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Coupled Cluster Valence Bond method: Efficient computer

implementation and application to multiple bond dissociations

and strong correlations in the acenes

David W. Small and Keith V. Lawler and Martin Head-Gordon

Department of Chemistry, University of California,

Berkeley, California 94720 and Chemical Sciences Division,

Lawrence Berkeley National Laboratory, Berkeley, California 94720

(Dated: April 19, 2014)

Abstract

We describe an efficient implementation of the Coupled Cluster Valence Bond (CCVB) model.

CCVB captures a certain essential part of the description of molecules with strong correlations

(SC), which allows it to achieve correct energy profiles when covalent bonds are broken, while

maintaining proper spin symmetry and size extensivity. To illustrate treatment of SC in bond-

breaking, we examine the symmetric dissociation of the sulfur allotropes S6 and S8 into triplet S

atoms. To show applicability to larger systems and to explore whether CCVB can capture aspects

of SC that arise in extended π systems, we report results for a series of acenes up to 12 fused

benzene rings, with active spaces of up to 228 correlated electrons. The lowest-energy CCVB

solutions found for two of the largest acenes show signatures consistent with multi-electron SC and

partial delocalization.
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I. INTRODUCTION

The computational successes of Electronic Structure Theory (EST) for large molecular

systems are longstanding. In particular, this is due to substantial algorithmic advance-

ments in 2nd-order Moller-Plesset Perturbation Theory and numerous Kohn-Sham density

functionals.1–6 However, the accuracy of these methods is not uniform across diverse collec-

tions of systems of comparable size. The occurence of these qualitative errors is the essence

of the concept of strong correlation (SC).

The definitive EST approaches to SC systems are the multireference (MR) methods.7–14

Yet these models are computationally intractable for large systems,15 so for the latter we

are relegated to incorporating the extant tractable elements of the MR treatment into the

more scalable methods.

Old and well-studied examples of this process are found in the strongly-orthogonal16

geminal models.17–31 These methods add MR correlation to the electron pairs of Hartree

Fock (HF) without removing the latters’ semi-independence, i.e. correlation is introduced

within but not between pairs. The most demonstrated model in this category is the simplest

one: Generalized Valence Bond Perfect Pairing (GVB-PP).32–52

We think GVB-PP connects well to the classic Lewis-structure picture of electronic struc-

ture, specifically if just one dot structure is used. Thus, for GVB-PP, the geminal pairs

correspond to bonds and lone pairs. GVB-PP incorporates the minimal MR ingredients

necessary for a qualitatively correct description of individual covalent bonds; according to

GVB-PP theory, this constitutes the leading contribution to SC.

Of course, electron pairs will correlate, thus forming the basis for higher-order contribu-

tions to SC and leading to significant difficulties for traditional methods. A good example

of this, and one particularly familiar to chemists, is the correlation between covalent bonds

as they are stretched and broken, such as is found in double and triple bonds.

One effective way of understanding this type of correlation comes by observing that in

the course of bond-breaking, electron configurations in which the pairs are individually con-

verted to triplet spin and then coupled together into overall singlets become non-negligible.

Since GVB-PP and restricted HF (RHF) omit these elements, their energy surfaces in the

stretched-bond regime do not reflect the physically correct picture of coupled atoms or

molecular fragments. In contrast, the correct dissociation limit energies can generally be
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obtained via unrestricted HF (UHF) or DFT. This is because these models partially incor-

porate the requisite triplet character of the pairs. But what about the regime intermediate

between equilibrium and full dissociation? The unrestricted models do not include the

above-mentioned overall singlet coupling of the triplet pairs. Thus an unrestriction byprod-

uct is the incorporation of higher-spin contaminants. In many cases, these exited states lie

noticeably above the ground state, so the quality of the results is diluted in proportion to

the extent of unrestriction. A clear example of this will be encountered later in this paper.

One way of dealing with the preceding problem is to project out the unwanted spin

contaminants. This is spin-projected HF (SPHF), a method with a long history53–66 and

one that is enjoying a resurgence thanks to efforts in the Scuseria group.67–72 State-of-the-art

SPHF has several desirable properties, including variationality and computational efficiency.

However, the method suffers from a lack of size extensivity. This problem is removed in the

Coupled Cluster Valence Bond (CCVB) model.73,74 CCVB was derived as a generalization of

spin-projected UHF (SPUHF); indeed, any SPUHF wavefunction is a CCVB wavefunction

(c.f. sections III and IV in ref. 73). In CCVB, size extensivity is obtained by replacing

the variational energy expression of SPHF with a formally non-variational coupled-cluster-

type approach. By doing this, the advantageous orbital invariance of SPHF is lost, as

will be discussed in a different light below. We should note that we have yet to observe

non-variational CCVB behavior in practice.

To summarize the above ideas, an essential part of the proper treatment of the bond-

breaking SC phenomenon comprises spin couplings of (potentially numerous) collections

of strongly correlated pairs. The CCVB approach for this is to spin couple pair clusters

of varying sizes in a self consistent manner. This scheme is both efficient and qualitatively

correct, and the result is a low-scaling method that respects spin symmetry, is size-extensive,

and dissociates systems to the open-shell HF energies of the pertinent atoms or fragments.

CCVB leaves the GVB-PP pair division intact, and so it retains the single-Lewis-structure

picture of the latter. But this also implies that our interpretation of this picture now allows

for stretched bonds, as long as one can still reasonably parse the associated electrons into

pairs. This would seem to indicate that the assortment of systems to which CCVB can be

positively applied is reasonably diverse.

Of course, not all molecular systems are well described by a single Lewis structure, and,

thus, the CCVB type of correlation is by no means the only source of SC. Indeed, the lack
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of proper accomodation of multiple structures is a pervasive shortcoming of the methods

based on GVB-PP,75,76 and CCVB is no exception.74 This is the oribital invariance problem

mentioned above. Nevertheless, even for these sorts of systems, the CCVB-type correlation

still represents an essential step along the path toward a robust treatment of SC. Further-

more, CCVB is able to partially incorporate multiple-structure effects, as we have shown

previously for the cases of cyclic H4 and H8, and benzene.73,74 Additional support for this

will be given later in the present paper when we look at a series of acenes.

The purpose of this paper is to describe our efforts in translating the CCVB idea into an

efficient computer program that can be applied to decently large systems. The latter will

be demonstrated via example calculations after we describe the pertinent theoretical details

in the following section.

II. THEORY

We will begin with the assumption that a singlet state is being approximated. In a

subsequent paper, we will show how the resulting theoretical development may be used to

derive an approach for open-shell cases. In what follows, ne is the number of electrons and

nb is the number of basis orbitals.

A. CCVB wavefunction, energy, and amplitude equations for a given set of or-

bitals

1. Basic equations

The leading contribution to the CCVB wavefunction is the GVB-PP wavefunction. We

index the latter’s pairs from 1 to no = 1
2
ne. The electrons are further classified as being

either “core” or “active”, which we will elaborate on shortly. We define nc (np) to be the

number of core (active) electrons divided by two. Electron pairs 1 through nc are core, and

the remaining pairs are active.

Each electron pair is described by a geminal wavefunction. These geminals are of the

simplest possible type: the core pairs are treated the same as they are in RHF, and for the

active electrons, each geminal is a 2 electrons in 2 orbitals, or (2,2), singlet wavefunction.

