthest below the surface
of the shrink-wrap model described in Section 3. For short
whiskers, both ends of the hair may be close to the surface. In
this case, it is arbitrary which end will be chosen as the root,
but there is no adverse effect on the subsequent computation.
Hairs that are distant from the surface are not considered.

• For each hair root, find neighboring roots within a pre-defined
search radius. Do a least-squares fit of a plane to the root and
its neighbors, to estimate the surface normal at the root.

• Collect, for all roots, the 3D coordinates and estimated surface
normals.

This step produces a point cloud which is a sampling of the under-
lying hidden episurface.

5.3 Computing Skin Episurface

The previous two steps produce two sets of points for the visible
and the hidden skin episurface, resp. See Figure 15(b). These are
combined and serve as input for the second part of [Beeler et al.
2010]. This part performs a Poisson reconstruction [Kazhdan et al.
2006] followed by a refinement step. We change the refinement
step to incorporate the hair map as regularization prior, preferring



smoother solutions in areas where hair is expected. Figure 15(d)
shows the final episurface compared with the initial shrink-wrap
surface.

Figure 15: The construction of the episurface. (a) Shrink-Wrap
surface produced by the method of Beeler et al.; (b) the point cloud
of the visible episurface in blue (Section 5.1) and the points from the
hidden episurface in red (Section 5.2); (c) the final reconstructed
episurface (Section 5.3); and (d) visualizes the difference between
the two meshes. The two surfaces are almost identical in areas of
clear skin but the episurface provides a much smoother hypothesis
in areas with hair coverage.

5.4 Synthesizing Hair

This section describes how the 3D hairs computed in Section 4 can
be augmented in a physically plausible way. The main goal of hair
synthesis is to achieve greater density of 3D hair in areas where
image data indicates the presence of hair, but individual hairs are
indistinct and cannot be reconstructed. Hair synthesis happens in
two steps: first, seeds are found on the episurface, and second, the
hairs are grown starting from these seeds.

5.4.1 Finding Seed points

Finding seed points starts by projecting the reconstructed 3D hairs
into the cameras to prevent finding seeds in areas where hair has
already been reconstructed. Next every vertex of the episurface is
projected into the images. Values H̄c are computed for all cameras
c by averaging the hair map H within a window. The vertex is
chosen as hair seed if H̄ c̃ > α and 1

|C|

∑

c∈C
H̄c > β, where c̃

is the camera that has the least foreshortening with the vertex. The
parameters α and β are set to 0.3 and 0.2. If a vertex has been
selected as seed it will prevent other vertices in its neighborhood
from becoming seed points.

5.4.2 Growing Hair

The seeds found in the previous step serve as starting points for
hair growth. The default growth direction is normal to the surface
and the maximal growth length is the average length of all recon-
structed sample hairs. These default properties are blended with

a b

c d

Figure 16: The individual stages of the hair reconstruction. (a)
The 3D reconstructed hair after the matching stage (Section 4.2);
(b) the hair after the growing stage (Section 4.4), (c) shows the
synthesized hair (Section 5.4), and (d) the final composition of (b)
and (c).

properties sampled from neighboring hairs that were successfully
reconstructed. The properties of the sample hairs and the default
growth properties are interpolated using Gaussian RBFs. This leads
to a smooth interpolation of growth properties that is faithful to the
sample hairs where they could be reconstructed and plausible in
areas of dense hair. Using these properties a hair is grown as de-
scribed in Section 4.4 with the difference that the orientation maps
are also consulted to give a sense of directionality for the growth.
The growth properties are updated as a hair grows to ensure that
it remains faithful to the style of the reconstructed fibers within its
current neighborhood. The effect of hair synthesis based on recon-
structed sample hairs can be seen in Figure 16(c). Hair whiskers
in the eyelashes are short and point directly away from the surface,
while the hair fibers in the mustache are longer and follow the over-
all direction in this area.

6 Results

Setup We captured all examples using the setup shown in Fig-
ure 17. The setup consists of 8 Canon Rebel T1i cameras desig-
nated to capture the full face plus 6 Canon Rebel T2i cameras that
aim at capturing the chin area with higher resolution. The T1is
are equipped with 85mm lenses and are arranged in pairs of two
around the subject — one pair on each side, one straight on and
one from below. The T2is are equipped with 100mm macro lenses
and are arranged in tuples of three on both sides of the subject. The
skin reconstruction only uses the T1is while the hair reconstruc-
tion makes use of all cameras. The subjects are illuminated with
4 Canon flashes (430EX,580EX) and we use cross polarization to
remove specularities. Only a single frame per camera is required
and thus the setup can acquire the data within fractions of a second.
Reconstruction with our unoptimized prototype pipeline takes ap-
proximately 45 minutes on a Mac Pro Desktop computer (8 cores).



Canon Rebel T1i Canon Rebel T2i Flash

Figure 17: Setup used to capture the data. The setup consists of
8 Canon Rebel T1i cameras equipped with 85mm lenses to capture
the full face and 6 Canon Rebel T2i cameras equipped with 100mm
lenses to capture the chin area. The subject is illuminated with 4
Canon Flashes (430EX,580EX).

a b

c d

Figure 18: Individual steps of the reconstruction pipeline. (a) Raw
image; (b) reconstructed skin episurface; (c) reconstructed hair;
(d) skin episurface plus hair.

