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Introduction
The coupled cluster (CC) methodology (Coester 1958; Coester and Kummel 1960; Čížek 
1966; Paldus et al. 1972; Purvis and Bartlett 1982; Koch and Jørgensen 1990; Paldus and 
Li 1999; Crawford and Schaefer 2000; Bartlett and Musiał 2007) is a driving engine of 
high-precision simulations in physics, chemistry, and material sciences. Several prop-
erties of CC made it a universal tool for capturing correlation effects in various many-
body quantum systems ranging from quantum field theory, (Funke et al. 1987; Kümmel 
2001; Hasberg and Kümmel 1986; Bishop et  al. 2006; Ligterink et  al. 1998) quantum 
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hydrodynamics, (Arponen et al. 1988; Bishop et al. 1989) and nuclear structure theory 
(Dean and Hjorth-Jensen 2004; Kowalski et  al. 2004; Hagen et  al. 2008) to quantum 
chemistry (Scheiner et al. 1987; Sinnokrot et al. 2002; Slipchenko and Krylov 2002; Tajti 
et al. 2004; Crawford 2006; Parkhill et al. 2009; Riplinger and Neese 2013; Yuwono et al. 
2020) and materials science (Stoll 1992; Hirata et al. 2004a; Katagiri 2005; Booth et al. 
2013; Degroote et al. 2016; McClain et al. 2017; Wang and Berkelbach 2020; Haugland 
et al. 2020b). Many appealing features of the single-reference (SR) CC formalism (which 
will be the main focus of the present discussion) in applications to chemical/material 
systems originate in the exponential parametrization of the ground-state wave function 
and closely related linked cluster theorem (Brandow 1967; Lindgren and Morrison 2012; 
Shavitt and Bartlett 2009). The last feature assures the so-called additive separability 
of the calculated energies in the non-interacting sub-system limit, which plays a criti-
cal role in the proper description of various chemical transformations such as chemical 
reactions that include bond breaking and bond-forming processes. The linked cluster 
theorem also plays a crucial role in designing formalisms that can provide the chemical 
accuracy needed for predicting spectroscopic data, reaction rates, and thermochemis-
try data. The best-known example of such class of methods is the CCSD(T) formalism 
(CC with singles, doubles, and perturbative triples),(Raghavachari et  al. 1989) which 
combines the iterative character of the CCSD formalism (Purvis and Bartlett 1982) (CC 
with single and double excitations) with perturbative techniques for determining CC 
energy corrections due to connected triple excitations. Over the last few decades, the 
CCSD(T)-type formulations have been refined to provide accurate description of bond-
breaking processes. Among several formulations that made it possible were the method 
of moments of coupled cluster equations and renormalized approaches,(Piecuch and 
Kowalski; Kowalski and Piecuch 2000a; 2000b; Piecuch and Włoch 2005; Cramer et al. 
2006; Włoch et al. 2007; Piecuch et al. 2009; Deustua et al. 2017; Deustua et al. 2018; 
Bauman et al. 2017) perturbative formulations based on the Λ-operator (defining the left 
eigenvectors of the similarity transformed Hamiltonians) (Stanton 1997; Stanton and 
Gauss 1995; Crawford and Stanton 1998; Kucharski and Bartlett 1998b; 1998c; Gwalt-
ney and Head-Gordon 2000; 2001; Hirata et  al. 2001; Bomble et  al. 2005) and other 
techniques (Kucharski and Bartlett 1998a; Meissner and Bartlett 2001; Robinson and 
Knowles 2013; Bozkaya and Schaefer III 2012). One should also mention the tremen-
dous effort in formulating reduced-scaling or local formulations of the CC methods to 
extend the applicability of the CC formalism across spatial scales (Hampel and Werner 
1996; Schütz 2000; Schütz and Werner; 2001; Li et al. 2002; Li et al. 2006; Li et al. 2009; 
Li and Piecuch 2010; Neese et al. 2009; Neese et al. 2009; Riplinger et al. 2016; Riplinger 
et al. 2013; Pavosevic et al. 2016). In several cases, the extension of local formulations 
was possible for linear response CC theory (D’Cunha and Crawford 2020) and excited 
state CC formulations based on the equation-of-motion formalism (Dutta et  al. 2016; 
Peng et al. 2018).

