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Abstract
In the setting of partially ordered metric spaces, using the notion of compatible
mappings, we establish the existence and uniqueness of coupled common fixed
points involving a (ϕ ,ψ )-contractive condition for mixed g-monotone operators. Our
results extend and generalize the well-known results of Berinde (Nonlinear Anal. TMA
74:7347-7355, 2011; Nonlinear Anal. TMA 75:3218-3228, 2012) and weaken the
contractive conditions involved in the results of Alotaibi et al. (Fixed Point Theory
Appl. 2011:44, 2011), Bhaskar et al. (Nonlinear Anal. TMA 65:1379-1393, 2006), and
Luong et al. (Nonlinear Anal. TMA 74:983-992, 2011). The effectiveness of the
presented work is validated with the help of suitable examples.
MSC: 54H10; 54H25
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1 Introduction and preliminaries
Bhaskar and Lakshmikantham [] introduced the notion of coupled fixed points and
proved some coupled fixed point theorems for amapping with themixedmonotone prop-
erty in the setting of partially orderedmetric spaces. These concepts are defined as follows.

Definition . [] Let (X,≤) be a partially ordered set and F : X × X → X. The mapping
F is said to have the mixed monotone property if F(x, y) is monotone non-decreasing in x
and monotone non-increasing in y; that is, for any x, y ∈ X,

x,x ∈ X, x ≤ x implies F(x, y) ≤ F(x, y)

and

y, y ∈ X, y ≤ y implies F(x, y) ≥ F(x, y).

Definition . [] An element (x, y) ∈ X×X is called a coupled fixed point of themapping
F : X ×X → X if F(x, y) = x and F(y,x) = y.
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Bhaskar and Lakshmikantham [] proved the following results.

Theorem. [] Let (X,≤) be a partially ordered set and suppose there exists ametric d on
X such that (X,d) is a complete metric space. Let F : X ×X → X be a continuous mapping
having the mixed monotone property on X. Assume that there exists a k ∈ [, ) with

d
(
F(x, y),F(u, v)

) ≤ k

[
d(x,u) + d(y, v)

]
(.)

for all x ≥ u and y≤ v.
If there exist two elements x, y ∈ X with x ≤ F(x, y) and y ≥ F(y,x), then there

exist x, y ∈ X such that x = F(x, y) and y = F(y,x).

Theorem . [] Let (X,≤) be a partially ordered set and suppose there exists a metric d
on X such that (X,d) is a complete metric space.Assume that X has the following property:

(i) if a non-decreasing sequence {xn} → x, then xn ≤ x for all n,
(ii) if a non-increasing sequence {yn} → y, then y≤ yn for all n.
Let F : X × X → X be a mapping having the mixed monotone property on X. Assume

that there exists a k ∈ [, ) with the condition (.). If there exist two elements x, y ∈ X
with x ≤ F(x, y) and y ≥ F(y,x), then there exist x, y ∈ X such that x = F(x, y) and
y = F(y,x).

Lakshmikantham and Ćirić [] extended the notion of mixed monotone property to
mixed g-monotone property and generalized the results of Bhaskar and Lakshmikantham
[] by establishing the existence of coupled coincidence point results using a pair of com-
mutative maps.

Definition . [] Let (X,≤) be a partially ordered set and F : X ×X → X and g : X → X.
We say F has the mixed g-monotone property if F(x, y) is monotone g-nondecreasing in
its first argument and is monotone g-nonincreasing in its second argument; that is, for
any x, y ∈ X,

x,x ∈ X, gx ≤ gx implies F(x, y) ≤ F(x, y)

and

y, y ∈ X, gy ≤ gy implies F(x, y) ≥ F(x, y).

Definition . [] An element (x, y) ∈ X ×X is called a coupled coincidence point of the
mappings F : X ×X → X and g : X → X if F(x, y) = gx and F(y,x) = gy.

Definition . [] An element (x, y) ∈ X × X is called a coupled common fixed point of
the mappings F : X ×X → X and g : X → X if x = gx = F(x, y) and y = gy = F(y,x).

Definition . [] Let X be a non-empty set and F : X ×X → X and g : X → X. We say F
and g are commutative if gF(x, y) = F(gx, gy) for all x, y ∈ X.
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Later, Choudhury and Kundu [] introduced the notion of compatibility in the context
of coupled coincidence point problems and used the notion to improve the results of Lak-
shmikantham and Ćirić [].