4
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Thus, if the kth electron pair is active, with it are associated two spatial orbitals, which we

label φk and φk̂. In our implementation, we define k̂ = no +np − (k−nc − 1). We thus have

a set of orbitals, {φq | q = 1 . . . no + np}. This set is orthonormal and thus the orbitals have

the “strong orthogonality” property: the orbitals for one pair are orthogonal to those for any

other pair. The set is extended to a complete orthonormal basis for the molecular-orbital

space, {φq | q = 1 . . . nb}. The orbitals added for this extension do not directly affect the

CCVB wavefunction, but they are integral to orbital optimization, which will be discussed

later. The orbitals may be expressed relative to the atomic-orbital basis

φq =

nb
∑

p=1

Cpqζp. (1)

Is it convenient to work in second quantization, and therein we have operators for the

associated spin orbitals: a
†
kα
, a†

kβ
, a†

k̂α
, and a

†

k̂β
, along with their annihilation counterparts,

where α and β are the usual one-electron spin states. Each active geminal is created by an

operator

g
†
s,k =

1
√

2(1 + cos2(θk))

(

2 cos(θk) a
†
kα
a
†
kβ

− sin(θk) a
†
kα
a
†

k̂β
− sin(θk) a

†

k̂α
a
†
kβ

)

, (2)

where θk is a parameter. For simplicity, we will endeavor to unify our treatment of core

and active pairs, so for core-pair i, we may implicitly use the preceding equation by setting

θi = 0. In what follows, expressions and terms involving active-pair elements will often also

be applicable using core elements, if the parts with hatted indices are ignored.

Equation (2) is derived from the valence-bond (VB) form of the PP singlet geminals. For

each active pair, we define two VB orbitals:

ψ+
k = φk

ψ−
k = cos(θk)φk − sin(θk)φk̂. (3)

With these, we obtain a geminal, ψ+
k ψ

−
k (αβ − βα), which is a scalar multiple of the one

associated with equation (2). This may be compared to the more common natural-orbital

form of the PP geminals, which, in the second-quantization perspective, would be like

c1 a
†
kα
a
†
kβ

+ c2 a
†

k̂α
a
†

k̂β
, (4)

for appropriately chosen orbitals. The VB form has a certain interpretive advantage, and also

it provides a connection to unrestricted Hartree Fock, whose wavefunction may be written

as a product of strongly-orthogonal spin-contaminated geminals of the form ψ+
k ψ

−
k αβ.

77
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We may now express the GVB-PP wavefunction:

|Φ0〉 =
no
∏

k=1

g
†
s,k|0〉. (5)

For active-pair k, the associated (2,2) active space also contains triplet-spin geminals, and

these are used in CCVB. They are given by

g
†
t1,k

=
1√
2
(−a

†
kα
a
†

k̂β
+ a

†

k̂α
a
†
kβ
)

g
†
t2,k

= a
†
kα
a
†

k̂α

g
†
t3,k

= a
†
kβ
a
†

k̂β
. (6)

From the strong orthogonality, any two geminal operators belonging to different pairs

commute, whether they are of the creation or of the annihilation type. We also have or-

thonormality relationships between the geminals of one pair,

gs,kg
†
s,k|0〉 = 1, (7)

gti,k
g
†
s,k|0〉 = gs,kg

†
ti,k

|0〉 = 0, for every i (1 ≤ i ≤ 3) (8)

and

gti,k
g
†
tj,k

|0〉 = δij |0〉, for every i, j (1 ≤ i, j ≤ 3). (9)

The properties listed in this paragraph will allow straightforward computation of the relevant

Hamiltonian (H) matrix elements.

We now introduce the CCVB wavefunction:

|Ψ〉 = |Φ0〉+
∑

k<l

tkl|Φ(kl)〉+
∑

k<l<m<n

[

tkltmn|Φ(kl)(mn)〉

+ tkmtln|Φ(km)(ln)〉+ tkntlm|Φ(kn)(lm)〉
]

+ · · · , (10)

where the t’s are cluster amplitudes and the associated kets are certain electronic config-

urations that depend only on the θk and Cpq variables. Below, we will give definitions for

these kets as needed. Here, and in what follows, any subscript index associated with a

cluster amplitude is active. We have shown only up to the terms that are quadratic in the

amplitudes. The expansion in eq. (10) continues to all possible higher-order terms, but only

the ones shown are needed for the CCVB amplitude equations.
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At this point, we need to define the energy and establish a procedure to compute the

amplitudes. For this, it is helpful to highlight CCVB’s similarity to regular coupled cluster

(CC) theory. In regular CC, each configuration is a linear combination of Slater determi-

nants. In CCVB, instead of spin-orbital products, we use products of strongly orthogonal

geminals. Like CC Doubles (CCD), CCVB is a cluster expansion relative to a configuration

hierarchy: a reference |Φ0〉, doubly substituted configurations |Φ(kl)〉, quadruply substituted

configurations |Φ(kl)(mn)〉, etc. Here, substitutions mean the removal of active singlet gemi-

nals from the reference and their replacement with triplet geminals from the same pairs in

a singlet-coupled fashion. As with spin-orbital-based theories, non-zero Hamiltonian matrix

elements are produced only when the relative substitution level between the left and right

configurations is double or lower. The CCVB energy E has the same form as that used in

regular CC:

E = 〈Φ0|H|Ψ〉, (11)

where H is the Hamiltonian operator. As is done in CCD, we project an eigenvalue equation

with doubly substituted bras to obtain the CCVB amplitude equations

〈Φ(kl)|H|Ψ〉 = E〈Φ(kl)|Ψ〉. (12)

It may be shown that

E = 〈Φ0|H|Φ0〉+
∑

k<l

tklµkl (13)

and that eq. (12) is equivalent to

0 = Ωkl := µkl(1− t2kl) + tklωkl+

∑

m/∈{k,l}

[

tkm(κlm − tklµkm) + tlm(κkm − tklµlm)

]

, (14)

where κlm = 〈Φ(kl)|H|Φ(km)〉, µmn = 〈Φ0|H|Φ(mn)〉, and ωkl = 〈Φ(kl)|H|Φ(kl)〉 − 〈Φ0|H|Φ0〉.
At this point, we have outlined the basic constituents of the CCVB approximation, and can

now begin to discuss ways to calculate them.
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2. Computable expressions for the constituents

From the definitions for the κ, µ, and ω quantities, it is clear that we must explicitly

define the doubly substituted configurations. We first note that

gs,k|Φ0〉 =
no
∏

m=1

m6=k

g†
s,m|0〉, (15)

which follows from the orthonormality and commutation properties listed above. Further

application of annihilation geminals will serve to remove their creation counterparts.

Next, we define an operator,

d
†
s2,kl

=
1√
3

(

g
†
t1,k

g
†
t1,l

− g
†
t2,k

g
†
t3,l

− g
†
t3,k

g
†
t2,l

)

, (16)

which may be used to define

|Φ(kl)〉 = d
†
s2,kl

gs,kgs,l|Φ0〉. (17)

The computation of the matrix elements may be simplified by using spin projection. Let

|Φ[k]2[l]3〉 = g
†
t2,k

g
†
t3,l

gs,kgs,l|Φ0〉. (18)

Like |Φ0〉, this is a product of geminals. In addition,

PS

(

−
√
3|Φ[k]2[l]3〉

)

= |Φ(kl)〉, (19)

where PS projects into the singlet subspace. Because PS commutes with H and |Φ0〉 is a

singlet, we have

µkl = −
√
3〈Φ0|H|Φ[k]2[l]3〉. (20)

Here, the ket has triplets for the kth and lth geminals, which must be “blocked” by H if a

non-zero result is to be produced. In second quantization we have

H =
∑

p,q

hpq a
†
paq +

1

4

∑

p,q,r,s

〈pq||sr〉 a†
pa

†
qaras, (21)

where the summations go over all spin-orbital indices. Therefore, in this case H must

annihilate one pair-k orbital and one pair-l orbital, and replace these with an orbital from

each pair. In other words,

〈Φ0|H|Φ[k]2[l]3〉 =
∑

p,r∈Sk

∑

q,s∈Sl

〈0|gs,kgs,l a
†
para

†
qas g

†
t2,k

g
†
t3,l

|0〉〈pq||rs〉, (22)
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where Sk = {kα, k̂α, kβ, k̂β}. To simplify and generalize, we introduce density matrices

Pk;xy; pr = 〈0|gx,ka
†
parg

†
y,k|0〉, (23)

where x,y ∈ {s, t1, t2, t3} and p, r ∈ Sk. This definition may be extended to include the

core pairs by letting Sm = {mα, mβ} for core index m. In that case, we have only one

density matrix, Pm; ss; pr. The density-matrix elements for various choices of xy are given in

the Supporting Information (SI).