Figure 18 shows the individual steps of the pipeline for a selected
subject. Figure 19 shows results for various different styles of facial
hair demonstrating the robustness of the approach and Figure 20
shows selected details and demonstrates the quality of the recon-
struction. Table 1 lists the number of hair fibers reconstructed and
synthesized for the subjects shown in the teaser.

Finally Figure 21 shows the reconstructed episurface for a shaped
tufty beard. The shape approximates the beard rather than the un-
derlying skin surface in this case. This is not an unexpected result
because the episurface is not formulated with the idea of recovering
underlying face shape. It would be an interesting line of future re-
search to provide episurfaces that have the goal to be anatomically
plausible.

7 Conclusion

We have presented an algorithm for face capture that successfully
reconstructs facial hair fibers as well as the face’s underlying skin
surface. We show that treating skin and hair in a coupled fash-
ion delivers accurate reconstruction in areas of high visibility, and
gives plausible results in areas of dense occlusion. We demonstrate
reconstructions of a number of individuals exhibiting a variety of
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Table 1: Number of hair fibers reconstructed (top row) and syn-
thesized (bottom row) for the subjects displayed in the teaser. The
amount of synthesized hair is typically low, except for subjects that
have dense hair coverage.

Figure 21: Reconstruction of the skin episurface for a tufty beard.
Note that the skin episurface is a pseudo-surface underneath the up-
permost layer of hair and is not expected to approximate the shape
of the underlying skin in the case of protruding facial hair.

facial-hair styles. The impact of our work is reflected by the sig-
nificance of facial hair in our cultural heritage. Our image of many
historic figures is dominated by their facial-hair features, including
Albert Einstein’s bushy white whiskers, Abraham Lincoln’s char-
acteristic beard, and Salvador Dali’s distinctive mustache [Dalı́ and
Halsman 1954] (now eponymously known as a “dali”). Today, fa-
cial hair remains at the core of individual expression, as evidenced
by the ever changing popularity of different facial-hair styles. Our
work provides a means to capture this piece of popular culture for
use in contemporary applications as well as accurate preservation
for future generations.

Limitations of our system direct us to areas of future work. Our
algorithm delivers the best results in the presence of short, sparse
hairs. In areas of dense hair, such as a long, thick beard, the degree
of occlusion can be so great that accurate hair and skin recon-
struction is not feasible. Future work could combine algorithms
that target long, whole-head hair styles [Paris et al. 2004; Wei
et al. 2005; Paris et al. 2008] with our facial hair-system to deliver
high-quality results even for long, thick beards, mustaches, or side
burns. Preliminary tests on synthetic hair (Figure 22) show that the
presented method works well with long hair fibers, which would
allow reconstructing the outermost hair layer of whole-head hair
styles. There could be a tremendous benefit in terms of overall
realism in reconstructing the outer hair layer exactly using our
method, and augmenting this result with the powerful estimation
methods of whole-head hair capture systems. Our hair-detection
algorithm is limited by the amount of contrast in the camera
images, and skin-colored hairs may be missed. Likewise, dynamic
range can be an issue in cases where the skin and hair vary greatly
in brightness (a white beard on black skin, or vice versa) due to
exposure limitations. Extending our current algorithm to be robust
against contrast and dynamic range limitations is another area of
future work. We focus on geometry capture, and only include a
limited amount of color information in our results. A thorough
treatment of skin and hair appearance capture under varying
lighting conditions offers many challenges for future work.



Other hair features such as shape or thickness could also be re-
constructed and incorporated in our example-based hair-synthesis
algorithm.

Figure 22: Synthetic hair test. Given a sample of long synthetic
hair (a), the system reconstructs the 3D hairs shown in (b) and (c).
A close-up of the input image and the corresponding reconstructed
hairs are shown in (d) and (e). Notice how most fibers are correctly
reconstructed.

Extending the work to capture hair dynamics would be a challeng-
ing and very interesting line of future research. Spatio-temporal
capture and reconstruction would on the one hand increase the com-
plexity of the problem, but on the other hand also introduce addi-
tional data and constraints that could be leveraged. A further topic
of future research is given by the episurface concept as it would
be interesting to investigate ways to provide episurfaces which are
anatomically correct. This could be achieved by incorporating prior
knowledge, e.g. in the form of a morphable model [Blanz and Vetter
1999].

Perhaps the most exciting area of future work lies in extending hair
and skin surface capture beyond the face, to include the entire hu-
man body. Doing so will permit the capture of the human form at
a level of fidelity not yet possible. An even more far-reaching goal
lies in moving beyond humans to other species. A characteristic
feature of all mammals is the presence of hair. This huge range—
from the soft coat of a cat, to the wiry bristles of an elephant, to
the dense, waterproof fur of a sea otter—provides an exciting and
compelling long-term target for future work in hair and skin surface
capture.
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Figure 19: Reconstructed models for a variety of subjects demonstrating robust performance for different facial hair stylings.

Grown Synthesized Combined Rendering Input Image

Figure 20: Close-up comparison between different stages of the reconstructed geometry and the real photographs. From left to right:
reconstructed hair fibers, synthesized hair fibers, final hair fibers, realistic rendering and real photograph. Note how the overall structure is
captured well by the algorithm. Where individual hairs are visible, the algorithm correctly reconstructs them and in areas with dense hair
coverage the synthesis provides a plausible volume of hair fibers. Likewise the surface is reconstructed with high quality in areas with no or
little hair coverage and provides a plausible substrate in areas with dense hair.