Definition . [] The mappings F : X ×X → X and g : X → X are said to be compatible
if

lim
n→∞d

(
gF(xn, yn),F(gxn, gyn)

)
=  and lim

n→∞d
(
gF(yn,xn),F(gyn, gxn)

)
= 

whenever {xn} and {yn} are sequences in X such that limn→∞ F(xn, yn) = limn→∞ gxn = x
and limn→∞ F(yn,xn) = limn→∞ gyn = y for some x, y ∈ X.

In recent years, following Bhaskar and Lakhsmikantham [], the existence and unique-
ness of coupled fixed points under more general contractive conditions were established
by various authors. One can refer to [, –].
In order to generalize the results of Bhaskar and Lakshmikantham [], Luong and Thuan

[] considered the following class of control functions.

Definition . [] Let � denote the class of functions ϕ : [,∞)→ [,∞) which satisfy

(ϕ) ϕ is continuous and non-decreasing;
(ϕ) ϕ(t) =  if and only if t = ;
(ϕ) ϕ(t + s)≤ ϕ(t) + ϕ(s), for all t, s ∈ [,∞).

Definition . [] Let� denote the class of functionsψ : [,∞)→ [,∞) which satisfy

(iψ ) limt→r ψ(t) >  for all r >  and limt→+ ψ(t) = .

The contractive condition considered by Luong and Thuan [] is given below:

ϕ
(
d
(
F(x, y),F(u, v)

)) ≤ 

ϕ
(
d(x,u) + d(y, v)

)
–ψ

(
d(x,u) + d(y, v)



)
, (.)

where ϕ ∈ �, ψ ∈ � and x ≥ u, y≤ v.
On the other hand, Alotaibi and Alsulami [] extended the results of Luong and Thuan

[] for a compatible pair (F , g), where F : X×X → X and g : X → X are themaps satisfying
the following contractive condition:

ϕ
(
d
(
F(x, y),F(u, v)

)) ≤ 

ϕ
(
d(gx, gu) + d(gy, gv)

)
–ψ

(
d(gx, gu) + d(gy, gv)



)
, (.)

with ϕ ∈ �, ψ ∈ � and gx≥ gu, gy≤ gv.
We consider the class � redefined by Berinde [] as follows.

Definition . [] Let � denote the class of functions ϕ : [,∞)→ [,∞) which satisfy

(iϕ) ϕ is continuous and (strictly) increasing;
(iiϕ) ϕ(t) < t for all t > ;
(iiiϕ ) ϕ(t + s) ≤ ϕ(t) + ϕ(s) for all t, s ∈ [,∞).

Note that by (iϕ) and (iiϕ), we have ϕ(t) =  if and only if t = .

http://www.journalofinequalitiesandapplications.com/content/2012/1/285
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Berinde [] weakened the contractive conditions (.) and (.) by considering the more
general one

ϕ

(
d(F(x, y),F(u, v)) + d(F(y,x),F(v,u))



)
≤ ϕ

(
d(x,u) + d(y, v)



)

–ψ

(
d(x,u) + d(y, v)



)
(.)

for a mixed monotone mapping F : X ×X → X, x≥ u, y≤ v, where ϕ ∈ � and ψ ∈ � .
The present work extends and generalizes several results presented in the literature of

fixed point theory. Our theorems directly derive the main results of Berinde [, ]. We
give suitable examples to show how our results extend the well-known results of Alotaibi
et al. [], Bhaskar et al. [] and Luong et al. [] by significantly weakening the involved
contractive condition.

2 Main results
Theorem . Let (X,≤) be a partially ordered set and suppose there exists a metric d on X
such that (X,d) is a complete metric space. Let F : X×X → X, g : X → X be two maps with
F having the mixed g-monotone property on X such that there exist two elements x, y ∈ X
with gx ≤ F(x, y) and gy ≥ F(y,x). Suppose there exist ϕ ∈ � and ψ ∈ � such that

ϕ

(
d(F(x, y),F(u, v)) + d(F(y,x),F(v,u))



)
≤ ϕ

(
d(gx, gu) + d(gy, gv)



)

–ψ

(
d(gx, gu) + d(gy, gv)



)
(.)

for all x, y,u, v ∈ X with gx≥ gu and gy≤ gv.
Suppose that F(X ×X)⊆ g(X), g is continuous and the pair (F , g) is compatible.
Also suppose either
(a) F is continuous, or
(b) X has the following property:

(i) if a non-decreasing sequence {xn} → x, then gxn ≤ gx for all n;
(ii) if a non-increasing sequence {yn} → y, then gy≤ gyn for all n.