Next we define

σkl;wx;yz =
∑

p,r∈Sk

∑

q,s∈Sl

〈pq||rs〉Pk;wx; prPl;yz; qs, (24)

and obtain

µkl = −
√
3 σkl; st2; st3. (25)

Similar reasoning produces

κlm = −
√
3〈Φ[k]2[l]3|H|Φ(km)〉

= 〈Φ[k]2[l]3|H|Φ[k]2[m]3〉

= σlm; t3s; st3 . (26)

We reiterate that the pair indices for the σ’s may be core or inactive, while the µ’s and κ’s

(and ω’s) are only defined for active indices.

The σ’s have the following symmetries:

σkl;wx;yz = σlk;yz;wx (27)

and

σkl;wx;yz = σkl;xw; zy, (28)

the latter being the result of symmetry in the density matrices,

Pk;wx; pr = Pk;xw; rp. (29)

This implies µkl = µlk and κkl = κlk.

Turning to 〈Φ0|H|Φ0〉, we note that this quantity is a sum of 1) interpair coulombic terms,

which involve σ’s, 2) one-electron contributions, for which we define

ηk;wx =
∑

p,r∈Sk

hprPk;wx; pr, (30)

9
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and 3) intrapair coulombic terms, for which we define

ρk;w;x =
∑

p,q

∑

r,s

〈pq||rs〉fk;w; pqfk;x; rs, (31)

where the fk;w contain the expansion coefficients for the geminals according to

g
†
w,k = fk;w; kαkβ a

†
kα
a
†
kβ

+ fk;w; kαk̂β
a
†
kα
a
†

k̂β
+ fk;w; k̂αkβ

a
†

k̂α
a
†
kβ

+ fk;w; k̂αk̂β
a
†

k̂α
a
†

k̂β
+ fk;w; kαk̂α

a
†
kα
a
†

k̂α
+ fk;w; kβ k̂β

a
†
kβ
a
†

k̂β
. (32)

Here w is one of s, t1, t2, or t3 and

fk; s =
1

√

2(1 + cos2(θk))

(

2 cos(θk),− sin(θk),− sin(θk), 0, 0, 0
)

,

fk; t1 = 2−
1

2

(

0,−1, 1, 0, 0, 0
)

,

fk; t2 =
(

0, 0, 0, 0, 1, 0
)

,

fk; t3 =
(

0, 0, 0, 0, 0, 1
)

, (33)

where the ordering here is that implied in eq. (32). For core pairs, we informally define

fi; s = (1, 0, 0, 0, 0, 0). In eq. (31), the sum over p, q corresponds to the 6 pairs of indices

found in fk;w, and similarly for the sum over r, s. Note that the η and ρ quantities are

defined for both core and active pairs.

We then obtain

E0 = 〈Φ0|H|Φ0〉 =
no
∑

k=1

(ηk; ss + ρk; s; s) +
no
∑

k,l=1

k<l

σkl; ss; ss. (34)

To compute ωkl, we begin with

〈Φ(kl)|H|Φ(kl)〉 = −
√
3〈Φ[k]2[l]3|H|Φ(kl)〉

= −σkl; t2t1; t3t1 + 〈Φ[k]2[l]3|H|Φ[k]2[l]3〉+ σkl; t2t3; t3t2 . (35)

We note that σkl; t2t3; t3t2 = 0 because the relevant density matrices are zero. We can

obtain an expression for 〈Φ[k]2[l]3|H|Φ[k]2[l]3〉 that is similar to eq. (34), and indeed these

two summations will involve many of the same terms, namely those involving only singlet

geminals. This makes it relatively easy to compute 〈Φ[k]2[l]3|H|Φ[k]2[l]3〉− 〈Φ0|H|Φ0〉, and we

10
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have

ωkl = −σkl; t2t1; t3t1
+ ηk; t2t2 + ηl; t3t3 − ηk; ss − ηl; ss

+ ρk; t2; t2 + ρl; t3; t3 − ρk; s; s − ρl; s; s

+ σkl; t2t2; t3t3 − σkl; ss; ss

+

no
∑

m=1

m/∈{k,l}

(

σkm; t2t2; ss − σkm; ss; ss

+ σlm; t3t3; ss − σlm; ss; ss

)

. (36)

Note that ωkl = ωlk.

3. Efficient computation of the constituents

We may now begin to discuss ways to efficiently compute the above quantities. It is

apparent that all of these reduce to η, ρ, and σ terms, and these involve the core-Hamiltonian

matrix G, computed with respect to the {φi} set, and the two-electron integrals Mpqrs =

(φpφq|φrφs). G has only n2
b elements, and we store these in memory. Also, we do not need

to compute the full M array. For each σ term, the indices for the relevant M elements

come from only two pairs, and for each ρ term the associated indices come from only one

pair. The two-pair integrals are of the Coulomb type, Mk′k′′l′l′′ , or exchange type, Mk′l′l′′k′′,

where k′, k′′ ∈ {k, k̂}, etc. These integrals are only order n2
o in number, and we store these

in memory. Note that this set contains only one integral from each grouping of equivalent

integrals; for example Mkk̂ll and Mk̂kll are equal, therefore only one copy is stored. We define

If = {(p, q, r, s) | Mpqrs required}. The details of the associated integral transformation are

discussed later on in this paper.

In our CCVB code, there is a function that takes in the arguments k, l, wx, and yz,

and outputs σkl;wx;yz. The code for this strongly resembles eq. (24), but there are a few ad-

justments included to ensure efficiency. First, we split σkl;wx;yz into Coulomb and exchange

contributions:

σc
kl;wx;yz =

∑

p,r∈Sk

∑

q,s∈Sl

(pr|qs)Pk;wx; prPl;yz; qs (37)
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and

σe
kl;wx;yz = −

∑

p,r∈Sk

∑

q,s∈Sl

(ps|qr)Pk;wx; prPl;yz; qs. (38)

For the exchange-integral part, we can get a four-fold reduction in the corresponding sum-

mation by noting that the 4-by-4 matrix Pk;wx is composed of four 2-by-2 blocks according

to spin:

Pk;wx =





P αα
k;wx P αβ

k;wx

P βα
k;wx P ββ

k;wx



 . (39)

With this, we obtain

σe
kl;wx;yz = −

∑

τ1,τ2∈{α,β}

∑

p∈S
τ1
k

∑

r∈S
τ2
k

∑

q∈S
τ2
l

∑

s∈S
τ1
l

(ps|qr)P τ1τ2
k;wx; prP

τ2τ1
l;yz; qs, (40)

where Sα
k = {kα, k̂α}, etc.

The Coulomb-integral summation can be simplified by using

Mk′k′′l′l′′ = Mk′′k′l′l′′ = Mk′′k′l′′l′ = Mk′k′′l′′l′ . (41)

Also, only the same-spin blocks of the density matrices will contribute to this Coulomb sum.

