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Abstract

In this paper, our aim is to introduce the concept of G-g-contraction mapping and

prove some coupled coincidence and coupled common fixed point theorems for

nonlinear contraction mappings in the new set up of partially ordered complete

metric spaces endowed with a directed graph. As an application, we apply our results

to present an existence theorem for solution of some particular integral equations.

Our paper is inspired by the work of Chifu and Petrusel (Fixed Point Theory Appl.

2014:151, 2014); the authors introduced the concept of a coupled fixed point. In the

current paper, however, we have established the results by introducing the new

notion of a coupled coincidence fixed point instead of the coupled fixed point in the

setting of a partially ordered complete metric space with graph.
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1 Introduction with preliminaries

The advent of the most celebrated fixed point result, the Banach contraction principle,

initiated a new era of research in fixed point theory due to its immense applicability inma-

jor areas of mathematics like numerical analysis and differential/integral equations. The

Banach contraction principle was used to study the fixed points of nonlinear contraction

maps by Boyd and Wong [].

Recently, fixed point results in partially ordered sets have drawn the attention of mathe-

maticians around the world because of its ease of compatibility in modeling various prob-

lems. The first attempt in this direction was done by Ran and Reurings [], which was a

combination of the Banach contraction principle and the Knaster-Tarski fixed point theo-

rem. They considered a class of mappings f : X → X, with (X,d) being a complete metric

space and a partial order ≤. The mappings they considered are continuous, monotone

with respect to the partial order ≤. Those mappings also satisfy a Banach contraction in-

equality for every pair (x, y) ∈ X×X such that x≤ y.When, for some x ∈ X, the inequality

x ≤ f (x) is satisfied, they proved that the Picard sequence {f n(x)} would converge to a

fixed point of f . Ran and Reurings also combined this interesting result with the Schauder

fixed point theorem and applied it to obtain some existence and uniqueness results to

nonlinear matrix equations.
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The results of Ran and Reurings were extended by Nieto and Rodríguez-López [, ]

to the functions which are not necessarily continuous. As an application of their results,

the authors also obtained a theorem on the existence of a unique solution for periodic

boundary problems relative to ordinary differential equations.

Apart from the above, some very important work worth mentioning in this arena may

be found in [–].

Some important works on fixed point theorems for set valued and multivalued contrac-

tion mappings were done by Nadler [] and Assad and Kirk []. The concepts of fixed

point theory and graph theory were combined by Espinola and Kirk [] to prove some

interesting fixed point theorems in R-trees. In , Jachymski [] came up with the in-

teresting idea of using the language of graph theory in the study of fixed point results. He

wanted to establish results that would eventually generalize the above mentioned results

and also present some applications to the theory of linear operators. So, he studied the

class of generalized Banach contractions on a metric space with a directed graph. The ad-

vantage of using graph theoretical concepts was that it helped him to describe the results

in a unified way and also to weaken some conditions significantly. Some important work

in this direction was carried out by Bojor [, ].

Very recently, somewonderful research on fixed point theory in ametric space endowed

with a graph has been carried out by Alfuraidan [, ] and Alfuraidan and Khamsi [].

Again, the study of coupled and common fixed point theorems remain a well motivated

area of research in fixed point theory due to their applications in a wide variety of prob-

lems. For example, applications of coupled fixed points for binary mappings were studied

by Bhaskar and Lakshmikantham []. They have used such fixed point results to prove

the existence and uniqueness of solution for a periodic boundary value problem. Recently,

Chifu and Petrusel [] have developed some coupled fixed point results inmetric space en-

dowed with a directed graph to prove the existence of a continuous solution for a system

of Fredholm and Volterra integral equations.

Following the same line, in the current paper, our aim is to extend some coupled coinci-

dence and coupled common fixed point theorems for nonlinear contractions in partially

ordered complete metric spaces endowed with a directed graph. Our results would bring

about a more unified approach to the presentation of coupled coincidence and coupled

common fixed point theorems. Also, as an application of our results, we aim to prove a

theorem which can be used to test the existence of a solution for some particular integral

equations.

Let (X,d) be a metric space and � be the diagonal of the Cartesian product X × X.