Then there exist x, y ∈ X such that gx = F(x, y) and gy = F(y,x); that is, F and g have a
coupled coincidence point in X.

Proof Let x, y ∈ X such that gx ≤ F(x, y) and gy ≥ F(y,x). Since F(X × X) ⊆ g(X),
we can choose x, y ∈ X such that gx = F(x, y), gy = F(y,x). Again, we can choose
x, y ∈ X such that gx = F(x, y), gy = F(y,x).
Continuing this process, we can construct sequences {gxn} and {gyn} in X such that

gxn+ = F(xn, yn), gyn+ = F(yn,xn) for all n≥ . (.)

We shall prove, for all n≥ , that

gxn ≤ gxn+, (.)

gyn ≥ gyn+. (.)

http://www.journalofinequalitiesandapplications.com/content/2012/1/285
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Since gx ≤ F(x, y) and gy ≥ F(y,x), gx = F(x, y), gy = F(y,x), we have gx ≤
gx, gy ≥ gy; that is, (.) and (.) hold for n = .
Suppose that (.) and (.) hold for some n > , i.e., gxn ≤ gxn+, gyn ≥ gyn+. As F has

the mixed g-monotone property, by (.), we have

gxn+ = F(xn, yn) ≤ F(xn+, yn) ≤ F(xn+, yn+) = gxn+,

and

gyn+ = F(yn,xn) ≥ F(yn+,xn) ≥ F(yn+,xn+) = gyn+;

that is,

gxn+ ≤ gxn+ and gyn+ ≥ gyn+.

Then, by mathematical induction, it follows that (.) and (.) hold for all n≥ .
If, for some n ≥ , we have (gxn+, gyn+) = (gxn, gyn), then F(xn, yn) = gxn and F(yn,xn) =

gyn; that is, F and g have a coincidence point. So, now onwards, we suppose (gxn+, gyn+) �=
(gxn, gyn) for all n ≥ ; that is, we suppose that either gxn+ = F(xn, yn) �= gxn or gyn+ =
F(yn,xn) �= gyn.
Since gxn ≥ gxn– and gyn ≤ gyn–, by (.) and (.), we have, for all n≥ , that

ϕ

(
d(gxn+, gxn) + d(gyn+, gyn)



)

= ϕ

(
d(F(xn, yn),F(xn–, yn–)) + d(F(yn,xn),F(yn–,xn–))



)

≤ ϕ

(
d(gxn, gxn–) + d(gyn, gyn–)



)
–ψ

(
d(gxn, gxn–) + d(gyn, gyn–)



)
. (.)

Since ψ is non-negative, we have

ϕ

(
d(gxn+, gxn) + d(gyn+, gyn)



)
≤ ϕ

(
d(gxn, gxn–) + d(gyn, gyn–)



)
.

By the monotonicity of ϕ, we have

d(gxn+, gxn) + d(gyn+, gyn)


≤ d(gxn, gxn–) + d(gyn, gyn–)


.

Let Rn = d(gxn+,gxn)+d(gyn+,gyn)
 , then {Rn} is a monotone decreasing sequence of non-

negative real numbers. Therefore, there exists some R ≥  such that

lim
n→∞Rn = lim

n→∞

[
d(gxn+, gxn) + d(gyn+, gyn)



]
= R. (.)

We claim that R = .
On the contrary, suppose that R > .

http://www.journalofinequalitiesandapplications.com/content/2012/1/285
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Taking limit as n → ∞ on both sides of (.) and using the properties of ϕ and ψ , we
have

ϕ(R) = lim
n→∞ϕ(Rn) ≤ lim

n→∞
[
ϕ(Rn–) –ψ(Rn–)

]
= ϕ(R) – lim

Rn–→R
ψ(Rn–) < ϕ(R),

a contradiction.
Thus, R = ; that is,

lim
n→∞Rn = lim

n→∞

[
d(gxn+, gxn) + d(gyn+, gyn)



]
= . (.)

Next, we shall show that {gxn} and {gyn} are Cauchy sequences.
If possible, suppose that at least one of {gxn} and {gyn} is not a Cauchy sequence. Then

there exists an ε >  for which we can find subsequences {gxn(k)}, {gxm(k)} of {gxn} and
{gyn(k)}, {gym(k)} of {gyn} with n(k) >m(k)≥ k such that

rk =
d(gxn(k), gxm(k)) + d(gyn(k), gym(k))


≥ ε. (.)

