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Abstract. The purpose of this paper is to extend a previously published beam model of a turbine blade including the centrifugal

force field and root flexibility effects on a finite element model and to demonstrate the performance, accuracy and efficiency of

the extended model for computing the natural frequencies. Therefore, only the modifications due to rotation and elastic root are

presented in great detail. Considering the shear center effect on the transverse displacements, the geometric stiffness matrix due

to the centrifugal force is developed from the geometric strain energy expression based on the large deflections and the increase

of torsional stiffness because of the axial stress. In this work, the root flexibility of the blade is idealized by a continuum model

unlike the discrete model approach of a combination of translational and rotational elastic springs, as used by other researchers.

The cross-section properties of the fir-tree root of the blade considered as an example are expressed by assigning proper order

polynomial functions similar to cross-sectional properties of a tapered blade. The correctness of the present extended finite

element model is confirmed by the experimental and calculated results available in the literature. Comparisons of the present

model results with those in the literature indicate excellent agreement.

1. Introduction

Pre-twisted beams with aerofoil cross-section are used in several types of engineering structures, such as turbine

blades, helicopter blades, aircraft propellers, and wind turbine blades. If the centroid and shear center are not

coincident as in the pre-twisted beam with an aerofoil cross-section, the flexural vibrations in two planes and torsional

vibrations are inevitably coupled. Blade failure due to vibrations at or near a resonant condition has led to appreciable

research in this field to avoid such undesired results. Many researchers have reported results on the vibrations of

rotating pre-twisted beams of rectangular cross-section but few have discussed the same problem for an asymmetrical

aerofoil cross-section. Furthermore, coupled bending-bending-torsion vibration of a blade with elastic support has

received considerably less attention. Since there is no analytical solution for the vibration of rotating pre-twisted

beam with an aerofoil cross-section, semi-analytical or numerical methods are utilized to solve this problem.

Houbolt and Brooks [11] developed the differential equations of motion for the lateral and torsional deformations

of twisted rotating beams and used a Rayleigh-Ritz approach to compute the solution. Carnegie [3] formulated
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the total potential energy and kinetic energy of a rotating cantilever blade for small vibrations. Later, Carnegie [5]

presented a derivation of the equation of motion (dynamics) of a pre-twisted cantilever blade mounted on the
periphery of a rotating disc allowing for shear deflection, rotary inertia and torsion bending by use of the variational
procedure. Also, Carnegie [6] reported a more detailed derivation for the kinetic energy of a rotating cantilever
blade. Montoya [15] derived the equations of motion for a rotating pre-twisted cantilever beam with an aerofoil
cross-section, including shear center and higher order effects, and solved these by Runge-Kutta numerical integration
method. In his theoretical and experimental study, he obtained the natural frequencies of a blade with flexible

root and showed satisfactory agreement between his experimental and calculated results. Fu [9] transformed the
Carnegie’s formulation for a rotating pre-twisted non-uniformTimoshenko beam in coupled bending-bending-torsion
vibration into a set of recursion formulas as the basis of a lumped parameter approach. Karadag [12] developed
a thick beam finite element with eighteen degrees of freedom including the shear center effect to determine the
vibration characteristics of a rotating non-uniform aerofoil cross-sectioned blade. Abbas and Kamal [1] presented a
finite element model having twenty-four degrees of freedom for the same problem, additionally, taking into account
the root flexibility idealized as translational and rotational elastic springs. Sabuncu and Thomas [17] studied the

vibration characteristics of pre-twisted aerofoil cross-section blade packets under rotating conditions using thin beam
finite element model. As a new approximate method, Surace et al [18] presented an integral approach based on
Green functions following Houbolt and Brooks’ work. As a relevant contribution on this topic, Choi and Chou [8]
proposed the modified differential quadrature method for vibration analysis of elastically supported turbomachinery
blades, referring to the studies presented by Carnegie [4] and Fu [9] for the energy expressions. Using the mode
expansion method, Lin et al [13] derived a closed form solution of the dynamic and static systems related to the