Accordingly, we also use a Coulomb pair density matrix:

Qk;wx; kk = Pk;wx; kαkα + Pk;wx; kβkβ

Qk;wx; kk̂ = Pk;wx; kαk̂α
+ Pk;wx; k̂αkα

+ Pk;wx; kβ k̂β
+ Pk;wx; k̂βkβ

Qk;wx; k̂k̂ = Pk;wx; k̂αk̂α
+ Pk;wx; k̂β k̂β

, (42)

with which we obtain

σc
kl;wx;yz =

∑

χ1∈Mk

∑

χ2∈Ml

(χ1|χ2)Qk;wx;χ1
Ql;yz;χ2

, (43)

where Mk = {kk, kk̂, k̂k̂}, etc.
Next, the two-electron integral array discussed above is stored such that all the integrals

for the two relevant pairs occur sequentially in memory. Last, each P density matrix and

some Q density matrices have several elements that are always 0. For example, the αβ

block of Pk; ss, which contains e.g. Pk; ss; kαkβ , is 0 regardless of the value of θk. None of these

elements are stored, and the loops corresponding to the summations in eqns. (40) and (43)

are reduced accordingly.
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We use similar ideas to compute ηk;wx and ρk;w;x. The three functions discussed in this

subsection may be used to compute the energy (given a set of t amplitudes) and the µ

and κ matrices in quadratic time. In principal, it is possible to compute the ω matrix in

quadratic time, too. This may be accomplished if terms like
∑no

m=1 σkm; ss; ss are computed

first. However, because the ω-matrix computation is not rate-limiting, we have used the

naive cubic-scaling approach in our implementation.

B. Varying the orbitals to optimize the CCVB energy

1. Establishing a Lagrangian

We can now efficiently compute the terms that enter into the energy and amplitude

equations, given a set of orbital parameters. We adopt the usual EST premise that the best

values of these parameters are the ones that give the lowest value for E. In the more familiar

case of a variational method, i.e. one where E is a symmetric expectation value, we could

proceed by optimizing E directly. But this would not work in the present case, because we

must ensure that the amplitude equations are solved for any set of orbitals being considered.

This may be accomplished by substituting E with a Lagrangian

Λ = E +
∑

k<l

λklΩkl, (44)

where the λkl are the Lagrange multipliers. Following standard Lagrange-multiplier dis-

course, we see that optimizing Λ is the same as optimizing E subject to the constraints

Ωkl = 0.

As it appears now, Λ is a function of the λkl, tkl, Cpq, and θk parameters. Of course, as

we vary the Cpq, we must only consider values that correspond to orthonormal orbitals. To

incorporate this constraint, we assume some given set of orthonormal orbitals defined by a

matrix D, and then consider a rotation of these via an orthogonal transformation

C = De∆, (45)

where ∆ is antisymmetric. We now have a set of effectively independent variables, i.e. the

λkl, tkl, ∆pq, and θk parameters, and their optimal values can be determined by searching

for stationary points of Λ iteratively. In principle, this can be done by treating all variables
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in the same manner, but, again, this does not connect well with the standard procedures

used to optimize variational methods, in which we would be looking for stationary points of

E with respect to the orbital variables only. To deal with this, we directly solve

∂Λ

∂λkl
= 0,

∂Λ

∂tkl
= 0 (46)

for each set of orbitals considered. We proceed to vary the orbitals until stationarity with re-

spect to their variables is achieved; this can be done with standard optimization procedures.

The details of the eqn. (46) computation are as follows.

2. Solving the amplitude equations

We start by writing

Ωkl = Ωkl;a t
2
kl + Ωkl;b tkl + Ωkl;c, (47)

where

Ωkl;a = −µkl

Ωkl;b = ωkl −
∑

m/∈{k,l}

(tkmµkm + tlmµlm)

Ωkl;c = µkl +
∑

m/∈{k,l}

(tkmκlm + tlmκkm). (48)

We set up an iteration procedure as follows. If an appropriate set of previously computed

amplitudes is available, we use these for an initial guess. These may come from a previous Λ

iteration, or from a separate CCVB calculation from which we are restarting. If these are not

available, we begin by solving µkl(1− t2kl) + tklωkl = 0 for each tkl. Then, at each t-iteration

step, we loop through all pairs of active k and l, with k < l. For a given value of k and l, we

compute Ωkl;a, Ωkl;b, Ωkl;c using the current set of t amplitudes. We then solve the quadratic

equation, eq. (47), for tkl. We select the root that gives the lowest energy contribution, and

move to the next value of (k, l). The iterations are continued until convergence is obtained.

Each iteration requires cubic time. Also, throughout the procedure, we store only one set of

amplitudes. Thus, this process is much like the Gauss-Seidel method for systems of linear

equations.
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We then work on the partial derivatives of Λ with respect to the tkl. We use

∂Λ

∂tkl
= µkl + λkl (2 Ωkl;a tkl + Ωkl;b) +

∑

m/∈{k,l}

[

λkm (−µkl tkm + κlm) + λlm (−µkl tlm + κkm)
]

.

(49)

These form a system of equations linear in the λkl, which we solve with Gauss-Seidel itera-

tions, each one requiring cubic effort. We can now turn to the orbital variables.

3. Orbital-optimizing Λ: Geometric Direct Minimization

Since we can now roughly view our energy minimzation problem as an optimization with

respect to orbital variables only, we can make use of more familiar EST energy minimization

techniques. In CCVB, we use Geometric Direct Minimization (GDM),78 which is a Quasi-

Newton method that is adapted to situations in which the variables form an orthogonal

matrix. GDM is used in other GVB methods implemented in the Q-Chem program, and

our usage is very similar. We follow the strategy used in ref. 79, where, as far as GDM is

concerned, no distinction is made between the ∆ and θ variables, i.e. they are passed into

the GDM procedure as a uniform set of 1
2
nb(nb − 1) + np variables.

GDM works by taking certain input parameters and then taking a “step”, i.e. returning

a new set of variables that decrease the energy. The required input parameters are 1) a set

of “current” values for the orbital variables, 2) the associated energy (for us, the value of Λ

with λkl and tkl solved), 3) the energy gradient with respect to the orbital variables, and 4)

the diagonal elements of the Hessian matrix for these variables.

There is freedom in choosing input 1), because we can make different choices of D in eq.

(45). We choose D to correspond to the orbitals for the current optimization interation, i.e.

the orbitals that give the lowest energy up to that point. In other words, as we successfully

take a step and rotate the previous iteration’s orbitals, we adjust D simultaneously. With

this, the current ∆ elements are all 0, and, as we utilize below, the expressions for the

associated partial derivatives are simplified greatly. Thus we can loosely view the ∆pq

optimization procedure as a continually reseting call to GDM, which continues until the null

values of ∆ have an associated null gradient. The θ variables, however, are not reset.

Of course, before the optimization commences, we must find an initial choice for D.

Preferably, we use converged orbitals from a calculation at a nearby molecular geometry,
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as would be appropriate if a potential energy surface (PES) were being computed. If this

is not available, we generally try one of two options. For the first one, we run an RHF

calculation, then localize the occupied orbitals, then find virtual orbitals that correspond

well with the localized occupied orbitals in terms of exchange-integral overlaps, thus forming

a set of correlating electron pairs, which may be converted to PP form. This procedure,80

like its relatives,45,46 is based on long experience with PP-type models: stripping the full

treatment of electron correlation down to a small number of basic constituents and orbital-

optimizing the resulting model tends to produce localized orbitals. Moreover, a certain

degree of orbital localization is necessary here for size consistency and size extensivity. This

RHF-based option constitutes the standard initial guess for other PP-type methods in Q-

Chem.

For the second option, we run a UHF calculation, then rotate the occupied orbitals to form

a set of strongly orthogonal pairs, as mentioned above in section IIA 1 when we contrasted

the VB and natural-orbital forms for PP. This can be useful for bond-breaking situations in

which the pairs become significantly polarized.

We now discuss the computation of the remaining GDM inputs.