Consider a directed graphG such that the setV (G) coincides with X and� ⊆ E(G), where

E(G) is the set of edges of the graph G. Assume that G has no parallel edges and so G can

be identified with the pair (V (G),E(G)). Also, denote by G– the graph obtained from G

by reversing the direction of the edges in G. Thus,

E
(

G–
)

=
{

(x, y) ∈ X ×X : (y,x) ∈ E(G)
}

.

Definition . (cf. []) An element (x, y) ∈ X ×X is called a coupled coincidence point of

the functions F : X ×X → X and g : X → X if

F(x, y) = gx and F(y,x) = gy.
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Let us denote the set of all coupled coincidence points of F and g as CCoin(Fg).

Definition . (cf. []) An element (x, y) ∈ X ×X is called a coupled common fixed point

of the functions F : X ×X → X and g : X → X if

F(x, y) = g(x) = x and F(y,x) = g(y) = y.

Definition . (cf. []) Let X be a nonempty set. Then the functions F : X × X → X and

g : X → X are said to be commutative if

g
(

F(x, y)
)

= F(gx, gy), ∀x, y ∈ X.

Definition . (cf. []) A function g : X → X is G-continuous if

(i) for all x,x∗ ∈ X and any sequence (ni)i∈N of positive integers, (xni )→ x∗ and

(xni ,xni+ ) ∈ E(G), for n ∈N , implies g(xni ) → gx∗;

(ii) for all y, y∗ ∈ X and any sequence (ni)i∈N of positive integers, (yni ) → y∗ and

(yni , yni+ ) ∈ E(G–), for n ∈N , implies g(yni ) → gy∗.

Definition . (cf. []) A function F : X ×X → X is G-continuous if for all (x, y), (x∗, y∗) ∈

X × X and any sequence {ni}i∈N of positive integers, {xni} → x∗, {yni} → y∗, as i → ∞

and (xni ,xni+ ) ∈ E(G), (yni , yni+ ) ∈ E(G–), for n ∈ N , implies F(xni , yni ) → F(x∗, y∗) and

F(yni ,xni )→ F(y∗,x∗).

Definition . (cf. []) Let (X,d) be a complete metric space endowed with a directed

graph G. Then the triple (X,d,G) has the property (A) if

(i) for any sequence {xn}n∈N in X such that {xn} → x∗ and (xn,xn+) ∈ E(G),

(xn,x
∗) ∈ E(G);

(ii) for any sequence {yn}n∈N in X such that {yn} → y∗ and (yn, yn+) ∈ E(G–),

(yn, y
∗) ∈ E(G–).

2 Main results

Now we are ready to discuss our main results. With the help of preliminaries and some

definitions given below, first we establish some lemmas which will be useful later.

Suppose that (X,d) be a metric space endowed with a directed graph G. Let us consider

the mappings F : X ×X → X and g : X → X.

Define the set (X ×X)Fg as

(X ×X)Fg =
{

(x, y) ∈ X ×X :
(

gx,F(x, y)
)

∈ E(G) and
(

gy,F(y,x)
)

∈ E
(

G–
)}

.

Definition . The mapping F : X ×X → X is called a G-g-contraction if

(i) g is edge preserving, i.e., (gx, gu) ∈ E(G) and

(gy, gv) ∈ E(G–) 	⇒ (g(gx), g(gu)) ∈ E(G) and (g(gy), g(gv)) ∈ E(G–);

(ii) F is g-edge preserving, i.e., (gx, gu) ∈ E(G) and

(gy, gv) ∈ E(G–) 	⇒ (F(x, y),F(u, v)) ∈ E(G) and (F(y,x),F(v,u)) ∈ E(G–);

(iii) for all x, y,u, v ∈ X such that (gx, gu) ∈ E(G) and (gy, gv) ∈ E(G–),

d(F(x, y),F(u, v))≤ k

[d(gx, gu) + d(gy, gv)], where k ∈ [, /) is called the

contraction constant of F .
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Lemma . Suppose that F : X × X → X is g-edge preserving and F(X × X) ⊆ g(X). Also

let {xn}, {yn}, {un}, {vn} be sequences in the metric space (X,d) endowed with a directed

graph G. Then the following statements are true:

(i) (gx, gu) ∈ E(G) and (gy, gv) ∈ E(G–) 	⇒ (F(xn, yn),F(un, vn)) ∈ E(G) and

(F(yn,xn),F(vn,un)) ∈ E(G–), ∀n ∈N ;

(ii) (x, y) ∈ (X ×X)Fg 	⇒ (F(xn, yn),F(xn+, yn+)) ∈ E(G) and

(F(yn,xn),F(yn+,xn+)) ∈ E(G–), ∀n ∈N ;

(iii) (x, y) ∈ (X ×X)Fg 	⇒ (F(xn, yn),F(yn,xn)) ∈ (X ×X)Fg , ∀n ∈N .

