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Abstract

Recently, Gordji et al. [Math. Comput. Model. 54, 1897-1906 (2011)] prove the
coupled coincidence point theorems for nonlinear contraction mappings satisfying
commutative condition in intuitionistic fuzzy normed spaces. The aim of this article is
to extend and improve some coupled coincidence point theorems of Gordji et al.
Also, we give an example of a nonlinear contraction mapping which is not applied
by the results of Gordji et al., but can be applied to our results.
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1. Introduction
The classical Banach’s contraction mapping principle first appear in [1]. Since this

principle is a powerful tool in nonlinear analysis, many mathematicians have much

contributed to the improvement and generalization of this principle in many ways (see

[2-10] and others).

One of the most interesting is study to other spaces such as probabilistic metric

spaces (see [11-15]). The fuzzy theory was introduced simultaneously by Zadeh [16].

The idea of intuitionistic fuzzy set was first published by Atanassov [17]. Since then,

Saadati and Park [18] introduced the concept of intuitionistic fuzzy normed spaces

(IFNSs). In [19], Saadati et al. have modified the notion of IFNSs of Saadati and Park

[18].

Several researchers have applied fuzzy theory to the well-known results in many

fields, for example, quantum physics [20], nonlinear dynamical systems [21], popula-

tion dynamics [22], computer programming [23], fixed point theorem [24-27], fuzzy

stability problems [28-30], statistical convergence [31-34], functional equation [35],

approximation theory [36], nonlinear equation [37,38] and many others.

In the other hand, coupled fixed points and their applications for binary mappings in

partially ordered metric spaces were introduced by Bhaskar and Lakshmikantham [39].

They applied coupled fixed point theorems to show the existence and uniqueness of a

solution for a periodic boundary value problem. After that, Lakshmikantham and Ćirić
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[40] proved some more generalizations of coupled fixed point theorems in partially

ordered sets.

Recently, Gordji et al. [41] proved some coupled coincidence point theorems for con-

tractive mappings satisfying commutative condition in partially complete IFNSs as

follows:

Theorem 1.1 (Gordji et al. [41]). Let (X, ≼) be a partially ordered set and (X, μ, ν, *,

◊) a complete IFNS such that (μ, ν) has n-property and

a♦ b ≤ ab ≤ a ∗ b, ∀a, b ∈ [0, 1]. (1:1)

Let F: X × X ® X and g : X ® X be two mappings such that F has the mixed g-

monotone property and

μ(F(x, y) − F(u, v), kt) ≥ μ(gx − gu, t) ∗ μ(gy − gv, t), ∀x, y, u, v ∈ X,
ν(F(x, y) − F(u, v), kt) ≤ ν(gx − gu, t)♦ν(gy − gv, t), ∀x, y, u, v ∈ X,

(1:2)

for which g(x) ≼ g(u) and g(y) ≽ z g(v), where 0 < k < 1, F(X × X) ⊆ g(X), g is continu-

ous and g commuting with F. Suppose that either

(1) F is continuous or

(2) X has the following properties:

(a) if {xn} is a non-decreasing sequence with {xn} ® x, then gxn ≼ gx for all n Î
N,

(b) if {yn} is a non-increasing sequence with {yn} ® y, then gy ≼ gyn for all n Î
N.

If there exist x0, y0 Î X such that

g(x0) � F(x0, y0), g(y0) � F(y0, x0),

then F and g have a coupled coincidence point in X × X.

In this article, we improve the result given by Gordji et al. [41] without using the

commutative condition and also give an example to validate the main results in this

article. Our results improve and extend some couple fixed point theorems due to

Gordji et al. [41] and other couple fixed point theorems.

2. Preliminaries
Now, we give some definitions, examples and lemmas for our main results in this

article.

Definition 2.1 ([42]). A binary operation *: [0,1]2 ® [0,1] is called a continuous t-

norm if ([0,1], *) is an abelian topological monoid, i.e.,

(1) * is associative and commutative;

(2) * is continuous;

(3) a * 1 = a for all a Î [0,1];

(4) a * b ≤ c * d whenever a ≤ c and b ≤ d for all a, b, c, d Î [0,1].