Further, corresponding to m(k), we can choose n(k) in such a way that it is the smallest
integer with n(k) >m(k)≥ k and satisfies (.). Then

d(gxn(k)–, gxm(k)) + d(gyn(k)–, gym(k))


< ε. (.)

By (.), (.) and the triangle inequality, we have

ε ≤ rk =
d(gxn(k), gxm(k)) + d(gyn(k), gym(k))



≤ {d(gxn(k), gxn(k)–) + d(gxn(k)–, gxm(k)) + d(gyn(k), gyn(k)–) + d(gyn(k)–, gym(k))}


<
d(gxn(k), gxn(k)–) + d(gyn(k), gyn(k)–)


+ ε.

Letting k → ∞ and using (.) in the last inequality, we have

lim
k→∞

rk = lim
k→∞

[
d(gxn(k), gxm(k)) + d(gyn(k), gym(k))



]
= ε. (.)

Again, by the triangle inequality

rk =
d(gxn(k), gxm(k)) + d(gyn(k), gym(k))



≤

{
d(gxn(k), gxn(k)+) + d(gxn(k)+, gxm(k)+) + d(gxm(k)+, gxm(k))
+ d(gyn(k), gyn(k)+) + d(gyn(k)+, gym(k)+) + d(gym(k)+, gym(k))

}



= Rn(k) + Rm(k) +
d(gxn(k)+, gxm(k)+) + d(gyn(k)+, gym(k)+)


.

http://www.journalofinequalitiesandapplications.com/content/2012/1/285
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By the monotonicity of ϕ and the property (iiiϕ), we have

ϕ(rk) ≤ ϕ(Rn(k)) + ϕ(Rm(k)) + ϕ

(
d(gxn(k)+, gxm(k)+) + d(gyn(k)+, gym(k)+)



)
. (.)

Since n(k) >m(k), gxn(k) ≥ gxm(k) and gyn(k) ≤ gym(k).
Then by (.) and (.), we have

ϕ

(
d(gxn(k)+, gxm(k)+) + d(gyn(k)+, gym(k)+)



)

= ϕ

(
d(F(xn(k), yn(k)),F(xm(k), ym(k))) + d(F(yn(k),xn(k)),F(ym(k),xm(k)))



)

≤ ϕ

(
d(gxn(k), gxm(k)) + d(gyn(k), gym(k))



)

–ψ

(
d(gxn(k), gxm(k)) + d(gyn(k), gym(k))



)

= ϕ(rk) –ψ(rk). (.)

By (.) and (.), we have

ϕ(rk) ≤ ϕ(Rn(k)) + ϕ(Rm(k)) + ϕ(rk) –ψ(rk).

Letting k → ∞, using (.), (.) and the properties of ϕ and ψ in the last inequality, we
have

ϕ(ε) ≤ ϕ() + ϕ() + ϕ(ε) – lim
k→∞

ψ(rk)

= ϕ(ε) – lim
rk→ε

ψ(rk) < ϕ(ε),

a contradiction.
Therefore, both {gxn} and {gyn} are Cauchy sequences in X. By the completeness of X,

there exist x, y ∈ X such that

lim
n→∞F(xn, yn) = lim

n→∞ gxn = x and lim
n→∞F(yn,xn) = lim

n→∞ gyn = y. (.)

Since F and g are compatible mappings, we have from (.)

lim
n→∞d

(
gF(xn, yn),F(gxn, gyn)

)
= , (.)

lim
n→∞d

(
gF(yn,xn),F(gyn, gxn)

)
= . (.)

Let the condition (a) hold.
For all n≥ , we have

d
(
gx,F(gxn, gyn)

) ≤ d
(
gx, gF(xn, yn)

)
+ d

(
gF(xn, yn),F(gxn, gyn)

)
.

http://www.journalofinequalitiesandapplications.com/content/2012/1/285
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Taking n → ∞ in the last inequality, using the inequalities (.), (.) and the continu-
ities of F and g , we have d(gx,F(x, y)) = ; that is, gx = F(x, y). Again, for all n≥ ,

d
(
gy,F(gyn, gxn)

) ≤ d
(
gy, gF(yn,xn)

)
+ d

(
gF(yn,xn),F(gyn, gxn)

)
.