Recently, interesting aspects of SR-CC were discussed using the sub-system embed-
ding sub-algebras (SES) approach,(Kowalski 2018; 2021) where we demonstrated that 
the CC energy can be calculated in an alternative way to the standard CC energy for-
mula. Instead of using standard energy expression, one can obtain the same energy by 
diagonalizing the downfolded/effective Hamiltonian in method-specific active space(s) 
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generated by appropriate sub-system embedding sub-algebras. The SR-CC theory pro-
vides a rigorous algorithm for how to construct these Hamiltonians using the external, 
with respect to the active space, class of cluster amplitudes (Kowalski 2018). Shortly 
after this finding, these results for static SR-CC formulations were extended to the 
time domain (Kowalski and Bauman 2020). Following similar concepts as in the static 
case and assuming that the external time-dependent cluster amplitudes are known or 
can be effectively approximated, it was shown that the quantum evolution of the entire 
system can be generated in the active space by time-dependent downfolded Hamilto-
nian. Another interesting aspect of CC SES downfolding is the possibility of integrating 
several SES CC eigenvalue problems corresponding to various active spaces into a com-
putational flow or quantum flow as discussed in Ref. (Kowalski 2021), where we demon-
strated that the flow equations are fully equivalent to the standard approximations given 
by cluster operators defined by unique internal excitations involved in the active-space 
problems defining the flow. This feature provides a natural language for expressing the 
sparsity of the system. In contrast to other local CC approaches, the CC quantum flow 
equations can effectively embrace the concept of localized orbital pairs at the level of 
effective Hamiltonian acting in the appropriate active space. The Hermitian downfold-
ing formulations were recently tested in the context of quantum simulations involving 
plane-wave-based molecular orbitals (Bylaska et  al. 2021), demonstrating their useful-
ness in simulating systems with periodic boundary conditions.

The SES CC downfolded Hamiltonians are non-Hermitian operators, which lim-
its their utilization in quantum computing. Instead, using double unitary CC (DUCC) 
Ansatz,(Bauman et  al. 2019; Bauman et  al. 2019; Kowalski and Bauman 2020; Kowal-
ski 2021) one can derive the active-space many-body form of Hermitian downfolded 
Hamiltonians. In contrast to the SR-CC, the DUCC-based effective Hamiltonians are 
expressed in terms of non-terminating expansions involving anti-Hermitian cluster 
operators defined by external type excitations/de-excitations. Several approximate forms 
of DUCC Hamiltonians have been tested in the context of quantum simulations, show-
ing the potential of DUCC downfolding in reproducing exact ground-state energy in 
small active spaces (Bauman et al. 2019; Bauman et al. 2020). In particular, the down-
folded Hamiltonians have been integrated with various quantum solvers, including Vari-
ational Quantum Eigensolvers (VQE) (Peruzzo et al. 2014; McClean et al. 2016; Romero 
et al. 2018; Shen et al. 2017; Kandala et al. 2017; Kandala et al. 2019; Colless et al. 2018; 
Huggins et al. 2020; Cao et al. 2019) and Quantum Phase Estimation (QPE),(Kitaev 1997; 
Nielsen and Chuang 2011; Luis and Peřina 1996; Cleve et  al. 1998; Berry et  al. 2007; 
Childs 2010; Seeley et al. 2012; Wecker et al. 2015; Häner et al. 2016; Poulin et al. 2017) 
to calculate ground-state potential energy surfaces corresponding to breaking a single 
chemical bond.

In this paper, we will briefly review the current status of the downfolding methods 
and provide further extension of the CC downfolding methods to multi-component 
systems. As a specific example, we choose a composite system defined by Fermions 
of type A and Fermions of type B. This is a typical situation encountered for certain 
classes of non-Born-Oppenheimer dynamics and nuclear structure theory. The exten-
sion to systems composed of Fermions and Bosons (for example, electron-phonon 
coupling) can be achieved in an analogous way as for a mixtures represented by two 
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types of Fermions. The discussed formalism can also be easily extended to other types 
of systems composed of Fermions and Bosons as encountered in the descriptions of 
polaritonic systems. We believe that these formulations will pave the way for more 
realistic quantum simulations of multi-component systems on Noisy Intermediate-
Scale Quantum (NISQ) devices.

CC theory
The SR-CC theory, describing correlated electrons in chemical and extended periodic 
systems, utilizes the exponential representation of the ground-state wave function |Ψ〉,

where T and |Φ〉 represent the so-called cluster operator and single-determinantal ref-
erence function. The cluster operator can be represented through its many-body compo-
nents Tk

where individual component Tk takes the form

where indices i1,i2,… (a1,a2,…) refer to occupied (unoccupied) spin orbitals in the 
reference function |Φ〉. The excitation operators Ea1...ak

i1...ik
 are defined through strings of 

standard creation ( a†p ) and annihilation (ap) operators

where creation and annihilation operators satisfy the following anti-commutation 
rules:

When M in the summation in Eq. (2) is equal to the number of correlated electron 
(Ne) then the corresponding CC formalism is equivalent to the FCI method, otherwise 
for M<Ne one deals with the standard approximation schemes. Typical CC formulations 
such as CCSD, CCSDT (CC with singles, doubles, and triples), and CCSDTQ (CC with 
singles, doubles, triples, and quadruples) correspond to M=2,M=3, and M=4 cases, 
respectively.