differential equations for the coupled bending-bending vibration of a rotating non-uniform beam with tip mass,
arbitrary pre-twist and an elastically restrained root. Recently, Yardimoglu and Inman [20,21] proposed a finite
element model having fourteen degrees of freedom for coupled bending-bending-torsion vibration of a pre-twisted
thick beam with varying aerofoil cross-section, following the Timoshenko beam finite element model for untwisted
case [19]. In the present paper, as an extension of the previous paper [20,21], the modifications due to the centrifugal
force field and elastic root are presented in great detail. Considering the shear center effect, a geometric stiffness

matrix due to the centrifugal force field is developed from the geometric strain energy [10] based on both large
deflections [16] and the increase of the torsional stiffness [15] because of the axial stress. The elastic root of the blade
is modelled by using the continuum model approach. Thus, the same finite element model formulation derived for a
blade is employed to determine the stiffness and mass matrices of elastic root. An illustrative example is considered
allowing a comparison to the experimental and theoretical results by Montoya [15] in order to demonstrate the
performance, accuracy and efficiency of the present finite element model, and also to clarify the influence of the root
flexibility effects on the natural frequencies. In this example, cross-section properties of the fir-tree root of the blade

are expressed by assigning proper order polynomial functions similar to the cross-section properties of a tapered
blade as reported in the previous paper. Comparisons of the present finite element results with the experimental and
theoretical results in the literature (for simpler cases) indicate excellent agreement.

2. Rotational effects on finite element modelling

A blade with fir-tree root mounted on the periphery of a rotating disk as shown in Fig. 1 is considered. The view
of the pre-twisted blade from tip toward root is also given in Fig. 2 to help visualize the configuration. The notation
used through this paper is listed in Appendix A.

The longitudinal displacement of the beam is ignored [14] and the gyroscopic forces are neglected [10] to add
the rotational effects on the finite element model derived in [20]. The axial load acting on the cross-section at
the distance Rr, shown in Fig. 1, due to the centrifugal force field of the beam is obtained by using the following

equation:

Po =

∫ Rb

Rr

ρAr(Z)Ω2
dZdZ +

∫ Rb+Lb

Rb

ρAb(Z)Ω2
dZdZ (1)

Therefore, the axial load acting at any section Z due to the centrifugal force field of the beam segment between
the section and the tip of the blade is written depending on the location of the section as follows:
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Fig. 1. Finite element modelling under rotation.
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Fig. 2. View of pre-twisted blade from tip toward root.

P (Z) = P0 −

∫ Z

Rr

ρAr(Z)Ω2
dZdZ if Rr < Z � Rb (2)

P (Z) = P0 −

∫ Rb

Rr

ρAr(Z)Ω2
dZdZ −

∫ Z

Rb

ρAb(Z)Ω2
dZdZ if Rb < Z � Rb + Lb (3)

In Sections 4 and 6, the axial load P (Z) will be expressed in the element local co-ordinate system as P (z).
However, the co-ordinate transformation based on Z = Z el + z is used in computer program.

On the other hand, the moment about the blade axis due to the axial stress arising from the centrifugal force is

given in [15] by

Mzrot = σITP θ
′

z (4)

In this work, all parameters in Eq. (4) are functions of Z .

3. Root flexibility effect on finite element modelling

The root of a blade have a little flexibility due to the disk on which blade is mounted and the root attachment (such

as fir-tree, T, pin-joint, etc) used to fix the blade onto the disc. These (disk and root attachment) can all be idealized

as continuum models or discrete models to take the additional flexibility into account in finite element modelling.

In this section, only the fir-tree type root attachment shown in Figs 1 and 3 is considered.

In the continuum model approach utilized in this step, the portion of the fir-tree type root attachment from R r to

Rb is treated in the usual manner used in the blade portion. Hence, cross-sectional properties of this portion can

be formulated for finite element modelling by using proper order polynomial functions considering the dotted curve

indicated in Fig. 3 for geometrical approximation. However, in the discrete model approach, the above mentioned

portion is assumed as springs which offer flexibility in or about certain directions depending on the nodal freedoms

chosen in finite element model.
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Fig. 3. Fir-tree root of the blade.