Taking n → ∞ in the last inequality, using the inequalities (.), (.) and the con-
tinuities of F and g , we have d

(
gy,F(y,x)

)
= ; that is, gy = F(y,x). Hence, the element

(x, y) ∈ X×X is a coupled coincidence point of themappings F : X×X → X and g : X → X.
Next, we suppose that the condition (b) holds.
By (.), (.) and (.), we have {gxn} is a non-decreasing sequence, gxn → x and {gyn}

is a non-increasing sequence, gyn → y as n → ∞. Hence, by the assumption (b), we have
for all n ≥ ,

ggxn ≤ gx and ggyn ≥ gy. (.)

Since F and g are compatible mappings and g is continuous, by inequalities (.)-(.),
we have

lim
n→∞ ggxn = gx = lim

n→∞ g
(
F(xn, yn)

)
= lim

n→∞F(gxn, gyn), (.)

and

lim
n→∞ ggyn = gy = lim

n→∞ g
(
F(yn,xn)

)
= lim

n→∞F(gyn, gxn). (.)

Now,

d
(
F(x, y), gx

) ≤ d
(
F(x, y), ggxn+

)
+ d(ggxn+, gx);

that is,

d
(
F(x, y), gx

) ≤ d
(
F(x, y), gF(xn, yn)

)
+ d(ggxn+, gx).

Taking n→ ∞ in the last inequality and using (.), we have

d
(
F(x, y), gx

) ≤ lim
n→∞d

(
F(x, y), gF(xn, yn)

)
+ lim

n→∞d(ggxn+, gx)

≤ lim
n→∞d

(
F(x, y),F(gxn, gyn)

)
. (.)

Similarly,

d
(
F(y,x), gy

) ≤ lim
n→∞d

(
F(y,x),F(gyn, gxn)

)
. (.)

By (.), (.) and the property (iϕ), we have

ϕ

(
d(F(x, y), gx) + d(F(y,x), gy)



)

≤ lim
n→∞ϕ

(
d(F(x, y),F(gxn, gyn)) + d(F(y,x),F(gyn, gxn))



)
. (.)

http://www.journalofinequalitiesandapplications.com/content/2012/1/285
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By (.) and (.), we have

ϕ

(
d(F(x, y),F(gxn, gyn)) + d(F(y,x),F(gyn, gxn))



)

≤ ϕ

(
d(gx, ggxn) + d(gy, ggyn)



)
–ψ

(
d(gx, ggxn) + d(gy, ggyn)



)
. (.)

Inserting (.) in (.), we have

ϕ

(
d(F(x, y), gx) + d(F(y,x), gy)



)

≤ lim
n→∞

[
ϕ

(
d(gx, ggxn) + d(gy, ggyn)



)
–ψ

(
d(gx, ggxn) + d(gy, ggyn)



)]

= lim
n→∞ϕ

(
d(gx, ggxn) + d(gy, ggyn)



)
– lim

n→∞ψ

(
d(gx, ggxn) + d(gy, ggyn)



)
.

By (.), (.), the continuity of ϕ and limt→+ ψ(t) = , we get

ϕ

(
d(F(x, y), gx) + d(F(y,x), gy)



)
≤ lim

n→∞ϕ

(
d(gx, ggxn) + d(gy, ggyn)



)

= ϕ() = .

Since ϕ is non-negative and ϕ() = , we have

d
(
F(x, y), gx

)
=  and d

(
F(y,x), gy

)
= ;

that is,

F(x, y) = gx and F(y,x) = gy.

Hence, the element (x, y) ∈ X ×X is a coupled coincidence point of the mappings F : X ×
X → X and g : X → X. �

Now, we give an example in support of Theorem ..

Example . Let X = [, ]. Then (X,≤) is a partially ordered set with the natural ordering
of real numbers.
Let d(x, y) = |x – y| for x, y ∈ X.
Then (X,d) is a complete metric space.
Let : X → X be defined as

g(x) = x, for all x ∈ X.

Let F : X ×X → X be defined as

F(x, y) =

⎧⎨
⎩

x–y
 , if x, y ∈ [, ],x≥ y,

, if x < y.

http://www.journalofinequalitiesandapplications.com/content/2012/1/285
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Let {xn} and {yn} be two sequences in X such that

lim
n→∞F(xn, yn) = a, lim

n→∞ g(xn) = a,

lim
n→∞F(yn,xn) = b and lim

n→∞ g(yn) = b.

Now, for all n≥ ,

g(xn) = xn, g(yn) = yn,

F(xn, yn) =

⎧⎨
⎩

xn–yn
 , if x, y ∈ [, ],xn ≥ yn,

, if xn < yn,

and

F(yn,xn) =

⎧⎨
⎩

yn–xn
 , if x, y ∈ [, ], yn ≥ xn,

, if yn < xn.