The equations for cluster amplitudes ti1...ika1...ak and ground-state energy E can be obtained 
by introducing Ansatz (1) into the Schrödinger equation and projecting onto P+Q space, 
where P and Q are the projection operator onto the reference function and the space of 

(1)|�� = eT |�� ,

(2)T =

M∑

k=1

Tk ,

(3)Tk =
1

(k!)2

∑

i1,...,ik ;a1,...,ak

t
i1...ik
a1...ak E

a1...ak
i1...ik

,

(4)E
a1...ak
i1...ik

= a†a1 . . . a
†
ak
aik . . . ai1 ,

(5)[ap, aq]+ = [a†p, a
†
q]+ = 0 ,

(6)[ap, a
†
q]+ = δpq .
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excited Slater determinants obtained by acting with the cluster operator onto the refer-
ence function |Φ〉, i.e.,

where H represents the electronic Hamiltonian. The above equation is the so-called 
energy-dependent form of the CC equations, which corresponds to the eigenvalue 
problem only in the exact wave function limit when T contains all possible excitations. 
Approximate CC formulations do not represent the eigenvalue problem. At the solution, 
the energy-dependent CC equations are equivalent to the energy-independent or con-
nected form of the CC equations:

Using Baker-Campbell-Hausdorff (BCH) formula and Wick’s theorem one can show 
that only connected diagrams contribute to Eqs. (8) and (9). For notational convenience, 
one often uses the similarity transformed Hamiltonian H̄ , defined as

The following analysis is valid for both Gaussian and plane-wave basis sets (for plane-
wave basis set formulation of CC theory see Ref. (Hirata et al. 2004b)).

Non‑Hermitian CC downfolding
The main idea of SR-CC non-Hermitian downfolding hinges upon the characterization 
of sub-systems of a quantum system of interest in terms of active spaces or commutative 
sub-algebras of excitations that define corresponding active space. This is achieved by 
introducing sub-algebras of algebra g(N ) generated by Eal

il
= a†al ail operators in the parti-

cle-hole representation defined with respect to the reference |Φ〉. As a consequence of 
using the particle-hole formalism, all generators commute, i.e., 

[
E
al
il
,E

ak
ik

]
=0, and algebra 

g(N ) (along with all sub-algebras considered here) is commutative. The CC SES approach 
utilizes class of sub-algebras of commutative g(N ) algebra, which contain all possible 
excitations Ea1...am

i1...im
 needed to generate all possible excitations from a subset of active 

occupied orbitals (denoted as R, {Ri, i=1,…,xR}) to a subset of active virtual orbitals 
(denoted as S, {Si, i=1,…,ys}) defining active space. These sub-algebras will be designated 
as g(N )(R, S) . Sometimes it is convenient to use alternative notation g(N )(xR, yS) where 
numbers of active orbitals in R and S orbital sets, xR and yS, respectively, are explicitly 
called out. As discussed in Ref. (Kowalski 2018), configurations generated by elements of 
g(N )(xR, yS) , along with the reference function, span the complete active space (CAS) ref-
erenced to as the CAS(R,S) (or equivalently CAS(g(N )(xR, yS))).

In Refs. (Kowalski 2018; Kowalski and Bauman 2020; Kowalski 2021), we explored 
the effect of partitioning of the cluster operator induced by general sub-algebra 
h = g(N )(xR, yS) , where the cluster operator T, given by Eq. (2), is represented as

(7)(P + Q)HeT |�� = E(P + Q)eT |�� ,

(8)Qe−THeT |�� = 0 ,

(9)��|e−THeT |�� = E .

(10)H̄ = e−THeT .
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where Tint(h) belongs to h while Text(h) does no belong to h . If the expansion Tint(h)|Φ〉 
produces all Slater determinants (of the same symmetry as the |Φ〉 state) in the active 
space, we call h the sub-system embedding sub-algebra for the CC formulation defined by 
the T operator. In Ref. (Kowalski 2018), we showed that each standard CC approxima-
tion has its own class of SESs.

A direct consequence of existence of the SESs for standard CC approximations is the 
fact that the corresponding energy can be calculated, in an alternative way to Eq. (9), as 
an eigenvalue of the active-space non-Hermitian eigenproblem

where

and

In Eq.(13) the projection operator Qint(h) is a projection operator on a sub-space 
spanned by all Slater determinants generated by Tint(h) acting onto |Φ〉.