Definition 2.2 ([42]). A binary operation ◊: [0,1]2 ® [0,1] is called a continuous t-

conorm if ([0,1],◊) is an abelian topological monoid, i.e.,
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(1) ◊ is associative and commutative;

(2) ◊ is continuous;

(3) a ◊ 0 = a for all a Î [0,1];

(4) a ◊ b ≤ c ◊ d whenever a ≤ c and b ≤ d for all a, b, c, d Î [0,1].

Using the continuous t-norm and t-conorm, Saadati and Park [18] introduced the

concept of IFNSs.

Definition 2.3 ([18]). The 5-tuple (X, μ, ν, *,◊) is called an IFNS if X is a vector

space, * is a continuous t-norm, ◊ is a continuous t-conorm and μ, ν are fuzzy sets on

X × (0, ∞) satisfying the following conditions: for all x, y Î X and s, t > 0,

(IF1) μ(x, t) + ν(x, t) ≤ 1;

(IF2) μ(x, t) > 0;

(IF3) μ(x, t) = 1 if and only if x = 0;

(IF4) μ(αx, t) = μ

(
x,

t
|α|

)
for all a ≠ 0;

(IF5) μ(x, t) * μ(y, s) ≤ μ(x + y, t + s);

(IF6) μ(x,.): (0, ∞) ® [0,1] is continuous;

(IF7) μ is a non-decreasing function on ℝ+,

lim
t→∞ μ(x, t) = 1, lim

t→0
μ(x, t) = 0;

(IF8) ν(x, t) < 1;

(IF9) ν(x, t) = 0 if and only if x = 0;

(IF10) ν(αx, t) = ν

(
x,

t
|α|

)
for all a ≠ 0;

(IF11) ν(x, t) ◊ ν(y, s) ≥ ν(x + y, t + s);

(IF12) ν(x,·): (0, ∞) ® [0,1] is continuous;

(IF13) ν is a non-increasing function on ℝ+,

lim
t→∞ ν(x, t) = 0, lim

t→0
ν(x, t) = 1.

In this case, (μ, ν) is called an intuitionistic fuzzy norm.

Definition 2.4 ([18]). Let (X, μ, ν, *,◊) be an IFNS.

(1) A sequence {xn} in X is said to be convergent to a point x Î X with respect to the

intuitionistic fuzzy norm (μ, ν) if, for any ε > 0 and t > 0, there exists k Î N such that

μ(xn − x, t) > 1 − ε, ν(xn − x, t) < ε, ∀n ≥ k.

In this case, we write limn®∞ xn = x. In fact that limn®∞ xn = x if μ(xn - x, t) ® 1

and ν(xn - x, t) ® 0 as n ® ∞ for every t > 0.

(2) A sequence {xn} in X is called a Cauchy sequence with respect to the intuitionistic

fuzzy norm (μ, ν) if, for any ε > 0 and t > 0, there exists k Î N such that

μ(xn − xm, t) > 1 − ε, ν(xn − xm, t) < ε, ∀n,m ≥ k.

This implies {xn} is Cauchy if μ(xn - xm, t) ® 1 and ν(xn - xm, t) ® 0 as n, m ® ∞

for every t > 0.
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(3) An IFNS (X, μ, ν, *, ◊) is said to be complete if every Cauchy sequence in (X, μ, ν,

*, ◊) is convergent.

Definition 2.5 ([43,44]). Let X and Y be two IFNS. A function g : X ® Y is said to

be continuous at a point x0 Î X if, for any sequence {xn} in X converging to a point x0
Î X, the sequence {g(xn)} in Y converges to a point g(x0) Î Y. If g : X ® Y is continu-

ous at each x Î X, then g : X ® Y is said to be continuous on X.

Example 2.6 ([41]). Let (X, || · ||) be an ordinary normed space and θ an increasing

and continuous function from ℝ+ into (0,1) such that limt®∞ θ(t) = 1. Four typical

examples of these functions are as follows:

θ(t) =
t

t + 1
, θ(t) = sin

(
π t

2t + 1

)
, θ(t) = 1 − e−t , θ(t) = e

−1
t .

Let a * b = ab and a ◊ b ≥ ab for all a, b Î [0,1]. If, for any t Î (0, ∞), we define

μ(x, t) = [θ(t)]||x||, ν(x, t) = 1 − [θ(t)]||x||, ∀x ∈ X,

then (X, μ, ν, *, ◊) is an IFNS.