Obviously, a =  and b = .
Then it follows that

d
(
gF(xn, yn),F(gxn, gyn)

) →  as n → ∞,

and

d
(
gF(yn,xn),F(gyn, gxn)

) →  as n → ∞.

Hence, themappings F and g are compatible in X. Clearly, F obeys themixed g-monotone
property. Also, F(X ×X)⊆ g(X).
Let ϕ, ψ : [,∞)→ [,∞) be defined as ϕ(t) = t

 , ψ(t) = t
 , for t ∈ [,∞).

Also, x =  and y = c (>) are two points in X such that g(x) = g() =  = F(, c) =
F(x, y) and g(y) = g(c) = c ≥ c

 = F(c, ) = F(y,x).
Next, we verify inequality (.) of Theorem .. We take x, y,u, v ∈ X such that gx ≥ gu

and gy ≤ gv; that is, x ≥ u and y ≤ v. We discuss the following cases.
Case : x≥ y, u≥ v.
Then

ϕ

(
d(F(x, y),F(u, v)) + d(F(y,x),F(v,u))



)

=



(
d(F(x, y),F(u, v)) + d(, )



)
=


d
(
x – y


,
u – v



)

=



∣∣∣∣x – y


–
u – v



∣∣∣∣ = 


∣∣∣∣ (x – u) + (v – y)


∣∣∣∣ = 


{
(x – u)


+
(v – y)



}

≤ 


{
(x – u) + (v – y)



}
=



{
d(gx, gu) + d(gv, gy)



}

= ϕ

(
d(gx, gu) + d(gv, gy)



)
–ψ

(
d(gx, gu) + d(gv, gy)



)
.
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Case : x ≥ y, u < v.
Then

ϕ

(
d(F(x, y),F(u, v)) + d(F(y,x),F(v,u))



)

=



(
d(F(x, y),F(u, v)) + d(F(y,x),F(v,u))



)

=



{
d
(
x – y


, 

)
+ d

(
,

v – u



)}

=



{(
x – y



)
+

(
v – u



)}

=



{(
x – u



)
+

(
v – y



)}

≤ 


{(
x – u



)
+

(
v – y



)}
=



{
(x – u) + (v – y)



}

=



{
d(gx, gu) + d(gv, gy)



}
= ϕ

(
d(gx, gu) + d(gv, gy)



)
–ψ

(
d(gx, gu) + d(gv, gy)



)
.

Case : x < y, u≥ v.
Then

ϕ

(
d(F(x, y),F(u, v)) + d(F(y,x),F(v,u))



)

=



(
d(F(x, y),F(u, v)) + d(F(y,x),F(v,u))



)

=



{
d
(
,

u – v



)
+ d

(
y – x


, 

)}
=



{(
u – v



)
+

(
y – x



)}

=



{
–(x – u) – (v – y)



}
≤ 



{
(x – u) + (v – y)



}

≤ 


{
(x – u) + (v – y)



}
=



{
d(gx, gu) + d(gv, gy)



}

= ϕ

(
d(gx, gu) + d(gv, gy)



)
–ψ

(
d(gx, gu) + d(gv, gy)



)
.

Case : x < y, u < v.
Then

ϕ

(
d(F(x, y),F(u, v)) + d(F(y,x),F(v,u))



)

=



(
d(, ) + d(F(y,x),F(v,u))



)
=


d
(
y – x


,
v – u



)

=



∣∣∣∣y – x


–
v – u



∣∣∣∣ = 


∣∣∣∣–(x – u) – (v – y)


∣∣∣∣ = 


{ |(x – u) + (v – y)|


}

=



{
(x – u) + (v – y)



}
≤ 



{
(x – u) + (v – y)



}
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=



{
d(gx, gu) + d(gv, gy)



}
= ϕ

(
d(gx, gu) + d(gv, gy)



)

–ψ

(
d(gx, gu) + d(gv, gy)



)
.

Hence, the inequality (.) of Theorem . is satisfied.

Thus, all the conditions of Theorem . are satisfied, and it can be easily seen that (, )
is the required coupled coincidence point of F and g in X.

Remark . If we choose the functions ϕ(t) = t/ and ψ(t) = t/, for t ∈ [,∞), then with
this choice of functions, we can obtain the already existing contractive condition. Since ϕ

andψ are actually contractions, thiswill be cleared inCorollary .. But if we choose ϕ(t) =
t/(t + ) and ψ(t) = t/, for t ∈ [,∞), then with this choice of ϕ and ψ , the contractive
condition (.) does not turn to the existing contractive condition.