Since in the definition of the effective Hamiltonian, Eqs. (13) and (14), only Text(h) 
is involved, one can view the SES CC formalism with the resulting active-space eigen-
value problem, Eq. (12), as a specific form of renormalization procedure where external 
parameters defining the corresponding wave function are integrated out. One should 
also mention that calculating the CC energy as an eigenvalue problems, as described by 
Eq. (12), is valid for any SES for a given CC approximation given by cluster operator T. 
According to this general result, the standard CC energy expression, shown by Eq. (9), 
can be reproduced when one uses trivial sub-algebra, which contains no excitations (i.e., 
active space contains |Φ〉 only).

The existence of alternative ways of calculating CC energy opens alternative ways of 
constructing new classes of approximations. For example, if one integrates several eigen-
values problems corresponding to SESs hi, (i = 1, . . . ,M) into a quantum flow equations 
(QFE) discussed in Ref. (Kowalski 2021), i.e.,

In Ref. (Kowalski 2018) we demonstrated that at the solution, the solution of the QFE 
is equivalent to the solution of standard CC equations in the form of Eqs. (8) and (9) 
defined by cluster operator T which is a combination of all unique excitations included 
in Tint(hi)(i = 1, . . . ,M) operators. This is can be symbolically expressed as

(11)T = Tint(h)+ Text(h) ,

(12)Heff(h)eTint(h)|�� = EeTint(h)|�� .

(13)Heff(h) = (P + Qint(h))H̄ext(h)(P + Qint(h))

(14)H̄ext(h) = e−Text(h)HeText(h) .

(15)Heff(hi)e
Tint(hi)|�� = EeTint(hi)|�� (i = 1, . . . ,M) .

(16)T =

M⋃

i=1

Tint(hi) .



Page 7 of 19Bauman and Kowalski ﻿Materials Theory            (2022) 6:17 	

These two equivalent representations allows one also to form the following important 
corollary: Corollary (or the equivalence theorm)For certain forms of cluster operator T, 
the standard connected form of the CC equations given by Eqs. (8) and (9) can be replaced 
by quantum flow equations composed of non-Hermitian eigenvalue problems, Eq. (15).

The above corollary plays an important role in defining reduced-scaling formulations. 
This is a consequence of the fact that each sub-problem corresponding to sub-algebra 
hi has the associated form of the effective Hamiltonian Heff(hi) , which allows to define 
one body-density matrix for the sub-system and select the sub-set of the most important 
cluster amplitudes in the Tint(hi) operator. For example, when a localized orbital basis 
set is used, this procedure can be used to define the so-called orbital pairs at the level of 
the effective Hamiltonian, which is a significant advantage compared to the existing local 
CC approaches. This procedure can also be extended to other systems driven by differ-
ent types of interactions such as in nuclear structure theory or quantum lattice models, 
where the extension of the standard local CC formulations as used in quantum chemis-
try is not obvious.

Hermitian CC downfolding
In order to employ downfolding methods in quantum computing, one has to find a way 
to construct Hermitian effective Hamiltonians. This goal can be achieved by employing 
the double unitary coupled Ansatz,(Kowalski and Bauman 2020) where the ground-state 
wave function is represented as

where σext(h) and σint(h) are general-type anti-Hermitian operators

In analogy to the SR-CC case, all cluster amplitudes defining σint(h)  cluster opera-
tor carry active indices only (or indices of active orbitals defining given h ). The exter-
nal part σext(h) is defined by amplitudes carrying at least one inactive orbital index. 
However, in contrast to the SR-CC approach, internal/external parts of anti-Hermitian 
cluster operators are not defined in terms of excitations belonging explicitly to a given 
sub-algebra, but rather by indices defining active/inactive orbitals specific to a given h . 
Therefore h will be used here in the context of CAS’s generator. Another difference with 
the SR-CC downfolding lies in the fact that while for the SR-CC cases components of 
cluster operators Tint(h) and Text(h) were commuting as a consequence of particle-hole 
formalism employed, in the unitary case, the operators forming σint(h) and σext(h) are 
non-commuting.

Employing DUCC Ansatz, Eq. (17), one can show that in analogy to the SR-CC case, 
the energy of the entire system (once the exact form of σext(h) operator is known) can be 

(17)|�� = eσext(h)eσint(h)|�� ,

(18)σ †
int(h) = −σint(h) ,

(19)σ †
ext(h) = −σext(h) .
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calculated through the diagonalization of the effective/downfolded Hamiltonian in SES-
generated active space, i.e.,

where

and

The above results means that when the external cluster amplitudes are known (or 
can be effectively approximated), in analogy to single-reference SES-CC formalism, the 
energy (or its approximation) can be calculated by diagonalizing the Hermitian effective/
downfolded Hamiltonian, given by Eq. (21), in the active space using various quantum or 
classical diagonalizers.