The other basic properties and examples of IFNSs are given in [18].

Definition 2.7 ([41]). Let (X, μ, ν, *,◊) be an IFNS. (μ, ν) is said to satisfy the n-prop-

erty on X × (0, ∞) if

lim
n→∞ [μ(x, knt)]n

p
= 1, lim

n→∞ [ν(x, knt)]n
p
= 0

whenever x Î X, k > 1 and p > 0.

For examples for n-property see in [41]. Next, we give some notion in coupled fixed

point theory.

Definition 2.8 ([39]). Let X be a non-empty set. An element (x, y) Î X × X is call a

coupled fixed point of the mapping F : X × X ® X if

x = F(x, y), y = F(y, x).

Definition 2.9 ([40]). Let X be a non-empty set. An element (x, y) Î X × X is call a

coupled coincidence point of the mappings F : X × X ® X and g : X ® X if

g(x) = F(x, y), g(y) = F(y, x).

Definition 2.10 ([39]). Let (X, ≼) be a partially ordered set and F : X × X ® X be a

mapping. The mapping F is said to has the mixed monotone property if F is monotone

non-decreasing in its first argument and is monotone non-increasing in its second

argument, that is, for any x, y Î X

x1, x2 ∈ X, x1 � x2 ⇒ F(x1, y) � F(x2, y) (2:1)

and

y1, y2 ∈ X, y1 � y2 ⇒ F(x, y1) � F(x, y2). (2:2)

Definition 2.11 ([40]). Let (X, ≼) be a partially ordered set and F : X × X ® X, g : X

® X be mappings. The mapping F is said to has the mixed g-monotone property if F is

monotone g-non-decreasing in its first argument and is monotone g-non-increasing in

its second argument, that is, for any x, y Î X,
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x1, x2 ∈ X, g(x1) � g(x2) ⇒ F(x1, y) � F(x2, y) (2:3)

and

y1, y2 ∈ X, g(y1) � g(y2) ⇒ F(x, y1) � F(x, y2). (2:4)

Definition 2.12 ([40]). Let X be a non-empty set and F : X × X ® X, g : X ® X be

mappings. The mappings F and g are said to be commutative if

g(F(x, y)) = F(g(x), g(y)), ∀x, y ∈ X.

The following lemma proved by Haghi et al. [45] is useful for our main results:

Lemma 2.13 ([45]). Let X be a nonempty set and g : X ® X be a mapping. Then,

there exists a subset E ⊆ X such that g(E) = g(X) and g : E ® X is one-to-one.

3. Main Results
First, we prove a coupled fixed point theorem for a mapping F : X × X ® X which is

an essential tool in the partial order IFNSs to show the existence of coupled fixed

point. Although the proof in Theorem 3.1 is not difficult to modify, it is an important

theorem which is helpful in proving some coupled coincidence point theorems without

commutative condition.

Theorem 3.1. Let (X, ≼) be a partially ordered set and (X, μ, ν, *, ◊) a complete IFNS

such that (μ, ν) has n-property and

a ♦ b ≤ ab ≤ a ∗ b, ∀a, b ∈ [0, 1]. (3:1)

Let F : X × X ® X be mapping such that F has the mixed monotone property and

μ(F(x, y) − F(u, v), kt) ≥ μ(x − u, t) ∗ μ(y − v, t), ∀x, y, u, v ∈ X,
ν(F(x, y) − F(u, v), kt) ≤ ν(x − u, t)♦ν(y − v, t), ∀x, y, u, v ∈ X,

(3:2)

for which x ≼ u and y ≽ v, where 0 < k < 1. Suppose that either

(1) F is continuous or

(2) X has the following properties:

(a) if {xn} is a non-decreasing sequence with {xn} ® x, then xn ≼ x for all n Î N,

(b) if {yn} is a non-increasing sequence with {yn} ® y, then y ≼ yn for all n Î N.

If there exist x0, y0 Î X such that

x0 � F(x0, y0), y0 � F(y0, x0),

then F has a coupled fixed point in X × X.

Proof. Let x0, y0 Î X be such that

x0 � F(x0, y0), y0 � F(y0, x0).