The next example shows that Theorem . is more general than Theorem . in []
since the contractive condition (.) is more general than (.).

Example . Let X = R. Then (X,≤) is a partially ordered set with the natural ordering
of real numbers. Let d : X ×X → R+ be defined by

d(x, y) = |x – y| for x, y ∈ X.

Then (X,d) is a complete metric space.
Define F : X ×X → X by F(x, y) = x–y

 , (x, y) ∈ X ×X and g : X → X by g(x) = x
 , x ∈ X.

Clearly, F(X ×X) ⊆ g(X), F is continuous and has the mixed g-monotone property, the
pair (F , g) is compatible and satisfies the condition (.) but does not satisfy the condition
(.). Assume, to the contrary, that there exist ϕ ∈ � (in accordance with Definition .)
and ψ ∈ � such that (.) holds. Then we must have

ϕ

(∣∣∣∣x – y


–
u – v


∣∣∣∣
)

≤ 

ϕ

(∣∣∣∣x –
u


∣∣∣∣ +
∣∣∣∣ y –

v


∣∣∣∣
)
–ψ

( | x – u
 | + | y – v

 |


)

=


ϕ

( |x – u| + |y – v|


)
–ψ

( |x – u| + |y – v|


)

for all x ≥ u and y≤ v. Take x = u, y �= v in the last inequality and let ρ = |y–v|
 , we obtain

ϕ(ρ)≤ 

ϕ(ρ) –ψ(ρ), ρ > .

But by (ϕ) we have 
ϕ(ρ)≤ ϕ(ρ) and hence we deduce that, for all ρ > , ψ(ρ)≤ , that

is, ψ(ρ) = , which contradicts (iψ ). This shows that F does not satisfy (.).
Now, we prove that (.) holds. Indeed, for x≥ u and y≤ v, we have

∣∣∣∣x – y


–
u – v


∣∣∣∣ ≤ 


|x – u| + 


|y – v|,
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and ∣∣∣∣y – x


–
v – u


∣∣∣∣ ≤ 


|y – v| + 


|x – u|.

By summing up the last two inequalities, we get exactly (.) with ϕ(t) = 
 t, ψ(t) = 

 t.
Also, x = –, y =  are the two points in X such that gx ≤ F(x, y) and gy ≥ F(y,x).
F , g , ϕ, ψ satisfy all the conditions of Theorem .. So, by Theorem ., we obtain that F
and g have a coupled coincidence point (, ), but Theorem . in [] cannot be applied
to F and g in this example.

The following Corollary . is Theorem  in [].

Corollary . [] Let (X,≤) be a partially ordered set and suppose there exists a metric d
on X such that (X,d) is a complete metric space. Let F : X × X → X be a mapping having
the mixed monotone property on X such that there exist two elements x, y ∈ X with x ≤
F(x, y) and y ≥ F(y,x). Suppose there exist ϕ ∈ � and ψ ∈ � such that

ϕ

(
d(F(x, y),F(u, v)) + d(F(y,x),F(v,u))



)
≤ ϕ

(
d(x,u) + d(y, v)



)

–ψ

(
d(x,u) + d(y, v)



)
(.)

for all x, y,u, v ∈ X with x≥ u and y ≤ v. Suppose either
(a) F is continuous, or
(b) X has the following property:

(i) if a non-decreasing sequence {xn} → x, then xn ≤ x for all n;
(ii) if a non-increasing sequence {yn} → y, then y≤ yn for all n.

Then there exist x, y ∈ X such that x = F(x, y) and y = F(y,x).

Proof Taking g to be an identity mapping in Theorem ., we obtain Corollary .. �

The following example shows that Corollary . is more general than Theorem . (i.e.,
Theorem . in []) and Theorem . in [], since the contractive condition (.) is more
general than (.) and (.).

Example . Let X = R. Then (X,≤) is a partially ordered set with the natural ordering
of real numbers. Let d : X ×X → R+ be defined by

d(x, y) = |x – y| for x, y ∈ X.