The analysis of the many-body structure of the σint(h) and σext(h) operators (Kowalski 
and Bauman 2020) shows that they can be approximated in a unitary CC manner:

where Tint(h) and Text(h) are SR-CC-type internal and external cluster operators.
To make a practical use of Hermitian downfolded Hamiltonians, Eq. (20), in quantum 

computing one has to deal with non-terminating expansions of Eq. (22) and determine 
approximate form of the Text(h) operator to approximate its anti-Hermitian counter-
part σext(h) according to Eq. (24). In recent studies, we demonstrated the feasibility of 
approximations based on the finite commutator expansion. We also demonstrated that 
Text(h) , provided by the CCSD formalism, can efficiently be used in building approxi-
mate form of the downfolded Hamiltonians. In particular, in this paper we will consider 
two approximate representations of the downfolded Hamiltonians (A and B) defined by 
the following expressions for H̄ext(h):

where FN-dependent commutators were introduced to provide perturbative consist-
ency of single- (C1) and double-commutator (C2) expansions  (FN stands for the Fock 
operator).

As a numerical example illustrating the efficiency of approximations C1 and C2 we 
use the LiF molecule at 1.0Re,2.0Re, and 5.0Re Li-F distances where Re=1.5639 Å. All 

(20)Heff(h)eσint(h)|�� = Eeσint(h)|��,

(21)Heff(h) = (P + Qint(h))H̄ext(h)(P + Qint(h))

(22)H̄ext(h) = e−σext(h)Heσext(h).

(23)σint(h) ≃ Tint(h)− Tint(h)
† ,

(24)σext(h) ≃ Text(h)− Text(h)
† ,

(25)H̄
(A)
ext = H + [H , σext(h)] +

1
2
[[FN , σext(h)], σext(h)] ,

(26)
H̄

(B)
ext = H + [H , σext(h)] +

1
2
[[H , σext(h)], σext(h)] +

1
6
[[[FN , σext(h)], σext(h)], σext(h)] ,
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calculations were performed using the cc-pVTZ basis set (Dunning Jr. 1989) (employ-
ing spherical representation of d orbitals). The calculations using downfolded Hamil-
tonians C1 and C2 were performed employing restricted Hartree-Fock (RHF) orbitals 
and active spaces composed of 13 lowest-lying orbitals (6 occupied and 7 virtual). The 
results of the diagonalization of the downfolded Hamiltonians are shown in Table 1. 
The C1 and C2 energies are compared with the CCSD, CCSDT, and CCSDT(2) Q 
(Hirata et  al. 2004) energies obtained with all orbitals correlated and the CCSDTQ 
formalism in the active space, which represent nearly exact diagonalization of the 
electronic Hamiltonian in the active space.

A comparison of the RHF and CCSDTQ-in-active-space results indicates that the 
active space used reproduces only a very small part of the total correlation energy 
approximately represented by the CCSDT(2) Q results. In spite of this deficiency in 
the active space choice, the C2 DUCC approximation yields 9.99, 19.70, and 4.53 mil-
liHartree of error with respect to the CCSDT(2) Q energies for 1.0R e, 2.0R e, and 5.0R 

e geometries, respectively. These errors should be collated with the errors of the CCS-
DTQ-in-active-space approach of 310.97, 311.20, and 299.49 milliHartree. As seen 
from Table  1, the inclusion of double commutator (C2 approximation) results in a 
significant improvements of the energies obtained with the C1 scheme.

In analogy to the equivalence theorem of Section III, similar quantum flow algo-
rithms can also be defined in the case of the Hermitian downfolding (see Ref. (Kow-
alski 2021)). Although, due to non-commutative character of generators defining 
anti-Hermitian σint(hi) and σext(hi) (i = 1, . . . ,M) , certain approximations has to 
be used (mainly associated with the use of the Trotter formula), similar flow can be 
defined for the Hermitian case (see Fig.1). In this flow, we couple Hermitian eigen-
value problems corresponding to various active spaces (defined by sub-algebras hi and 
corresponding effective Hamiltonians Heff(hi) (i = 1, . . . ,M) ). The main advantage of 
this approach is the fact that larger sub-spaces of the Hilbert space can be sampled 
by a number of small-dimensionality active-space problems. This feature eliminates 
certain problems associated with (1) the need of using large qubits registers to rep-
resent the whole system, (2) qubit mappings of the basic operators, and (3) assuring 
anti-symmetry of the wave function of the entire system. For example, problem (3) is 
replaced by procedures that assure the anti-symmetry of the wave-functions of sub-
systems defined by the active space generated by various hi (Di≪N as shown in Fig.1). 