Proof We have F(X ×X) ⊆ g(X),

set F(xi, yi) = g(xi+) and F(yi,xi) = g(yi+), (.)

x = x and y = y. (.)

(i) Let

(gx, gu) ∈ E(G) and (gy, gv) ∈ E
(

G–
)

.

Then, by the g-edge preserving property of F ,

(

F(x, y),F(u, v)
)

∈ E(G) and
(

F(y,x),F(v,u)
)

∈ E
(

G–
)

	⇒ (gx, gu) ∈ E(G) and (gy, gv) ∈ E
(

G–
)

(by (.)).

Again, applying the g-edge preserving property of F ,

(

F(x, y),F(u, v)
)

∈ E(G) and
(

F(y,x),F(v,u)
)

∈ E
(

G–
)

.

Hence, using (.), (.) and g-edge preserving property of F repeatedly,

(

F(xn, yn),F(un, vn)
)

∈ E(G) and
(

F(yn,xn),F(vn,un)
)

∈ E
(

G–
)

, ∀n ∈N .

(ii)

(x, y) ∈ (X ×X)Fg

	⇒ (x, y) ∈ (X ×X)Fg (by (.))

	⇒
(

gx,F(x, y)
)

∈ E(G) and
(

gy,F(y,x)
)

∈ E
(

G–
)

	⇒ (gx, gx) ∈ E(G) and (gy, gy) ∈ E
(

G–
)

(by (.)).

Then, by the g-edge preserving property of F ,

(

F(x, y),F(x, y)
)

∈ E(G) and
(

F(y,x),F(y,x)
)

∈ E
(

G–
)

.

Thus, using (.) and g-edge preserving property of F repeatedly,

(

F(xn, yn),F(xn+, yn+)
)

∈ E(G) and
(

F(yn,xn),F(yn+,xn+)
)

∈ E
(

G–
)

, ∀n ∈N .
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(iii)

(x, y) ∈ (X ×X)Fg

	⇒
(

F(xn, yn),F(xn+, yn+)
)

∈ E(G) and
(

F(yn,xn),F(yn+,xn+)
)

∈ E
(

G–
)

	⇒
(

gxn+,F(xn+, yn+)
)

∈ E(G) and
(

gyn+,F(yn+,xn+)
)

∈ E
(

G–
)

(by (.))

	⇒ (xn+, yn+) ∈ (X ×X)Fg . �

Lemma . Let (X,d) be ametric space endowed with a directed graph G. Let F : X×X →

X be a G-g-contraction with contraction constant k ∈ [, /) and F(X × X) ⊆ g(X). Also

suppose that {xn}, {yn} be sequences in X. Then, for (x, y) ∈ (X ×X)Fg , there exist r(x, y) ≥ 

and k ∈ [, /) such that

d(gxn, gxn+)≤
kn–


r(x, y) and d(gyn, gyn+) ≤

kn–


r(x, y).

Proof

(x, y) ∈ (X ×X)Fg

	⇒
(

gx,F(x, y)
)

∈ E(G) and
(

gy,F(y,x)
)

∈ E
(

G–
)

	⇒ (gx, gx) ∈ E(G) and (gy, gy) ∈ E
(

G–
)

.

Then, by Lemma .,

(

F(xn, yn),F(xn+, yn+)
)

∈ E(G) and
(

F(yn,xn),F(yn+,xn+)
)

∈ E
(

G–
)

, ∀n ∈N

	⇒ (gxn, gxn+) ∈ E(G) and (gyn, gyn+) ∈ E
(

G–
)

, ∀n ∈N .

But F is a G-g-contraction, so

d(gxn, gxn+) = d
(

F(xn–, yn–),F(xn, yn)
)

≤
k



[

d(gxn–, gxn) + d(gyn–, gyn)
]

=
k



[

d
(

F(xn–, yn–),F(xn–, yn–)
)

+ d
(

F(yn–,xn–),F(yn–,xn–)
)]

≤
k



[

d(gxn–, gxn–) + d(gyn–, gyn–)
]

· · ·

≤
kn–



[

d(gx, gx) + d(gy, gy)
]

.