Since F(X × X) ⊆ X, we can construct the sequences {xn} and {yn} in X such that

xn+1 = F(xn, yn), yn+1 = F(yn, xn), ∀n ≥ 0. (3:3)

Now, we show that

xn � xn+1, yn � yn+1, ∀n ≥ 0. (3:4)
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In fact, by induction, we prove this. For n = 0, since x0 ≼ F(x0, y0) = x1 and y0 = F(y0,

x0) ≽ y1, we show that (3.4) holds for n = 0. Suppose that (3.4) holds for any n ≥ 0.

Then, we have

xn � xn+1, yn � yn+1. (3:5)

Since F has the mixed monotone property, it follows from (3.5) and (2.1) that

F(xn, y) � F(xn+1, y), F(yn+1, x) � F(yn, x), ∀x, y ∈ X, (3:6)

and also it follows from (3.5) and (2.2) that

F(y, xn) � F(y, xn+1), F(x, yn+1) � F(x, yn), ∀x, y ∈ X. (3:7)

If we take y = yn and x = xn in (3.6), then we get

xn+1 = F(xn, yn) � F(xn+1, yn), F(yn+1, xn) � F(yn, xn) = yn+1. (3:8)

If we take y = yn+1 and x = xn+1 in (3.7), then we get

F(yn+1, xn) � F(yn+1, xn+1) = yn+2, xn+2 = F(xn+1, yn+1) � F(xn+1, yn). (3:9)

Hence, it follows from (3.8) and (3.9) that

xn+1 � xn+2, yn+1 � yn+2. (3:10)

Therefore, by induction, we conclude that (3.4) holds for all n ≥ 0, that is,

x0 � x1 � x2 � · · · � xn � xn+1 � · · · (3:11)

and

y0 � y1 � y2 � · · · � yn � yn+1 � · · · . (3:12)

Define an(t): = μ(xn - xn+1, t) * μ(yn - yn+1, t). Then, using (3.2) and (3.3), we have

μ(xn − xn+1, kt) = μ(F(xn−1, yn−1) − F(xn, yn), kt)

≥ μ(xn−1 − xn, t) ∗ μ(yn−1 − yn, t)

= αn−1(t)

(3:13)

and

μ(yn − yn+1, kt) = μ(yn+1 − yn, kt)

= μ(F(yn, xn) − F(yn−1, xn−1), kt)

≥ μ(yn − yn−1, t) ∗ μ(xn − xn−1, t)

= μ(yn−1 − yn, t) ∗ μ(xn−1 − xn, t)

= αn−1(t).

(3:14)

From the t-norm property, (3.13) and (3.14), it follows that

αn(kt) ≥ αn−1(t) ∗ αn−1(t). (3:15)

From (3.1), we have

αn−1(t) ∗ αn−1(t) ≥ [αn−1(t)]2. (3:16)

By (3.15) and (3.16), we get an(kt) ≥ [an-1(t)]
2 for all n ≥ 1. Repeating this process,

we have
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αn(t) ≥
[
αn−1

(
t
k

)]2

≥ · · · ≥
[
α0

(
t
kn

)]2n

, (3:17)

which implies that

μ(xn − xn+1, kt) ∗ μ(yn − yn+1, kt) ≥
[
μ

(
x0 − x1,

t
kn

)]2n

∗
[
μ

(
y0 − y1,

t
kn

)]2n

. (3:18)

On the other hand, we have

t(1 − k)(1 + k + · · · + km−n−1) < t, ∀m > n, 0 < k < t.

By property of t-norm, we get

μ(xn − xm, t) ∗ μ(yn − ym, t)

≥ μ(xn − xm, t(1 − k)(1 + k + · · · + km−n−1))

∗μ(yn − ym, t(1 − k)(1 + k + · · · + km−n−1))

≥ μ(xn − xn+1, t(1 − k)) ∗ μ(yn − yn+1, t(1 − k))

∗μ(xn+1 − xn+2, t(t − k)k) ∗ μ(yn+1 − yn+2, t(1 − k)k)

∗ · · ·
∗μ(xm−1 − xm, t(1 − k)km−n−1) ∗ μ(ym−1 − ym, t(t − k)km−n−1)

≥ μ

(
x0 − x1, (1 − k)

t
kn

)
∗ μ

(
y0 − y1, (1 − k)

t
kn

)
∗ · · ·

∗μ

(
x0 − x1, (1 − k)

t

kn

)
∗ μ

(
y0 − y1, (1 − k)

t

kn

)