Table 1  A comparison of the CC energies obtained for the LiF model in the cc-pVTZ basis set (see 
text for more details) with C1 and C2 energies obtained in the active space defined by the 13 lowest-
lying RHF orbitals

Method 1.0R e 2.0R e 5.0R e

RHF -106.980121 -106.850430 -106.728681

CCSD -107.283398 -107.153375 -107.022451

CCSDT -107.291248 -107.161817 -107.028098

CCSDT(2) Q -107.291453 -107.162103 -107.028288

CCSDTQ -106.980480 -106.850899 -106.728(8)

in act. space

C1 -107.276752 -107.147287 -107.019105

C2 -107.281461 -107.142401 -107.032819
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This approach is ideal for developing quantum algorithms that take full advantage of 
the sparsity (or the local character of the correlation effects) of the system and uses 
only a small fraction of qubits (Di, see Fig.  1) needed to describe the system repre-
sented by N spin orbitals.

Multi‑component CC downfolding
The development of computational algorithms for composite quantum systems keeps 
attracting a lot of attention in the field of quantum computing. Typical examples are related 
to quantum electrodynamics, nuclear physics, quantum chemistry., and materials science 
For example, in quantum chemistry, this effort is related to the development of methods 
for non-perturbative coupling of electronic degrees of freedom with strong external fields 
(Haugland et al. 2020a; Pavošević and Flick 2021) and formulations going beyond Born-
Oppenheimer approximation (Nakai and Sodeyama 2003; Ellis et al. 2016; Pavošević et al. 
2018; Pavošević and Hammes-Schiffer 2021). Given the current status of quantum comput-
ing technology, it is important to provide techniques for compressing the dimensionality 
of these problems or finding an effective potential experienced by the one type of particles.

For simplicity, in this section we will consider a fictitious system composed of two types 
of Fermions A and B, defined by two sets of creation/annihilation operators {aα , a†α}

NA
α=1 

and {bβ , b†β}
NB
β=1 (these operators should not be confused with the notation used in Section 

II) satisfying typical Fermionic anti-commutation relations ([.,.]+) and commuting ([.,.]−) 
between themselves

(27)[aα , bβ ]− = [aα , b
†
β ]− = 0 ,

(28)[a†α , bβ ]− = [a†α , b
†
β ]− = 0 .

Fig. 1  A schematic representation of the quantum flow algorithm. In this algorithm, the computational 
problem for a large space is translated into the computational flow involving coupled eigenvalue problems 
involving Hermitian Heff(hi) (i = 1, . . . ,M) (see text for more details)
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We will also assume specific form of the Hamiltonian

where HA,HB, and VAB describe sub-systems A, B, and interactions between A and 
B, respectively. We will also assume that the interaction part commutes with the par-
ticle number operators nA and nB for systems A and B, i.e.,

This situation is typically encountered in models relevant to non-Born-Oppenhe-
imer approaches in electronic structure theory (Nakai and Sodeyama 2003; Ellis et al. 
2016; Pavošević et al. 2018; Pavošević and Hammes-Schiffer 2021) and nuclear struc-
ture theory (Dean and Hjorth-Jensen 2004).

Let us assume that the correlated ground-state wave function can be represented in 
the form of single reference CC wave function

where cluster operator contains excitations correlating sub-system A (TA) and sub-
system B (TB) as well as collective excitations involving both sub-systems (SAB),.i.e.,

The reference function |ΦAB〉 is a reference function for the composite system which 
is assumed to be represented as

where |0〉 represents physical vacuum and ΩA and ΩB are string of a†α/b†β operators 
distributing electrons among occupied levels of sub-systems A and B, respectively.

The energy-dependent CC equation for the composite system takes the form

where EAB is the energy of the composite system, PAB is a projection operator onto 
the reference function |ΦAB〉, and projection operator QAB can be decomposed as 
follows:

where QA and QB are the projection operators onto excited Slater determinants 
obtained by exciting particles within sub-system A and B from |ΦAB〉, respectively, and 
ZAB corresponds to the projection operator onto sub-space spanned by excited Slater 
determinants where fermion particles of type A and B are excited simultaneously.

By projecting Eq. (35) onto (PAB+QA) and introducing the resolution of identity 
eTB+SABe−TB−SAB one obtains

(29)HAB = HA +HB + VAB

(30)[VAB, nA]− = [VAB, nB]− = 0 ,

(31)nA =
∑NA

α=1 a
†
αaα , nB =

∑NB
β=1 b

†
βbβ .