4. Strain energy

The elastic strain energy of a pre-twisted Timoshenko beam element derived in [20] is written as follows:

Ue = 0.5

∫ L

0

E(IGxxθ
′
2

x + IGyyθ
′
2

y )dz +

∫ L

0

EIGxyθ
′

xθ
′

ydz + 0.5

∫ L

0

kAG(ψ2
x + ψ2

y)dz

(5)

+

∫ L

0

Eα(Jxθ
′

x + Jyθ
′

y)θ
′

zdz + 0.5

∫ L

0

(GIT + EJα2)θ
′
2

z dz

where

ψx = v
′

− θx and ψy = u
′

− θy (6)

The symbol “ ′ ” used in Eqs (5) and (6) represents differentiation with respect to z.

The geometric strain energy [10] of a pre-twisted beam element due to centrifugal force is written by considering

Eqs (1) and (4) as follows:

Ug = 0.5

∫ L

0

P (z)(d
′
2

Gx + d
′
2

Gy)dz + 0.5

∫ L

0

σ(z)ITP θ
′
2

z dz (7)

where

dGx = u − ryθz (8)

dGy = v + rxθz (9)

σ(z) = P (z)/A(z) (10)

in which rx(z), ry(z) and their differentiation r
′

x(z) and r
′

y(z) are given explicitly in [20].

5. Kinetic energy

Kinetic energy of an element is given in [20] as follows:

T = 0.5

∫ L

0

ρA(ν2
Gx + ν2

Gy)dz + 0.5

∫ L

0

ρ(IGxxω2
x + IGyyω2

y)dz + 0.5

∫ L

0

ρ(2IGxyωxωy + IGP ω2
z)dz (11)

where

νGx = u̇ − ry θ̇z (12)

νGy = ν̇ + rxθ̇z (13)
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Table 1

Dimensional data of root shown in Fig. 2 [15]

Section number 0 1 2 3 4

R (cm) 64.89 65.605 66.32 67.035 67.75

A (cm2) 50.8 55.75 66 84.8 97

IGxx (cm4) 40.12 53 88 186.5 279

IGyy (cm4) 1152 1265 1498 1925 2200

IT (cm4) 142 184.5 298.5 600 870

ωx = θ̇x + rθ̇
′

z + r
′

xθ̇z (14)

ωy = θ̇y − ry θ̇
′

z − r
′

y θ̇z (15)

ωz = θ̇z (16)

The overdot used in Eqs (12) to (16) is the usual compact notation for differentiation with respect to time.

6. Finite element formulation

The element employed in this section, derived in [20], has two nodes, with seven degrees of freedom at each

node. The nodal variables are transverse displacements, cross section rotations and shear angles in two planes and

torsional displacement. Hence, the nodal displacement vector is given by

{qn} = {u ν θx θy ψx ψy θz}
T (17)

Therefore, the element displacement vector is expressed as follows

{qe} =

{

{qn1}
{qn2}

}

(18)

Substituting the assumed polynomial functions for the displacements with coefficients expressed in terms of nodal

displacements into Eqs (5), (7) and (11), the elastic strain energy and kinetic energy are written as follows:

Ue = 0.5{qe}
T [Ke]{qe} (19)

T = 0.5{q̇e}
T [Me]{q̇e} (20)

where

[Ke] = [C]−T

(

∫ L

0

[ke]dz

)

[C]−1 (21)

and

[Me] = [C]−1

(

∫ L

0

[me]dz

)

[C]−1 (22)

Here the matrices [ke] and [me] are reported in reference [20].

The element geometric stiffness matrix is found by following the same procedure used in order to obtain the

element elastic stiffness and mass matrices as follows:

Ug = 0.5{qe}
T [Se]{qe} (23)

where

[Se] = [C]−T

(

∫ L

0

P (z)[se]dz

)