Then d(gxn, gxn+) ≤
kn–


r(x, y), where r(x, y) := d(gx, gx) + d(gy, gy).

Similarly, d(gyn, gyn+) ≤
kn–


r(x, y). �

Lemma . Suppose that (X,d) is a complete metric space endowed with a directed

graph G. Let F : X × X → X be a G-g-contraction with contraction constant k ∈ [, /)

and F(X×X) ⊆ g(X).Also let {xn}, {yn} be sequences in X. Then, for each (x, y) ∈ (X×X)Fg ,

there exist x∗, y∗ ∈ X such that gxn → x∗ and gyn → y∗, as n → ∞.
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Proof Let (x, y) ∈ (X ×X)Fg .

Then, using Lemma .,

d(gxn, gxn+)≤
kn–


r(x, y), where k ∈ [, /),

d(gyn, gyn+) ≤
kn–


r(x, y), for all n ∈N .

Let m > n. We have

d(gxn, gxm) ≤ d(gxn, gxn+) + d(gxn+, gxn+) + · · · + d(gxm–, gxm)

≤
kn–


r(x, y) +

kn


r(x, y) + · · · +

km–


r(x, y)

=
kn–


r(x, y)

(

 + k + · · · + km–n–
)

=
kn–


r(x, y)

(

 – km–n

 – k

)

	⇒ d(gxn, gxm) → , for largem,n.

Hence, (gxn)n∈N is a Cauchy sequence.

Similarly, (gyn)n∈N is also a Cauchy sequence.

Also, (X,d) is complete. So, there exist, say, x∗, y∗ ∈ X such that

lim
n→∞

gxn = x∗ and lim
n→∞

gyn = y∗. �

Now we discuss our main results.

Theorem . Suppose that (X,d) is a complete metric space endowed with a directed

graph G. Let F : X × X → X be a G-g-contraction with contraction constant k ∈ [, /)

and F(X × X) ⊆ g(X). Let g be G-continuous and commutes with F . Also, we assume ei-

ther

(i) F is G-continuous, or

(ii) the triple (X,d,G) has the property (A).

Then CCoin(Fg) �= φ iff (X ×X)Fg �= φ.

Proof Suppose that CCoin(Fg) �= φ.

Then there exists some (x∗, y∗) ∈ CCoin(Fg), i.e., gx∗ = F(x∗, y∗) and gy∗ = F(y∗,x∗).

So,

(

gx∗,F
(

x∗, y∗
))

=
(

gx∗, gx∗
)

∈ � ⊆ E(G) and

(

gy∗,F
(

y∗,x∗
))

=
(

gy∗, gy∗
)

∈ � ⊆ E
(

G–
)

	⇒
(

x∗, y∗
)

∈ (X ×X)Fg

	⇒ (X ×X)Fg �= φ.

Next, let us assume that (X ×X)Fg �= φ.
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Then there exists (x, y) ∈ (X × X)Fg , i.e., (gx,F(x, y)) ∈ E(G) and (gy,F(y,x)) ∈

E(G–).

Then, by Lemma .(ii), we have a sequence (ni)i∈N of positive integers such that

(

F(xni , yni ),F(xni+, yni+)
)

∈ E(G) and
(

F(yni ,xni ),F(yni+,xni+)
)

∈ E
(

G–
)

.

Using (.) and (.),

(gxni+, gxni+) ∈ E(G) and (gyni+, gyni+) ∈ E
(

G–
)

. (.)

Also, from Lemma .,

lim
n→∞

gxni = x∗ and lim
n→∞

gyni = y∗. (.)

But g is G-continuous

	⇒ lim
n→∞

g(gxni ) = gx∗ and lim
n→∞

g(gyni ) = gy∗. (.)

Also, since F and g are commutative,

g(gxni+ ) = g
(

F(xni , yni )
)

and g(gyni+ ) = g
(

F(yni ,xni )
)

	⇒ g(gxni+ ) = F(gxni , gyni ) and g(gyni+ ) = F(gyni , gxni ). (.)

Finally, we show that

gx∗ = F
(

x∗, y∗
)

and gy∗ = F
(

y∗,x∗
)

.

Let F be G-continuous.