4. Computing ∂Λ
∂∆pq

We want partial derivatives of Λ with respect to the elements of ∆, but these will be

obtained by first computing the partial derivatives with respect to the Cpq and then using

the chain rule. To obtain the derivatives with respect to the Cpq, it is convenient to separate

the terms containing these variables from the rest

Λ =

no+np
∑

p,q=1

Γpqhpq +
∑

(p,q,r,s)∈If

ΓpqrsMpqrs (50)

Here the Γ terms depend explicitly only on the λkl, tkl, and θk parameters, while the hpq

and Mpqrs terms are dependent only on the Cpq.

In essence, the Γ elements are those of a density matrix. Using eqn. (44) and the defini-

tions for the terms contained therein, it would be possible to derive explicit expressions for Γ

elements. However, this would be tedious and not readily applicable to making variations in

the CCVB equations and methodology. Instead, since we are computing E and Λ in terms

of η, ρ, and σ terms, we can compute the density matrix on the fly in the same way. Writing
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out Λ in terms of these three basic quantities, we obtain

Λ =
no
∑

i=1

(ηi; ss + ρi; s; s) +
no
∑

i,j=1

i<j

σij; ss; ss

+
∑

i<j

[

−
√
3
(

tij + λij(1− t2ij)
)

σij; st2; st3

+ λijtij

(

ηi; t2t2 + ηj; t2t2 − ηi; ss − ηj; ss + ρi; t2; t2 + ρj; t2; t2 − ρi; s; s − ρj; s; s

+ σij; t2t2; t3t3 − σij; ss; ss − σij; t2t1; t3t1

)

+ λijtij

no
∑

m=1

m/∈{i,j}

(σim; t2t2; ss − σim; ss; ss + σmj; ss; t2t2 − σmj; ss; ss)

+
∑

m/∈{i,j}

(

λijtimσjm; t3s; st3 +
√
3λijtimtijσim; st2; st3

+ λijtjmσim; t3s; st3 +
√
3λijtjmtijσjm; st2; st3

)

]

, (51)

where all summations are over active indices unless indicated otherwise. We see that the

Cpq dependence lies entirely within the the η, ρ, and σ terms. Suppose one of the resulting

terms is c σkl;wx;yz. Using the expansion in eqn. (24), we have a sum over two-electron

integrals times coefficients. For each term in the summation, we simply add the coefficient

to the Γ element that corresponds to the integral. Once the summation is complete, we have

compiled and stored the contribution of c σkl;wx;yz to the density matrix Γ. We can then

move on to other σ terms, and analagous procedures may be applied to the η and ρ terms.

For these purposes, we have functions in our code that are highly similar to the η, ρ, and

σ functions. Computation of Γ thus scales cubicly, the same as the computation of Λ does.

This strategy is readily usable for any CCVB model once we have established its amplitude

equations.

We then compute the gradient of Λ with respect to the Cpq. The form of eqn. (50) is quite

general, so, apart from an accomodation for the reduced number of used Mpqrs elements, this

gradient computation is similar to that done in other correlated methods that use orbital

optimization.81–87 It will therefore not be described in great detail here. We do note that

differentiation of two-electron integrals with respect to an element of C results in expressions

involving integrals of the form Npqrs = (ζpφq|φrφs), where ζp is an atomic orbital. As with

the M array, we don’t need the full set of integrals here, only the ones of the form Npqk′k′′ and
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Npk′k′′q, where k
′ and k′′ come from the same pair. Here, the q index is fully unconstrained

and therefore includes inactive unoccupied indices. Integrals containing such indices aren’t

needed for the gradient, but are needed to compute the diagonal elements of the Hessian

matrix. The number of retained N elements scales cubicly, and so these integrals are stored

on disk. Note that these integrals are also transformed to produce the relevant M elements.

Analogous to the two-electron case, we compute the full set of half transformed one-electron

integrals, with the ones containing no inactive unoccupied indices being needed to form the

gradient.

Our gradient computation is based on looping through all pertinent half-transformed

one-electron integrals and stored N elements, and for each one adding its contributions to

separate tallies for the various derivatives that can produce that integral. This requires

cubic time. We can use the results to compute

[

∂Λ

∂∆pq

]

=
∑

rs

[

∂Λ

∂Crs

] [

∂Crs

∂∆pq

]

=
∑

r

([

∂Λ

∂Crq

]

Drp −
[

∂Λ

∂Crp

]

Drq

)

, (52)

where here, and in what follows,

[X ] = X
∣

∣

C=D
, or [X ] = X

∣

∣

∆=0
, (53)

depending on the context. This involves another cubic step.

5. Computing ∂2Λ
∂∆2

pq

For the Hessian diagonal, we begin with

∂2Λ

∂∆2
pq

= G1(Λ)pq +G2(Λ)pq, (54)

where

G1(X)pq =
∑

rs

(

∑

tu

∂2X

∂Ctu∂Crs

∂Ctu

∂∆pq

)

∂Crs

∂∆pq
, (55)

G2(X)pq =
∑

rs

∂X

∂Crs

∂2Crs

∂∆2
pq

, (56)

and X is a variable quantity. Specializing to the ∆ = 0 case, we have

[G2(Λ)pq] = −
∑

r

([

∂Λ

∂Crp

]

Drp +

[

∂Λ

∂Crq

]

Drq

)

, (57)
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and it is evident that this may be computed in passing while the gradient is being computed.

This scales cubicly. For the other term, we have

[G1(X)pq] = D1(X)pq + D1(X)qp − 2D2(X)pq, (58)

where

D1(X)pq =
∑

rt

[

∂2X

∂Ctp∂Crp

]

DtqDrq (59)

and

D2(X)pq =
∑

rt

[

∂2X

∂Ctq∂Crp

]

DtpDrq. (60)

When the partial derivatives in these expressions are applied to integrals, they serve to

replace the molecular-orbital components with atomic-orbital components according to the

given ∆ indices. The summations, together with the Dtp terms, simply serve to transform

these atomic-orbital components back into molecular-orbital components. For example, we

have

D2(Mlkk̂l̂)k̂k = Mlk̂kl̂ (61)

and

D1(Mkkll̂)kp = 2Mppll̂. (62)

The latter can give a non-zero result for any value of p, and so we need to enlarge the set

of computed M elements (but without changing If so the above expressions remain valid).

Namely, we must include elements of the form Mppk′k′′ and Mpk′k′′p, where k
′, k′′ ∈ {k, k̂}

and p is inactive unoccupied. The number of additional integrals scales quadratically.

We have found it sufficient to approximate [G1(Λ)pq] by [G1(E0)pq], i.e. the analogous

term for the PP reference energy. Using eqn. (34), we have

[G1(E0)pq] =

no
∑

k=1

(

D1(ηk; ss)pq + D1(ηk; ss)qp − 2D2(ηk; ss)pq

)

+

no
∑

k=1

(

D1(ρk; s; s)pq + D1(ρk; s; s)qp − 2D2(ρk; s; s)pq

)

+
no
∑

k,l=1

k<l

(

D1(σkl; ss; ss)pq + D1(σkl; ss; ss)qp − 2D2(σkl; ss; ss)pq

)

. (63)

In order for any of the terms on the RHS of this equation to be non-zero, either p or q must

belong to one of the pairs associated with the corresponding η, ρ, or σ term. For example,
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if we take D1(ηk; ss)pq, then p must be in {k, k̂}. Therefore, if both p and q are inactive

unoccupied, the corresponding diagonal element of the Hessian is 0. Also, the two-index

sum in eqn. (63) reduces to a one-index sum, while each one-index sum is reduced similarly.

In our code, there is a function that computes D1(σkl; ss; ss)pq for appropriate index com-

binations. This function is patterned after the one used to compute the various σ’s: we

loop through integrals as in eqn. (24), and make substitutions as in eqns. (61) and (62). We

use similar functions for the various combinations of D1 or D2 and the different function-

argument types (η, ρ, or σ).