[C]−1 (24)
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Table 2

Comparison of fundamental frequencies

Rotation Natural frequencies (Hz)

speed (rpm) Experimental [15] Calculated [15] Present

0 82.25 80.25 78.98

500 83.25 80.5 80.45

1000 86.75 84 84.67

1500 91.75 89.75 91.21

2000 98.25 96.5 99.51

2500 105.5 104 109.10

3000 113.75 112.25 119.60

Table 3

Comparison of first harmonic frequencies

Rotation Natural frequencies (Hz)

speed (rpm) Experimental [15] Calculated [15] Present

0 174 181.75 179.20

500 175 183.25 180.43

1000 179 187 184.07

1500 185.25 192.75 189.91

2000 200.75 197.67

2500 209.75 207.00

3000 220 217.56

in which

[se] = [P
′

u]T [P
′

u] + [P
′

ν ]T [P
′

ν ] + (r
′
2

x + r
′
2

y )[Pθz
]T [Pθz

] + (r2
x + r2

y)[P
′

θz
]T [P

′

θz
] + r

′

x([P
′

ν ]T [Pθz
]

+[Pθz
]T [P

′

ν ]) − r
′

y([P
′

u]T [Pθz
] + [Pθz

]T [P
′

u]) + rx([P
′

ν ]T [P
′

θz
] + [P

′

θz
]T [P

′

ν ]) − ry([P
′

u]T [P
′

θz
] (25)

+[P
′

θz
]T [P

′

u]) + (r
′

xrx + r
′

yry)[Pθz
]T [P

′

θz
] + (r

′

xrx + r
′

yry)[Pθz
]T [Pθz

] + (ITP /A)[P
′

θz
]T [P

′

θz
]

The polynomial vectors [Pu], [Pν ], and [Pθz
] in Eq. (25) are given explicitly in [20] using the compact form [P dr].

All parameters in Eq. (25) are functions of z.

7. Dynamic equilibrium equation

To form the global matrices, element elastic stiffness, geometric stiffness and mass matrices given in the previous

section are assembled in the usual way, then boundary conditions are applied as clamped at R r-free. In order to

obtain the natural frequencies, the dynamic equilibrium equation is reduced to eigenvalue problem given below,

(([K] + [S]) − Ω2[M ]){q} = 0 (26)

The eigenvalue problem is then solved numerically.

8. Analysis and discussion

As an illustrative example, the rotating aerofoil cross-sectioned pre-twisted beam with rectangular cross-sectioned

fir-tree root, shown in Figs 1 and 2, analyzed experimentally and theoretically (by means of Runge-Kutta numerical

integration) by Montoya [15] is considered. Cross-section properties of the pre-twisted part of the blade given in

tabular form at nine discrete cross-sections along the Z-axis in [15,20] are formulated by assigning the polynomial

functions as given in [20] (and therefore not repeated here). However, the cross-sectional properties of the fir-tree

root from Rr to Rb considering the dotted curve shown in Fig. 3 are given in Table 1 at five discrete cross-sections

along the Z-axis. The cross-sectional data of the root are expressed as fourth-order polynomial functions determined

by curve fitting. These functions are carefully checked by computing the coefficients of determination [7], which
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Table 4

Effect of root flexibility on frequencies (Hz)

Root type rigid elastic

Frequency fundamental first harmonic fundamental first harmonic

Experimental [15] 83.4 184.8 82.25 174

Calculated [15] 80.3 185.5 80.25 181.75

Present 79.70 183.27 78.98 179.2

Fig. 4. Fundamental frequencies of blade in terms of the rotation speed.

Fig. 5. First harmonic frequencies of blade in terms of the rotation speed.

are equal to unity, and also by inspecting the plots of functions and the data. The fixing radius of the blade denoted

by Rr is assumed to be at the narrowest section of the first scallop. For the sake of accuracy, the plot given for

experimental and theoretical blade frequencies in terms of speed in [15] is scanned, and then this image is resized

by utilizing an image editor to read the data as 0.25 Hz per pixel.

Developing a computer program in MATLAB , confirmation of the present finite element model is achieved.

The mass, elastic and geometric stiffness matrices in this program are computed by Gauss-Legendre numerical

integration [2,22].

For sake of comparison the present results obtained by employing eight elements for pre-twisted part and one

element for root part of the blade are computed. These results are then compared to the experimental and calculated

results plotted by Montoya [15] in Tables 2 and 3, which compare the frequencies numerically. Also, the same

numerical values are plotted and shown in Figs 4 and 5 to observe the trend of discrepancies visually. It is clear from

Tables 2 and 4, and also from Figs 4 and 5 that the present results are in excellent agreement with the experimental

and theoretical results reported in [15] for a simpler system.