(32)|�AB� = eTAB |�AB� ,

(33)TAB = TA + TB + SAB .

(34)|�AB� = �A�B|0� ,

(35)(PAB + QAB)HABe
TAB |�AB� = EABe

TAB |�AB� ,

(36)QAB = QA + QB + ZAB ,
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where

In analogy to analysis in Ref. (Kowalski 2018) the role of eTB+SAB in Eq. (37), reduces 
to the unit operator. This is a consequence of the fact that the operator TB+SAB pro-
duces excitations within sub-system B, which are subsequently eliminated by the QA 
projection operator. Consequently, Eq. (37) takes the form:

where the downfolded/effective Hamiltonian Heff(A) is defined as

The above result shows that once TB and SAB amplitudes are know (or can be effec-
tively approximated) the energy of the entire system can be calculated performing 
simulations on the sub-system A using effective Hamiltonian Heff(A).

In addition to the simplest downfolding procedure described above, there are sev-
eral other possible scenarios how downfolding procedures can be defined for the 
composite system:

•	 the utilization of second downfolding procedure to the Heff(A) in reduced-size 
active space for sub-system A,

•	 the utilizaton of the composite active space that is representd by tensor product of 
active spaces for sub-systems A and B.

These techniques are especially interesting for the explicit inclusion of nuclear 
degrees of freedom (for Fermionic nuclei) in the effective Hamiltonians describing 
electronic degrees of freedom in the non-Born-Oppenheimer formulations.

A Hermitian extension of the downfolding procedure can be accomplished by uti-
lizing DUCC Ansatz for the composite system given by the expansion

where σA,σB, and ρAB are the anti-Hermitian operators defined by the cluster ampli-
tudes with indices belonging to sub-systems A, B, and amplitudes defined by a mixed 
indices involving basis functions on A and B, respectively. As in the non-Hermitian 
case of downfolding discussed in this Section, we will focus on the downfolding of 
the entire sub-system B into the effective Hamiltonians for sub-system A. Since crea-
tion/annihilation operators correspond to the sub-systems A and B, the exactness of 
the above expansion can be obtained as a generalization of the procedure based on 
the elementary Givens rotations discussed in Ref. (Evangelista et  al. 2019). For the 
specific case discussed in this Section (based on the downfolding of the entire B sub-
system) one should assume that all basis functions defining sub-system A are defined 
as active indices (see Ref. (Kowalski and Bauman 2020) for details).

(37)(PAB + QA)e
TB+SAB(H̄AB,ext − EAB)e

TA |�AB� = 0 ,

(38)H̄AB,ext = e−TB−SABHABe
TB+SAB .

(39)Heff(A)eTA |�AB� = EABe
TA |�AB� ,

(40)Heff(A) = (PAB + QA)H̄AB,ext(PAB + QA) .

(41)|�AB� = eσB+ρABeσA |�AB� ,
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Substituting Eq. (41) into the Schrödinger equations and projecting onto (PAB+QA), 
one arrives the following form of the equations

where

and

Again, the energy of the full system can be probed by sub-system A using effective 
Hamiltonian Heff

DUCC(A) . For example, one can envision the utilization of Eq. (42) in the 
context of coupling nuclear and electronic degrees of freedom. In this case, sub-system 
A is represented by electrons while system B corresponds do nuclei obeying Fermi sta-
tistic. If σB and ρAB can be effectively approximated then the Heff

DUCC(A) Hamiltonian 
describes the behavior of electrons in the presence of "correlated" nuclei. The intensive 
development of the CC models beyond Born-Oppenheimer approximations (Nakai and 
Sodeyama 2003; Pavošević et al. 2018; Pavošević and Hammes-Schiffer 2021) provides 
a reference for building approximate, for eaxmple, perturbative, form of σB and ρAB 
according formula analogous to Eq. (24), which requires the knowledge of TB and SAB to 
approximate σB and ρAB, respectively.

Extraction of the analytical form of interactions in many‑body systems
In standard formulations of downfolding methods it is assumed (see Refs. (Bauman et al. 
2019; Metcalf et al. 2020)) that effective/downfolded DUCC Hamiltonians are dominated 
by one- and two-body effects, i.e., using the language of second quantization Heff can be 
approximated as (for simplicity, let us assume that only virtual orbitals are downfolded)

where P,Q,R,S indices, χP
Q , and χPQ

RS  represent active spin orbitals and effective one- 
and two-body interactions, respectively (non-antisymmetrized matrix elements χPQ

RS  are 
employed in (45)). Once the set of {χP

Q,χ
PQ
RS } is known (at the end of flow procedure) this 

information can be further used to derive an analytical form of effective inter-electron 
interactions. This can be accomplished by fitting the general form of one-body u and 
two-body g interactions defined as functions of to-be-optimized parameters γ/ δ as well 
as r1,r2,r12=|r1−r2|,∇1,∇2, etc. operators:

(42)Heff
DUCC(A)e

σA |�AB� = EABe
σA |�AB� ,

(43)Heff
DUCC(A) = (PAB + QA)H̄AB,ext(PAB + QA) ,

(44)H̄AB,ext = e−σB−ρABHABe
σB+ρAB .