Our computation of the G1 constituent of the diagonal Hessian is summarized as follows.

We loop through the relevant elements of ∆, and for each one we loop through all the η, ρ,

and σ terms that make non-zero contributions via D1 or D2. This process scales cubicly.

At this point, we have discussed all the types of integrals required for CCVB, and we can

now describe how they are computed. The one-electron integrals are computed in the stan-

dard way with cubic steps. For the two-electron integrals, note that each required integral

involves (at least) two indices belonging to the same pair. We thus begin by computing all

integrals with two same-pair indices and two AO indices. The same procedure is used in

ref. 85 (see eqn. 11 there). As discussed in that paper, this computation scales quinticly for

small molecules and asymptotically cubicly for large molecules. The number of these half-

transformed integrals scales cubicly, and so we store them on disk. To obtain the necessary

N elements, we must convert one of the two AO indices to MO, at quartic cost. We can

then transform these elements into the required M elements, which scales cubicly.

6. Computing ∂Λ
∂θk

and ∂2Λ
∂θ2

k

Returning to the optimization procedure, we also need to compute the gradient and

Hessian diagonal of Λ with respect to the θk. For this, we again turn to eqn. (51), where

we see that the derivatives sought boil down to derivatives of the η, ρ, and σ terms. The

associated summation involves no more than three indices, and for each θk, only a quadratic

number of terms can contribute to the pertinent first or second derivative. With this, our

computation of the θ gradient and Hessian diagonal scales cubicly. This can be reduced to

quadratic: each σ term involves only two indices and the third-sum index can in principle

be contracted, but we have not explored this because this part of the CCVB calculation is
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not rate limiting.

To obtain derivatives of the η’s, ρ’s, and σ’s with respect to the θk, we only need to

evaluate the same derivatives of the fk;w; pq and the Pk;wx; pr. We denote these by fk;w′; pq,

Pk;wx′; pr, fk;w′′; pq, and Pk;wx′′; pr where one or two primes indicates the first or second deriva-

tive, respectively. The differentiated density matrices are shown explicitly in the SI. We then

have
∂σkl;wx;yz

∂θk
= σkl;wx′;yz, (64)

∂2σkl;wx;yz

∂θk∂θl
= σkl;wx′;yz′ , (65)

etc., where the primes here indicate that we are to use the appropriate differentiated density

matrices. In other words, to differentiate a σ term, we can simply replace a density matrix

in eqn. (24) with its differentiated counterpart. The same idea holds for the η’s and ρ’s.

We have completed our description of the CCVB algorithm, and we give a summary of

the optimization cycle, along with example timing data to be discussed later, in Table I. It

should be noted that the scalings in this table are defined with respect to molecule size. For

a fixed molecule, i.e. fixed core and active-space sizes, Steps 2 through 6 do not depend on

the basis-set size.

III. APPLICATIONS

For what follows, all HF, CCVB, and CC calculations were done in Q-Chem,88 and all

Configuration Interaction (CI) calculations were done in GAMESS.89 All PES plots were

made with gnuplot90 and all orbital plots were made with gOpenMol.91,92

A. Symmetric dissociations of S6 and S8

In this subsection, we will consider the singlet ground states of S6 and S8 in the D3d

and D4d point-group symmetries, respectively. Within these geometric contraints, the co-

ordinates are fully determined by three parameters: a bond angle, a dihedral angle, and a

nearest-neighbor bond length. We are interested in bond-breaking PES’s; for this, we fix

the angles at the optimized values given in ref. 93, and vary the bond length until the two

molecules dissociate symmetrically into 6 and 8 triplet S atoms, respectively. This geometry

setup is illustrated in Fig. 1, and example z-matrices for these PES’s are given in the SI.
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These PES’s entail the breaking of 6 and 8 covalent bonds, and these bonds are coupled:

for each sulfur atom, two electrons (one electron from each of the atom’s two associated

bonds) must reorganize into triplet alignment. These examples are thus very much in line

with the bond-breaking SC discussion found in the Introduction.

For simplicity, and to enable comparison with CI, we will employ the minimal treatment

necessary for qualitative correctness for these PES’s: 6 and 8 active CCVB pairs, i.e. (12,12)

and (16,16) active spaces. Here, the CCVB or CI energy will approach 6 or 8 times the S-

atom restricted open-shell HF (ROHF) energy in the dissociation limit.

We used the UHF-based initial guess discussed in section IIB 3 for the most stretched ge-

ometry and then sequentially read-in the orbitals from adjacent geometries for the remaining

computations. Calculations were done in the 6-31G* basis.

1. S6

CCVB, UHF, and CI results are shown in Fig. 2. The CI results were obtained using the

CCVB orbitals, i.e. we performed full CI (FCI) calculations within the (12,12) active space

defined by the CCVB orbitals. Our main observation at this point is that CCVB recovers a

great deal of the static correlation for this system, while UHF is clearly missing a significant

portion of the correct result.

The UHF computations were not done in the standard way. We used the fact that UHF

may be parameterized by a set of strongly orthogonal α and β orbitals, as discussed in the

Theory section. Since CCVB also uses strongly orthogonal orbitals, we have simply modified

the CCVB code to be able perform UHF calculations in this alternative way. Similar to

what is done in CCVB, we can set up core and active spaces. For UHF, this means spin

polarization is allowed only within the active space, with the remaining electrons receiving

an RHF-type treatment. If all pairs are allowed to polarize, the result is equivalent to

regular UHF. Here, we only allowed spin polarization in the bonding (12,12) active space,

i.e. we are unrestricting in 6 active pairs. While this technically raises the energy, the PES

is qualitatively unchanged.

The reason we use this UHF strategy is to enable comparisons between CCVB, post-HF

methods, and CI. The key to this is basing all calculations on the (12,12) active space. This

is fairly straightforward in post-HF methods; for example, in CC we simply constrain all
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amplitude indices to belong to the active space. Hence, we have computed active-space CC

singles doubles with perturbative triples (CCSD(T)) energies using the paired-UHF orbitals.

The error associated with this calculation is quantified by comparing these energies to that

obtained from active-space FCI based on the paired UHF orbitals, CI(UHF). On the other

hand, we must use active-space FCI based on the CCVB orbitals, CI(CCVB), to quantify the

CCVB error. These subtleties are necessary to ensure fair comparisons. Even so, although

the CI(CCVB) energy is generally below that of CI(UHF), they are generally close to each

other, as seen in Fig. S-1 in the SI.

The results for the preceding ideas are found in Fig. 3. In this plot, we are showing

the region intermediate between equilibrium and dissociation. This is because UHF begins

to spin polarize between 2.3 and 2.4 Å, i.e. UHF and RHF are equivalent for shorter bond

lengths, so no active-space comparison is practical there. In the intermediate region between

2.6 and 3.2 Å, we see that CCVB is actually outperforming CCSD(T). This exemplifies

our assertions made in the Introduction: the unrestricted methods are hampered by spin

contaminants in the intermediate, or recoupling, regime before complete dissociation.

2. S8

Beyond the increase in active-space size, the calculations for S8 are essentially the same as

those done for S6, except that here FCI is excluded due to time considerations. The general

PES’s are shown in Fig. S-2 in the SI, while in Fig. 4, we show the difference between the

CCVB and active-space CCSD(T) energies. These results simply provide more support for

the observations made above in the S6 case: CCVB again outperforms CCSD(T) in the

intermediate regime between 2.6 and 3.2 Å.