Further validation of the present model taking the elastic root effect into consideration is accomplished by

comparing the present results found for a non-rotating blade with rigid and elastic root to the results reported by

Montoya [15] in Table 4. Again, excellent agreement can be seen from Table 4.

9. Conclusion

The present finite element is an excellent model for coupled bending-bending-torsion vibration analysis of a

rotating varying aerofoil cross-sectional pre-twisted beam with flexible root. The comparisons of the present model
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results with previously published experimental and theoretical results show the superior performance of the present

model. Also, the advantage of the present finite element formulation is the utilization a quite modest number of

the degrees of freedom. Furthermore, the continuum model approach for elastic root of the pre-twisted blade in the

finite element model is validated by considering the non-rotating blade frequencies.

Appendix A: Notation

A Cross-sectional area of the beam element

Ab Cross-sectional area of the blade portion

Ar Cross-sectional area of the root portion

[C] Element nodal co-ordinate matrix

dGx, dGy Transverse displacements of the centroid in xz and yz planes, respectively

E Modulus of elasticity

G Modulus of rigidity

IGP , ITP Polar moments of inertia about centroid and shear center, respectively

IGxx, IGyy Area moments of inertia of the cross-section about Gxx and Gyy axes, respectively

IGxy Product moment of inertia of the cross-section about Gxx-Gyy axes

IT Saint-Venant torsion constant

Jx, Jy, J Coefficients of coupling about xx, yy and zz axes, respectively

k Shear coefficient

[K] Global elastic stiffness matrix

[Ke] Element elastic stiffness matrix

L Length of beam element

Lb Length of pre-twisted portion

Lr Length of elastic portion of the attachment

LT Total elastic length

Mzrot Moment about blade axis due to rotation

[M ] Global mass matrix

[Me] Element mass matrix

P (z) Centrifugal force at co-ordinate z of element I
P0 Centrifugal force at the distance Rr

[Pdr] Polynomial vector for nodal variable dr (see Eq. (30) in [20])

{q} Global displacement vector

{qn} Nodal displacement vector

{qn1}, {qn2} First and second nodal displacement vectors

{qe} Element displacement vector

rx, ry Centroid co-ordinates with respect to shear center through xx, yy axes, respectively (see Fig. 2

in [20])

Rb Minimum radius of pre-twisted portion (see Fig. 1)

Rr Minimum radius of elastic portion of attachment (see Fig. 1)

[S] Global geometric stiffness matrix

[Se] Element geometric stiffness matrix

T Kinetic energy

u Transverse displacement of the shear center in xz plane

Ue, Ug Elastic and geometric strain energies

ν Transverse displacement of the shear center in yz plane

νGx, νGy Linear velocities of centroid in xz and yz planes, respectively

x, y Co-ordinate system through the shear center at root section

X, Y, Z Global co-ordinate system

z local co-ordinate distance measured along beam element
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Zel Left node co-ordinate of element I
α Twist angle per unit length

θx, θy, θz angular displacements about the x, y and z axes, respectively

ρ Density

σ Axial stress due to centrifugal force

ψx, ψy Shear angles about x and y axes, respectively

ωx, ωy, ωz Angular velocities about the x, y and z axes, respectively

Ω Natural circular frequency of a pretwisted beam

Ωd Rotation speed of disk

(·) Differentiation with respect to time

(′) Differentiation with respect to z

Appendix B:

In this appendix, the misprints found in reference [20] are given.

In Eq. (19), angular velocity about y axis should be ω y = θ̇y − ry θ̇
′

z − r
′

y θ̇z instead of

ωy = θ̇y − ry θ̇
′

z + r
′

z θ̇z .

In Eq. (35), element stiffness matrix should be [Ke] = [C]−T (
∫ L

0
[ke]dz)[C]−1 instead of

[Ke] = [C]−T [ke][C]−1

Similarly, in Eq. (38), element mass matrix should be [M e] = [C]−T (
∫ L

0
[me]dz)[C]−1 instead of

[Me] = [C]−T [me][C]−1
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