(45)Heff
DUCC ≃

∑

PQ

χP
Qa

†
QaP +

1

2

∑

P,Q,R,S

χ
PQ
RS a

†
Ra

†
SaQaP ,

(46)u = u(γ , r1,∇1, . . .) ,

(47)g = g(δ, r1, r2, r12,∇1,∇2, . . .) ,
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These effective interactions replace standard one- and two-body interactions in non-
relativistic quantum chemistry and are defined to minimize the discrepancies with 
{χP

Q,χ
PQ
RS } for a given discrete molecular spin-orbital set, i.e.,

where

We believe that the utilization of efficient non-linear optimizers or machine learning 
techniques can provide an effective form of the interactions u and g defined in small-size 
active spaces. These effective interactions can be utilized in low-order methodologies, 
including Hartree-Fock (HF) and density functional theories (DFT).  The access to the 
analytical form of the inter-electron interactions can also enable affordable and reliable 
ab-initio dynamics driven by low-order methods.

Conclusions
In this paper, we briefly review the current state of two variants of CC downfolding tech-
niques. While the non-Hermitian downfolding and resulting active-space Hamiltonians 
are not a primary target for quantum computing, the equivalence theorem opens new 
possibilities regarding forming systematic reduced-scaling frameworks based on the 
quantum flow equations. In contrast to the existing reduced scaling CC formulations, 
where the notion of electron pair is rather descriptive and is based on the partitioning 
of the correlation energy with respect to contributions that can be indexed by pairs of 
the occupied orbitals, the present formalism defines the pair through the corresponding 
effective Hamiltonian. This fact has a fundamental advantage over ad hoc localization 
procedures - it allows in a natural way to introduce the pair density matrix. It also allows 
for a more systematic way of introducing certain classes of higher-rank excitations. The 
double unitary CC Ansatz provides a natural many-body language to introduce Hermi-
tian downfolded representation of many-body Hamiltonians in reduced-dimensionality 
active spaces. To approximate non-terminating commutator expansion of downfolded 
Hamiltonians, we use finite commutator expansions. On the LiF example, we demon-
strated that the inclusion of double commutator terms leads to systematic improve-
ments of the results obtained with single commutator expansion even in a situation 
when an active space is not providing a good zero-th order approximation of correlation 
effects. It should be also stressed that the downfolded Hamiltonians based on the dou-
ble commutator expansion are capable of reducing the error of energies obtained by the 
diagonalization of the bare-Hamiltonian in the same-size active space by more than an 

(48)minγ {
∑

PQ |uPQ(γ )− χP
Q|} ,

(49)minδ{
∑

PQRS |g
PQ
RS (δ)− χ

PQ
RS |} ,

(50)uPQ(γ ) =
∫
dx1φP(x1)

∗u(γ , r1,∇1, . . .)φQ(x1) ,

(51)g
PQ
RS (δ) =

∫
dx1dx2φP(x1)

∗φQ(x2)
∗g(δ, r1, r2, r12,∇1,∇2, . . .)φR(x1)φS(x2) .
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order of magnitude (in fact, for the 1.0R e and 5.0R e one could witness 30- and 60-fold 
reduction in energy errors with respect to accurate CC results obtained by correlating 
all molecular orbitals). The outlined downfolding techniques can also be useful in the 
context of reducing the numerical cost of expensive CC calculations for systems with 
periodic boundary conditions.

In the second part of the paper, we extended non-Hermitian and Hermitian downfold-
ing to multi-component quantum systems. As an example, we used the model system 
composed of two types of Fermions, which epitomizes typical situations encountered 
in nuclear physics and for certain types of nuclei in non-Born-Oppenheimer electronic 
structure theory. We have also outlined an approximate procedure to extract the semi-
analytical form of the one- and two-body inter-electron interactions in active space 
based on the minimization procedure utilizing one- and two-body interactions defin-
ing downfolded Hamiltonians. In the future, we will explore the usefulness of machine 
learning techniques for this procedure.

In summary, the universal character of the discussed downfolding framework makes it 
applicable to a broad class of multi-component quantum systems encountered in nuclear 
theory, chemistry, and materials sciences.
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