B. Acenes

In this subsection, we consider the acenes, i.e. linearly fused benzene rings. These

molecules have been of significant recent interest in EST because SC gradually emerges

as n, the number of rings, is increased.71,94–105

A CCVB calculation reveals the presence of SC in essentially two ways: First, θk values

near π/2 indicate SC within a pair, with the limiting value corresponding to orthogonality
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between the two involved VB orbitals. Second, tkl values near 1/
√
3 indicate the presence of

strong inter-pair couplings associated with 4 (or more) electron SC. Both of these limits are

approached in the dissociation of coupled bonds. Hence, the largest angle and amplitude

values of each calculation will be among the main results of this subsection.

We have done CCVB calculations for n = 4 up to n = 12. All C-C and C-H bond lengths

were set at 1.4 and 1.08 Å, respectively, all valence electrons were correlated, and, following

ref. 96, calculations were done with the STO-3G basis set.

For the above sulfur rings, it was relatively easy to deduce the way CCVB would treat the

essential correlations: going around the rings, UHF has a simple spin-alternation pattern,

which provided an excellent starting point. On the contrary, extensive conjugation in the

expansive π spaces makes such conjecturing for the acene systems much less straightforward.

In systems like this, where the form of the active orbitals is initially unclear, using multiple

initial guesses with CCVB (or any method based on GVB-PP) is advisable. However, in

general, different initial-guess procedures can lead to different energy stationary points, or

“solutions”. The existence of multiple low-lying solutions is a very common finding for PP-

based methods and it is related to their lack of orbital invariance. This makes the general

problem of finding, or, more precisely, certifying, the CCVB global minimum very hard.

We experimented with both the RHF and UHF-based schemes discussed in section IIB 3.

In our acenes calculations, the RHF-based guess always produced the best solutions, in that

the corresponding energies were always far lower than those of the UHF-based guess. This is

not unexpected: UHF orbitals, as rotated into VB form, are usually highly delocalized, even

for medium and large molecules. But, as stated in IIB 3, optimal GVB-PP (and CCVB)

solutions exhibit a certain degree of orbital localization, so the UHF-based guess is poor for

larger systems. Hence, we will only report the results for the RHF-based guess. For this, we

separately tried two localization schemes: Pipek-Mezey (PM)106 and Boys.107 The results

are summarized in Tables II and III.

Before we study this data, we note that the relatively large size of 12-acene makes for a

good opportunity to assess the efficiency of our CCVB implementation. For this molecule, on

a single AMD Opteron 6376 Processor (2.3 GHz), one iteration, i.e. one orbital-optimization

cycle, takes about 17 minutes and the total number of iterations for each PM-guess calcu-

lation is given in Table II. In Table I, we have included data for the time consumed by

each step in the iteration, as a percentage of the total time for one iteration. For this, we
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averaged over a 10-iteration interval. We have included data for the 6-31G basis, for which

one iteration takes about 86 minutes. In the interest of time, we did not allow the latter

calculation to complete, and so we will not examine its results outside the timings context.

Among our first observations in looking at Table I is that our θ-derivatives calculation

(and, to lesser extents, steps 3 and 6) is not highly efficient: it requires 37% of the total time

for STO-3G. This is not quite an accurate representation of the fundamental complexity of

this step, i.e. there remains room for significant optimization. But, we were not motivated

to do this because, as mentioned previously, the time required for this step (and the others

from 2 through 6) does not depend on the basis-set size, so it will be highly overshadowed

by the integral transformation as we move to decent basis sets. This effect is already evident

in the 6-31G data, where the θ derivatives require only 7% of the total time.

Calculation of the t and λ elements is exceedingly fast. Indeed, using a very tight con-

vergence criterion of 10−10 in Euclidean-norm error (not root-mean-square), the STO-3G t

and λ calculations required only 12 iterations each, while for 6-31G they each required 9

iterations. There are 6,441 amplitudes involved in each of these computations.

Looking at the acenes results more generally, we see that the PM guess appears to produce

solutions that do not indicate SC. Generally, each orbital for these solutions is localized to

some benzene ring. Localization is typical of GVB-PP orbitals, and it underlies the use of

orbital localization procedures for the initial guess. The orbitals for the two pairs giving the

largest amplitude in 12-acene are plotted in Figs. S-3 and S-4 in the SI. One of these two

pairs corresponds to the maximal θk.

For the most part, the Boys guess produced results similar to those of PM, except for

n = 10 and n = 12. In those cases, GDM was able to find a path moving away from

orbital localization towards a lower energy solution, indeed lower than the PM one. The

corresponding maximal θk and tkl indicate some level of SC. The orbitals corresponding to

the largest amplitude for 12-acene are shown in Fig. 5. We show the GVB-PP NO form

of these orbitals in Fig. 6. In either form, the orbitals clearly display some delocalization.

Interestingly, the NO-form orbitals adhere to D2h point-group symmetry.

To the extent that these features of the Boys-guess solutions for n = 10 and n = 12 are

consistent with those of the global minima, whether we have found the latter or not, it is

evident that CCVB is detecting SC and associated delocalization in the acenes, in line with

the results of previous studies.
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IV. DISCUSSION AND CONCLUSIONS

In this paper, we have analyzed an efficient implementation of the CCVB method. The

computation is dominated by an at-worst quintic-scaling step, and this allows CCVB to be

used for relatively large molecular systems.

We applied CCVB to multiple-bond dissociations in S6 and S8. There we found that

CCVB gives a SC description superior to that of traditional methods.

We applied CCVB to small and medium sized acenes. For two of these molecules, the best

available CCVB results implied SC. It is likely that there exist similar solutions for the other

comparably sized acenes, i.e. solutions lower in energy that the ones reported above, with SC

implications and orbital delocalization. But, even for the two noted molecules, it is difficult

to be sure that we have isolated the global energy minimum. This is a challenge common

to all orbital-optimization methods, and especially for the orbital-variant ones. It would be

possible to obtain a more conclusive picture by, for example, taking a large acene, doing

CCVB in the π space with an exhaustive set of initial guesses and, possibly, an annealing

procedure or the like. But, because the acenes are not the focal point of this work, this lies

well outside the present scope. Instead, we point out that for the two noted molecules, there

exist localized-orbital solutions that are fairly close in energy to the lower delocalized ones.

The localized solutions are similar to what we might expect in GVB-PP; indeed the observed

delocalization would be very unusual in GVB-PP. Therefore, the leading contribution to the

CCVB energy, that of the reference, is strongly favoring localization. That the optimization

can pull away from this in favor of delocalization suggests a significant driving force: strong

interpair coupling. Thus, we think it reasonable to conclude that CCVB is giving a legitimate

indication of SC in these systems.

The examples considered in this work support our claim that CCVB represents an au-

thentic piece of the SC picture. The method is not without its limitations, however, and

this was evident most in the acenes, systems with multiple important resonance structures.

The need for improvements in this situation is a basis for further work in the CCVB realm.
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SUPPORTING INFORMATION

Density matrices, example z-matrices and extra PES plots for the S6 and S8 calculations,

and extra orbital plots for 12-acene. This material is available free of charge via the Internet

at http://pubs.acs.org.

27

Page 27 of 43

ACS Paragon Plus Environment

Journal of Chemical Theory and Computation

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60



1 Cremer, D. WIREs Comput. Mol. Sci. 2011, 1, 509–530.

2 Saebø, S. In Linear-Scaling Techniques in Computational Chemistry and Physics; Zalesny, R.,

Papadopoulos, M. G., Mezey, P. G., Leszczynski, J., Eds.; Challenges and Advances in Com-

putational Chemistry and Physics; Springer Netherlands, 2011; Vol. 13; pp 65–82.

3 Rubensson, E. H.; Rudberg, E.; Salek, P. In Linear-Scaling Techniques in Computational Chem-

istry and Physics; Zalesny, R., Papadopoulos, M. G., Mezey, P. G., Leszczynski, J., Eds.; Chal-

lenges and Advances in Computational Chemistry and Physics; Springer Netherlands, 2011;

Vol. 13; pp 263–300.