≥
[
μ

(
x0 − x1, (1 − k)

t
kn

)]m−n

∗
[
μ

(
y0 − y1, (1 − k)

t
kn

)]m−n

≥
[
μ

(
x0 − x1, (1 − k)

t
kn

)]m

∗
[
μ

(
y0 − y1, (1 − k)

t
kn

)]m

≥
[
μ

(
x0 − x1, (1 − k)

t

kn

)]np

∗
[
μ

(
y0 − y1, (1 − k)

t

kn

)]np

,

(3:19)

where p > 0 such that m < np. Sine (μ, ν) has the n-property, we have

lim
n→∞

[
μ

(
x0 − x1, (1 − k)

t

kn

)]np

= 1

and so

lim
n→∞ μ(xn − xm) ∗ μ(yn − ym) = 1. (3:20)

Next, we claim that

lim
n→∞ ν(xn − xm)♦ν(yn − ym) = 0.

Define bn(t) := ν(xn - xn+1, t) ◊ ν(yn - yn+1, t). It follows from (3.2) and (3.3) that

ν(xn − xn+1, kt) = ν(F(xn−1, yn−1) − F(xn, yn), kt)

≤ ν(xn−1 − xn, t)♦ν(yn−1 − yn, t)

= βn−1(t)

(3:21)
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and

ν(yn − yn+1, kt) = ν(yn+1 − yn, kt)

= ν(F(yn, xn) − F(yn−1, xn−1), kt)

≤ ν(yn − yn−1, t)♦ν(xn − xn−1, t)

= ν(yn−1 − yn, t)♦ν(xn−1 − xn, t)

= βn−1(t).

(3:22)

Thus, it follows from the notion of t-conorm, (3.21) and (3.22) that

βn(kt) ≤ βn−1(t)♦βn−1(t). (3:23)

From (3.1), we have

βn−1(t)♦βn−1(t) ≤ [βn−1(t)]2. (3:24)

Thus, by (3.23) and (3.24), we get bn(kt) ≤ [bn-1(t)]2 for all n ≥ 1. Repeating this pro-

cess again, we have

βn(t) ≤
[
βn−1

(
t
k

)]2

≤ · · · ≤
[
β0

(
t
kn

)]2n

, (3:25)

that is,

ν(xn − xn+1, kt)♦ν(yn − yn+1, kt) ≤
[
ν

(
x0 − x1,

t
kn

)]
♦

[
ν

(
y0 − y1,

t
kn

)]2n

.(3:26)

Since we have

t(1 − k)(1 + k + · · · + km−n−1) < t, ∀m > n, 0 < k < 1,

by the t-conorm property, we get

ν(xn − xm, t)♦ν(yn − ym, t)

≤ ν(xn − xm, t(1 − k)(1 + k + · · · + km−n−1))

♦ν(yn − ym, t(1 − k)(1 + k + · · · + km−n−1))

≤ ν(xn − xn+1, t(1 − k))♦ν(yn − yn+1, t(1 − k)

♦ν(xn+1 − xn+2, t(1 − k)k)♦ν(yn+1 − yn+2, t(1 − k)k)

♦ · · ·
♦ν(xm−1 − xm,t(1 − k)km−n−1)♦ν(ym−1 − ym,t(1 − k)km−n−1)

≤ ν

(
x0 − x1, (1 − k)

t
kn

)
♦

(
y0 − y1, (1 − k)

t
kn

)
♦ · · ·

♦ν

(
x0 − x1, (1 − k)

t

kn

)
♦ν

(
y0 − y1(1 − k)

t

kn

)

≤
[
ν

(
x0 − x1, (1 − k)

t
kn

)]m−n

♦
[
ν

(
y0 − y1, (1 − k)

t
kn

)]m−n

≤
[
ν

(
x0 − x1, (1 − k)

t
kn

)]m

♦
[
ν

(
y0 − y1, (1 − k)

t
kn

)]m

≤
[
ν

(
x0 − x1, (1 − k)

t
kn

)]np

♦
[
ν

(
y0 − y1, (1 − k)

t
kn

)]np

,

(3:27)
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where p > 0 such that m < np. Sine (μ, ν) has the n-property, we have

lim
n→∞

[
ν

(
x0 − x1, (1 − k)

t
kn

)]np

= 0

and so

lim
n→∞ ν(xn − xm)♦ν(yn − ym) = 0. (3:28)