Then, from (.), we have

lim
n→∞

g(gxni+) = lim
n→∞

F(gxni , gyni )

	⇒ gx∗ = F
(

x∗, y∗
)

and

lim
n→∞

g(gyni+) = lim
n→∞

F(gyni , gxni )

	⇒ gy∗ = F
(

y∗,x∗
)

.

Thus, (x∗, y∗) is a coupled coincidence point of the mapping F and g , i.e., CCoin(Fg) �= φ.

Next, we assume that property (A) holds.

From (.) and (.), we have

gxni → x∗, as i → ∞ and (gxni , gxni+) ∈ E(G) and

gyni → y∗, as i→ ∞ and (gyni , gyni+) ∈ E
(

G–
)

.

Therefore, using property (A),

(

gxni ,x
∗
)

∈ E(G) and
(

gyni , y
∗
)

∈ E
(

G–
)

.
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So,

d
(

gx∗,F
(

x∗, y∗
))

≤ d
(

gx∗, g(gxni+)
)

+ d
(

g(gxni+),F
(

x∗, y∗
))

= d
(

gx∗, g(gxni+)
)

+ d
(

F(gxni , gyni ),F
(

x∗, y∗
))

≤ d
(

gx∗, g(gxni+)
)

+
k



[

d
(

g(gxni ), gx
∗
)

+ d
(

g(gyni ), gy
∗
)]

.

Now, taking the limit as n → ∞,

d
(

gx∗,F
(

x∗, y∗
))

=  	⇒ gx∗ = F
(

x∗, y∗
)

.

In a similar way we can obtain gy∗ = F(y∗,x∗). �

Theorem . Suppose that the hypotheses of Theorem . hold. Besides, let for every

(x, y), (x∗, y∗) ∈ X ×X there exist (u, v) ∈ X ×X such that

(

F(x, y),F(u, v)
)

∈ E(G),
(

F(y,x),F(v,u)
)

∈ E
(

G–
)

and

(

F
(

x∗, y∗
)

,F(u, v)
)

∈ E(G),
(

F
(

y∗,x∗
)

,F(v,u)
)

∈ E
(

G–
)

.

Then F and g have a unique coupled common fixed point.

Proof Let (x, y) and (x∗, y∗) be coupled coincidence points, i.e.,

gx = F(x, y), gy = F(y,x) and (.)

gx∗ = F
(

x∗, y∗
)

, gy∗ = F
(

y∗,x∗
)

. (.)

By hypothesis, we have

(

F(x, y),F(u, v)
)

∈ E(G) and
(

F(y,x),F(v,u)
)

∈ E
(

G–
)

, (.)

(

F
(

x∗, y∗
)

,F(u, v)
)

∈ E(G) and
(

F
(

y∗,x∗
)

,F(v,u)
)

∈ E
(

G–
)

. (.)

Set F(un, vn) = gun+, u = u, and F(vn,un) = gvn+, v = v.

Then, using (.) and (.); (.) and (.) can be written as

(gx, gu) ∈ E(G), (gy, gv) ∈ E
(

G–
)

and

(

gx∗, gu
)

∈ E(G),
(

gy∗, gv
)

∈ E
(

G–
)

.

But F is g-edge preserving, so

(

F(x, y),F(u, v)
)

∈ E(G),
(

F(y,x),F(v,u)
)

∈ E
(

G–
)

and

(

F
(

x∗, y∗
)

,F(u, v)
)

∈ E(G),
(

F
(

y∗,x∗
)

,F(v,u)
)

∈ E
(

G–
)

	⇒ (gx, gu) ∈ E(G), (gy, gv) ∈ E
(

G–
)

and

(

gx∗, gu
)

∈ E(G),
(

gy∗, gv
)

∈ E
(

G–
)

.
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Using the g-edge preserving property of F repeatedly, ∀n≥ , we obtain

(gx, gun) ∈ E(G), (gy, gvn) ∈ E
(

G–
)

and

(

gx∗, gun
)

∈ E(G),
(

gy∗, gvn
)

∈ E
(

G–
)

.