4 Goerigk, L.; Grimme, S. Phys. Chem. Chem. Phys. 2011, 13, 6670–6688.

5 Bowler, D. R.; Miyazaki, T. Rep. Prog. Phys. 2012, 75, 036503.

6 Kussmann, J.; Beer, M.; Ochsenfeld, C. WIREs Comput. Mol. Sci. 2013, 3, 614–636.

7 Olsen, J.; Yeager, D. L.; Jørgensen, P. Adv. Chem. Phys. 1983, 54, 1–176.

8 Roos, B. In Methods in Computational Molecular Physics; Diercksen, G., Wilson, S., Eds.;

D.Reidel Publishing, Dordrecht, Netherlands, 1983; pp 161–187.

9 Shepard, R. Adv. Chem. Phys. 1987, 69, 63–200.

10 Schmidt, M. W.; Gordon, M. S. Annu. Rev. Phys. Chem. 1998, 49, 233–266.

11 Hirao, K., Ed. Recent Advances in Multireference Methods; World Scientific, Singapore, 1999.

12 Sherrill, C. D.; H. F. Schaefer III, Adv. Quantum Chem. 1999, 34, 143–269.

13 Roos, B. O. In Theory and Applications of Computational Chemistry ; Dykstra, C. E., Frenk-

ing, G., Kim, K. S., Scuseria, G. E., Eds.; Elsevier: Amsterdam, 2005; pp 725–764.

14 Szalay, P. G.; Müller, T.; Gidofalvi, G.; Lischka, H.; Shepard, R. Chem. Rev. 2012, 112,

108–181.

15 This used to be true even for medium sized molecules, but the outlook is changing, see e.g.

ref.s 108–111.

16 Interesting alternatives to orthogonal geminals are currently being explored, see e.g. ref.s 112–

115.

17 Hurley, A. C.; Lennard-Jones, J.; Pople, J. A. Proc. R. Soc. A Math. Phys. Eng. Sci. 1953,

220, 446–455.

18 Parks, J. M.; Parr, R. G. J. Chem. Phys. 1958, 28, 335–345.

28

Page 28 of 43

ACS Paragon Plus Environment

Journal of Chemical Theory and Computation

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60



19 Arai, T. J. Chem. Phys. 1960, 33, 95–98.

20 Kutzelnigg, W. J. Chem. Phys. 1964, 40, 3640–3647.

21 Kapuy, E. J. Chem. Phys. 1966, 44, 956–962.

22 Surján, P. R. Top. Curr. Chem. 1999, 203, 63–88.

23 Surjan, P. R.; Szabados, A.; Jeszenszki, P.; Zoboki, T. J. Math. Chem. 2012, 50, 534–551.

24 Rosta, E.; Surjan, P. R. J. Chem. Phys. 2002, 116, 878–890.

25 Rassolov, V. A. J. Chem. Phys. 2002, 117, 5978–5987.

26 Rassolov, V. A.; Xu, F.; Garashchuk, S. J. Chem. Phys. 2004, 120, 10385–10394.

27 Li, S.; Ma, J.; Jiang, Y. J. Chem. Phys. 2003, 118, 5736–5745.

28 Ma, J.; Li, S. H.; Li, W. J. Comput. Chem. 2006, 27, 39–47.

29 Tarumi, M.; Kobayashi, M.; Nakai, H. Int. J. Quantum Chem. 2013, 113, 239–244.

30 Pernal, K.; Cioslowski, J. Ann. Phys. (Berlin) 2004, 13, 194–200.

31 Pernal, K. Comp. Theor. Chem. 2013, 1003, 127 – 129.

32 F.B. Bobrowicz and W.A. Goddard, in Methods of Electronic Structure Theory 3, edited by

H.F. Schaefer (Plenum, New York, 1977), p. 79.

33 Cullen, J. Chem. Phys. 1996, 202, 217–229.

34 Moss, B. J.; Bobrowicz, F. W.; W. A. Goddard III, J. Chem. Phys. 1975, 63, 4632–4639.

35 Tannor, D. J.; Marten, B.; Murphy, R.; Friesner, R. A.; Sitkoff, D.; Nicholls, A.; Ringnalda, M.;

Goddard III, W. A.; Honig, B. J. Am. Chem. Soc. 1994, 116, 11875–11882.

36 Hunt, W. J.; Hay, P. J.; W. A. Goddard III, J. Chem. Phys. 1972, 57, 738–748.

37 Hay, P. J.; Hunt, W. J.; W. A. Goddard III, Chem. Phys. Lett. 1972, 13, 30–35.

38 Hay, P. J.; Hunt, W. J.; Goddard, W. A. J. Am. Chem. Soc. 1972, 94, 8293–8301.

39 Dykstra, C. E. J. Chem. Phys. 1980, 72, 2928–2935.

40 Carter, E. A.; W. A. Goddard III, J. Chem. Phys. 1988, 88, 1752–1763.

41 Hartke, B.; Carter, E. A. J. Chem. Phys. 1992, 97, 6569–6578.

42 Gibson, D. A.; Ionova, I. V.; Carter, E. A. Chem. Phys. Lett. 1995, 240, 261–267.
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(a) S6.

(b) S8.

FIG. 1
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(a) Pair 1 orbitals. θk = 1.40556, the largest value observed.

(b) Pair 2 orbitals. θk = 0.82807.

FIG. 5
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(a) Pair 1 orbitals.

(b) Pair 2 orbitals.

FIG. 6

TABLES

TABLE I: CCVB optimization-cycle steps, their scalings, and example timings for

12-acene.
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Step Scaling avg. time % (STO-3G) avg. time % (6-31G)

1. integral transformation n4
e-n

5
e 46.67 88.76

2. E0 n2
e 0.01 0.00

3. µ, κ, ω n3
e 3.92 0.72

4. t, λ, E n3
e 0.02 0.00

5. θ derivatives n3
e 37.10 6.96

6. Γ n3
e 5.19 0.97

7. ∆ gradient n3
e 0.08 0.04

8. ∆ diagonal Hessian n3
e 6.85 2.38

9. GDM n3
e 0.16 0.17

TABLE II: CCVB results for acenes: Pipek-Mezey guess

n active e− RHF Energy a CCVB Energy a Largest θk Largest |tkl| # iter. b

4 84 -680.2181369 -680.9109851 0.92755 0.148141 131

5 102 -830.9865879 -831.8230161 0.94512 0.138115 75

6 120 -981.7543923 -982.7376693 0.94639 0.144413 81

7 138 -1132.5219100 -1133.6515428 0.95376 0.148738 102

8 156 -1283.2892986 -1284.5546786 0.95422 0.141423 87

9 174 -1434.0566283 -1435.4683416 0.96136 0.145324 102

10 192 -1584.8239312 -1586.3817953 0.96424 0.146976 109

11 210 -1735.5912218 -1737.2951455 0.96557 0.147757 94

12 228 -1886.3585067 -1888.2084464 0.96624 0.148141 105

a in Hartree
b conv. crit.: 10−7 a.u. grad. r.m.s.

TABLE III: CCVB results for acenes: Boys guess

n active e− Energy a Largest θk Largest |tkl| E(Boys)-E(PM) b

4 84 -680.9109851 0.92755 0.148141 0

5 102 -831.8230161 0.94512 0.138115 0
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6 120 -982.7349707 0.94797 0.154769 1.69

7 138 -1133.6461946 0.95243 0.145717 3.36

8 156 -1284.5546786 0.95422 0.141423 0

9 174 -1435.4673776 0.96265 0.149656 0.60

10 192 -1586.3936550 1.39244 0.328789 -7.44

11 210 -1737.2891977 0.96687 0.147101 3.73

12 228 -1888.2231568 1.40556 0.331675 -9.23

a in Hartree
b in kcal/mol
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