From (3.20) and (3.28), we know that the sequences {xn} and {yn} are Cauchy

sequences in X. Since X complete, there exist x, y Î X such that

lim
n→∞ xn = x, lim

n→∞ yn = y. (3:29)

Next, we show that x = F(x, y) and y = F(y, x). If the assumption (1) holds, then we

have

x = lim
n→∞ xn+1 = lim

n→∞ F(xn, yn) = F( lim
n→∞ xn, lim

n→∞ yn) = F(x, y) (3:30)

and

y = lim
n→∞ yn+1 = lim

n→∞ F(yn, xn) = F( lim
n→∞ yn, lim

n→∞ xn) = F(y, x). (3:31)

Therefore, x = F(x, y) and y = F(y, x), that is, F has a coupled fixed point.

Suppose that the assumption (2) holds. Since {xn} is non-decreasing and xn ® x, it

follows from (a) that xn ≼ x for all n Î N. Similarly, we can conclude that yn ≽ y for

all n Î N. Then, by (3.2), we get

μ(xn+1 − F(x, y), kt) = μ(F(xn, yn) − F(x, y), kt)

≥ μ(xn − x, t) ∗ μ(yn − y, t).
(3:32)

Taking the limit as n ® ∞, we have μ(x - F(x, y), kt) = 1 and so x = F(x, y). Using

(3.2) again, we have

ν(yn+1 − F(y, x), kt) = ν(F(y, x) − yn+1, kt)

= ν(F(y, x) − F(yn, xn), kt)

≤ ν(y − yn, t)♦ν(x − xn, t)

= ν(yn − y, t)♦ν(xn − x, t).

(3:33)

Taking the limit as n ® ∞ in both sides of (3.33), we have ν(y - F(y, x), kt) = 0 and

then y = F(y, x). Therefore, F has a coupled fixed point at (x, y). This completes the

proof. □
Next, we prove the existence of coupled coincidence point theorem, where we do not

require that F and g are commuting.

Theorem 3.2. Let (X, ≼) be a partially ordered set and (X, μ, ν, *,◊) a IFNS such that

(μ, ν) has n-property and

a♦ b ≤ ab ≤ a ∗ b, ∀a, b ∈ [0, 1]. (3:34)

Let F : X × X ® X and g : X ® X be two mappings such that F has the mixed g-

monotone property and

μ(F(x, y) − F(u, v), kt) ≥ μ(gx − gu, t) ∗ μ(gy − gv, t), ∀x, y, u, v ∈ X,
ν(F(x, y) − F(u, v), kt) ≤ ν(gx − gu, t)♦ν(gy − gv, t), ∀x, y, u, v ∈ X,

(3:35)
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for which gx ≼ gu and gy ≽ gv, where 0 < k < 1, F(X × X) ⊆ g(X), g(X) is complete and

g is continuous. Suppose that either

(1) F is continuous or

(2) X has the following property:

(a) if {xn} is a non-decreasing sequence with {xn} ® x, then xn ≼ x for all n Î N,

(b) if {yn} is a non-increasing sequence with {yn} ® y, then y ≼ yn for all n Î N.

If there exist x0, y0 Î X such that

g(x0) � F(x0, y0), g(y0) � F(y0, x0),

then F and g have a coupled coincidence point in X × X.

Proof. Using Lemma 2.13, there exists E ⊆ X such that g(E) = g(X) and g : E ® X is

one-to-one. We define a mapping A : g(E) × g(E) → X by

A(gx, gy) = F(x, y), ∀gx, gy ∈ g(E). (3:36)

As g is one to one on g(E), so A is well-defined. Thus, it follows from (3.35) and