Therefore,

d
(

gx, gx∗
)

≤ d(gx, gun+) + d
(

gun+, gx
∗
)

= d
(

F(x, y),F(un, vn)
)

+ d
(

F(un, vn),F
(

x∗, y∗
))

≤
k



[

d(gx, gun) + d(gy, gvn) + d
(

gun, gx
∗
)

+ d
(

gvn, gy
∗
)]

=
k



[

d
(

F(x, y),F(un–, vn–)
)

+ d
(

F(y,x),F(vn–,un–)
)

+ d
(

F(un–, vn–),F
(

x∗, y∗
))

+ d
(

F(vn–,un–),F
(

y∗,x∗
))]

≤
k



[

d(gx, gun–) + d(gy, gvn–) + d
(

gun–, gx
∗
)

+ d
(

gvn–, gy
∗
)]

· · ·

· · ·

≤
kn



[

d(gx, gu) + d(gy, gv) + d
(

gu, gx
∗
)

+ d
(

gv, gy
∗
)]

	⇒ d
(

gx, gx∗
)

= , as n→ ∞

	⇒ gx = gx∗. (.)

Similarly,

gy = gy∗. (.)

Let gx = gx∗ =m and gy = gy∗ = n.

Then, using commutativity of F and g , (.) gives

g(gx) = g
(

F(x, y)
)

= F(gx, gy) and g(gy) = g
(

F(y,x)
)

= F(gy, gx)

	⇒ gm = F(m,n) and gn = F(n,m).

Thus, (m,n) is a coupled coincidence point.

So, repeating the earlier argument for (x, y) and (m,n),

gx = gm and gy = gn

	⇒ m = gm and n = gn.

Thus,

m = gm = F(m,n) and n = gn = F(n,m).

So, (m,n) is a coupled common fixed point of F and g .
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Finally, we prove that the coupled common fixed point of F and g is unique.

Let us suppose that (p,q) is another coupled common fixed point of F and g .

Then

p = gp = F(p,q) and q = gq = F(q,p). (.)

But, from (.) and (.),

gp = gm =m and gq = gn = n. (.)

So, from (.) and (.),

p =m and q = n.

Hence the coupled common fixed point of F and g is unique. �

Remark . As noted from Lemma ., Lemma ., and Lemma ., we have proved our

results under strong conditions, like F being g-invariant, i.e., F(X × X) ⊆ g(X), and we

restricted the contraction constant k in [, /). It would be a good subject to investigate

whether the results can be extended to the case when k ∈ [, ) and whether the invariant

condition can be weakened, as the authors are unsure of these facts at present.

3 Application

In this section, to discuss the application of our main results we establish an existence

theorem in a metric space with graph for the solution of the integral equations.

Let us consider the following integral equations:

x(t) =

∫ T



f
(

t,x(s), y(s)
)

ds, t ∈ [,T],

y(t) =

∫ T



f
(

t, y(s),x(s)
)

ds, t ∈ [,T],

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

(.)

where T is a positive real number and f : [,T]×R×R →R.

Let us consider X = C([,T],R) with the metric d : X ×X →R defined by

d(x, y) = sup
t∈[,T]

∣

∣x(t) – y(t)
∣

∣, ∀x, y ∈ X.

Further, define a graphGusing a partial order relation, i.e., x, y ∈ X, x≤ y⇐⇒ x(t)≤ y(t),

for any t ∈ [,T].

So, we have

E(G) :=
{

(x, y) ∈ X ×X : x≤ y
}

,

E
(

G–
)

:=
{

(x, y) ∈ X ×X : y≤ x
}

.

Also, �(X ×X) ⊆ E(G) and (X,d,G) has property (A).

It is a routine verification to check that (X,d) is a complete metric space with a directed

graph G.
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Theorem . Suppose, for the integral equations (.),

(i) f : [,T]×R×R →R is continuous;

(ii) for all t ∈ [,T] and x, y,u, v ∈R with x≤ u, v ≤ y, f (t,x, y)≤ f (t,u, v);

(iii) for each t ∈ [,T] and x, y,u, v ∈R with x≤ u, v ≤ y, there exists k ∈ [, ) such that

|f (t,x, y) – f (t,u, v)| ≤ k
T
(|x – u| + |y – v|);

(iv) there exists (x, y) ∈ X ×X such that for all t ∈ [,T],

x(t)≤

∫ T



f
(

t,x(s), y(s)
)

ds and

∫ T



f
(

t, y(s),x(s)
)

ds≤ y(t).

Then there exists at least one solution of (.).

Proof Let F : X ×X → X and g : X → X be defined as

F(x, y)(t) =

∫ T



f
(

t,x(s), y(s)
)

ds, t ∈ [,T] and

g(x)(t) = x(t).

Then (.) is equivalent to

g(x) = F(x, y),

g(y) = F(y,x),

i.e., the solution of (.) is a coupled coincidence point of the mappings F and g , provided

we verify the conditions in Theorem ..

To verify this, we use that g is edge preserving.

Suppose that x, y,u, v ∈ X such that g(x) ≤ g(u) and g(v) ≤ g(y).

Then, for each t ∈ [,T],

F(x, y)(t) =

∫ T



f
(

t,x(s), y(s)
)

ds

=

∫ T



f
(

t, g(x)(s), g(y)(s)
)

ds

≤

∫ T



f
(

t, g(u)(s), g(v)(s)
)

ds

=

∫ T



f
(

t,u(s), v(s)
)

ds

= F(u, v)(t)

	⇒ F(x, y)(t)≤ F(u, v)(t), for each t ∈ [,T]

	⇒
(

F(x, y),F(u, v)
)

∈ E(G).

Similarly,

F(v,u)(t)≤ F(y,x)(t), for each t ∈ [,T] 	⇒
(

F(y,x),F(v,u)
)

∈ E
(

G–
)

.

Thus, F is g-edge preserving.
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Next, we show that F is a G-g-contraction. We have

∣

∣F(x, y)(t) – F(u, v)(t)
∣

∣ ≤

∫ T



∣

∣f
(

t,x(s), y(s)
)

– f
(

t,u(s), v(s)
)
∣

∣ds

≤
k

T

∫ T



(
∣

∣x(s) – u(s)
∣

∣ +
∣

∣y(s) – v(s)
∣

∣

)

ds

≤
k

T

∫ T



(

sup
z∈[,T]

∣

∣x(z) – u(z)
∣

∣ + sup
z∈[,T]

∣

∣y(z) – v(z)
∣

∣

)

ds

=
k



[

sup
z∈[,T]

∣

∣x(z) – u(z)
∣

∣ + sup
z∈[,T]

∣

∣y(z) – v(z)
∣

∣

]

.

Therefore,

sup
z∈[,T]

∣

∣F(x, y)(t) – F(u, v)(t)
∣

∣

≤
k



[

sup
z∈[,T]

∣

∣g(x)(z) – g(u)(z)
∣

∣ + sup
z∈[,T]

∣

∣g(y)(z) – g(v)(z)
∣

∣

]

.

This gives, ∀x, y,u, v ∈ X with gx≤ gu and gv≤ gy,

d
(

F(x, y),F(u, v)
)

≤
k



[

d(gx, gu) + d(gy, gv)
]

.

This implies that F is a G-g-contraction.

Next, condition (iv) in the hypothesis implies that there exists (x, y) ∈ X ×X such that

x(t) ≤

∫ T



f
(

t,x(s), y(s)
)

ds and

∫ T



f
(

t, y(s),x(s)
)

ds ≤ y(t).

But x(t) = g(x)(t) and y(t) = g(y)(t).

Therefore,

g(x)≤ F(x, y) and F(y,x) ≤ g(y)

	⇒
(

g(x),F(x, y)
)

∈ E(G) and
(

g(y),F(y,x)
)

∈ E
(

G–
)

	⇒ (X ×X)Fg �= φ.

Also, F and g are commutative and F(X ×X) ⊆ g(X).

Further, condition (i) in the hypothesis implies that condition (i) of Theorem . is sat-

isfied. Also, condition (ii) of Theorem . holds by the fact that (X,d,G) has property (A).

Thus, all conditions of Theorem . are fulfilled.

Hence, there exists a point (x∗, y∗) ∈ X ×X such that

gx∗ = F
(

x∗, y∗
)

and

gy∗ = F
(

y∗,x∗
)

.
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Hence, by the definition of g ,

x∗ = gx∗ = F
(

x∗, y∗
)

and

y∗ = gy∗ = F
(

y∗,x∗
)

,

i.e., (x∗, y∗) is a solution of the system (.). �

4 Conclusion

In this article, we have proved the existence of a coupled coincidence and unique coupled

common fixed point for a contraction mapping in a partially ordered complete metric

space endowed with a directed graph. Our results bring about a more unified approach

to the presentation of coupled coincidence and coupled common fixed point theorems

because of the use of graph theoretical concepts instead of a partial order.
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