(3.36) that

μ(A(gx, gy) − A(gu, gv), kt) ≥ μ(gx − gu, t) ∗ (gy − gv, t) (3:37)

and

ν(A(gx, gy) − A(gx, gy), kt) ≤ ν(gx − gu, t)♦ν(gy − gv, t) (3:38)

for all gx, gy, gu, gv Î g(E) with gx ≼ gy and gy ≽ gv. Since F has the mixed g-mono-

tone property, for all x, y Î X, we have

x1, x2 ∈ X, gx1 � gx2 ⇒ F(x1, y) � F(x2, y) (3:39)

and

y1, y2 ∈ X, gy1 � gy2 ⇒ F(x, y1) � F(x, y2). (3:40)

Thus, it follows from (3.36), (3.39) and (3.40) that, for all gx, gy Î g(E),

gx1, gx2 ∈ g(E), gx1 � gx2 ⇒ A(gx1, gy) � A(gx2, gy) (3:41)

and

gy1, gy2 ∈ g(E), gy1 � gy2 ⇒ A(gx, gy1) � A(gx, gy2), (3:42)

which implies that A has the mixed monotone property.

Suppose that the assumption (1) holds. Since F is continuous, A is also continuous.

Using Theorem 3.1 with the mapping A, it follows that A has a coupled fixed point

(u, v) Î g(X) × g(X).

Suppose that the assumption (2) holds. We can conclude similarly in the proof of

Theorem 3.1 that the mapping A has a coupled fixed point (u, v) Î g(X) × g(X).

Finally, we prove that F and g have a coupled coincidence point in X. Since (u, v) is a

coupled fixed point of A, we get

u = A(u, v), v = A(v, u). (3:43)
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Since (u, v) Î g(X) × g(X), there exists a point (̂u, v̂) ∈ X × X such that

u = ĝu, v = ĝv. (3:44)

Thus, it follows from (3.43) and (3.44) that

ĝu = A(ĝu, ĝv), ĝv = A(ĝv, ĝu). (3:45)

Also, from (3.36) and (3.45), we get

ĝu = F(̂u, v̂), ĝv = F(̂v, û). (3:46)

Therefore, (̂u, v̂) is a coupled coincidence point of F and g. This completes the proof.

□
Next, we give example to validate Theorem 3.2.

Example 3.3. Let X = ℝ, a * b = ab ≥ a ◊ b for all a, b Î [0,1] and θ(t) = e−
1
t . Then,

(X, μ, ν, *,◊) is a complete fuzzy normed space, where

μ(x, t) = [θ(t)]|x|, ν(x, t) = 1 − [θ(t)]|x|, ∀x ∈ X,

that (μ, ν) satisfies the n-property on X × (0, ∞). If X is endowed with the usual

order as x ≼ y ⇔ y - x Î [0, ∞), then (X, ≼) is a partially ordered set. Define mappings

F : X × X ® X and g : X ® X by

F(x, y) = 1, ∀(x, y) ∈ X × X

and

g(x) = x − 1, ∀x ∈ X.

Since

g(F(x, y)) = g(1) = 0 �= 1 = F(gx, gy)

for all x, y Î X, the mappings F and g do not satisfy the commutative condition.

Hence, Theorem 2.5 of Gordji et al. [41] cannot be applied to this example. But, by

simple calculation, we see that F(X × X) ⊆ g(X), g and F are continuous and F has the

mixed g-monotone property. Moreover, there exist x0 = 1 and y0 = 3 with

g(1) = 0 � 1 = F(1, 3)

and

g(3) = 2 � 1 = F(3, 1).

Now, for any x, y, u, v Î X with gx ≼ gu and gy ≽ gv, we get

μ(F(x, y) − F(u, v), kt) = μ(0, kt)

= 1

≥ μ(gx − gu, t) ∗ μ(gy − gv, t)

(3:47)

and

ν(F(x, y) − F(u, v), kt) = ν(0, kt)

= 0

≤ ν(gx − gu, t)♦ν(gy − gv, t),

(3:48)
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where 0 < k < 1. Therefore, all the conditions of Theorem 3.2 hold and so F and g

have a coupled coincidence point in X × X. In fact, a point (2,2) is a coupled coinci-

dence point of F and g.

Remark 3.4. Although Theorem 2.5 of Gordji et al. [41] is essential tool in the par-

tially ordered fuzzy normed spaces to claim the existence of coupled coincidence

points of two mappings. However, some mappings do not have the commutative prop-

erty as in the above example. Therefore, it is very interesting to use Theorem 3.2 as

another auxiliary tool to claim the existence of a coupled coincidence point.
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