Then (X,d) is a complete metric space.
Define F : X ×X → X by F(x, y) = x–y

 , (x, y) ∈ X ×X.
Then F is continuous, has the mixed monotone property and satisfies the condition

(.) but does not satisfy either the condition (.) or the condition (.). Indeed, assume
there exists k ∈ [, ) such that (.) holds. Then we must have

∣∣∣∣x – y


–
u – v


∣∣∣∣ ≤ k

{|x – u| + |y – v|}, x ≥ u and y ≤ v,
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by which, for x = u, we get

|y – v| ≤ k|y – v|, y≤ v,

which for y < v implies  ≤ k, a contradiction, since k ∈ [, ). Hence, F does not satisfy
(.).
Further, (.) is also not satisfied. Assume, to the contrary, that there exist ϕ ∈ � (in

accordance with Definition .) and ψ ∈ � such that (.) holds. Then we must have

ϕ

(∣∣∣∣x – y


–
u – v


∣∣∣∣
)

≤ 

ϕ
(|x – u| + |y – v|) –ψ

( |x – u| + |y – v|


)
,

for all x ≥ u and y≤ v. Take x = u, y �= v in the last inequality and let α = |y–v|
 , we obtain

ϕ(α)≤ 

ϕ(α) –ψ(α), α > .

But by (ϕ), we have 
ϕ(α)≤ ϕ(α) and hence we deduce that, for all α > , ψ(α)≤ , that

is, ψ(α) = , which contradicts (iψ ). This shows that F does not satisfy (.).
Now, we prove that (.) holds. Indeed, for x ≥ u and y≤ v, we have

∣∣∣∣x – y


–
u – v


∣∣∣∣ ≤ 


|x – u| + 

|y – v|,

and
∣∣∣∣y – x


–
v – u


∣∣∣∣ ≤ 


|y – v| + 

|x – u|.

By summing up the last two inequalities, we get exactly (.) with ϕ(t) = 
 t, ψ(t) = 

 t.
Also, x = –, y =  are the two points in X such that x ≤ F(x, y) and y ≥ F(y,x).
So, by Corollary ., we obtain that F has a coupled fixed point (, ) but neither Theo-

rem . in [] nor Theorem . in [] can be applied to F in this example.

The following Corollary . is Corollary  in [].

Corollary . [] Let (X,≤) be a partially ordered set and suppose there exists a metric d
on X such that (X,d) is a complete metric space. Let F : X × X → X be a mapping having
the mixed monotone property on X such that there exist two elements x, y ∈ X with x ≤
F(x, y) and y ≥ F(y,x). Suppose there exists ψ ∈ � such that

d
(
F(x, y),F(u, v)

)
+ d

(
F(y,x),F(v,u)

)
≤ d(x,u) + d(y, v) – ψ

(
d(x,u) + d(y, v)



)
(.)

for all x, y,u, v ∈ X with x≥ u and y ≤ v. Suppose either
(a) F is continuous, or
(b) X has the following property:

http://www.journalofinequalitiesandapplications.com/content/2012/1/285


Jain et al. Journal of Inequalities and Applications 2012, 2012:285 Page 15 of 19
http://www.journalofinequalitiesandapplications.com/content/2012/1/285

(i) if a non-decreasing sequence {xn} → x, then xn ≤ x for all n;
(ii) if a non-increasing sequence {yn} → y, then y≤ yn for all n.

Then F has a coupled fixed point in X.

Proof Note that if ψ ∈ � , then for all r > , rψ ∈ � . Now divide (.) by  and take
ϕ(t) = 

 t, t ∈ [,∞), then the condition (.) reduces to (.) with ψ = 
ψ and g(x) = x;

and hence by Theorem ., we obtain Corollary .. �

Corollary . Let (X,≤) be a partially ordered set and suppose there exists ametric d on X
such that (X,d) is a complete metric space. Let F : X×X → X, g : X → X be two maps with
F having the mixed g-monotone property on X such that there exist two elements x, y ∈ X
with gx ≤ F(x, y) and gy ≥ F(y,x). Suppose there exists a real number k ∈ [, ) such
that

d
(
F(x, y),F(u, v)

)
+ d

(
F(y,x),F(v,u)

) ≤ k
[
d(gx, gu) + d(gy, gv)

]
(.)

for all x, y,u, v ∈ X with x≥ u, y≤ v. Suppose either
(a) F is continuous, or
(b) X has the following property:

(i) if a non-decreasing sequence {xn} → x, then gxn ≤ gx for all n;
(ii) if a non-increasing sequence {yn} → y, then gy≤ gyn for all n.

Suppose that F(X ×X) ⊆ g(X), g is continuous and the pair (F , g) is compatible, then there
exist x, y ∈X such that gx = F(x, y) and gy = F(y,x).

Proof Taking ϕ(t) = t
 and ψ(t) = ( – k) t ,  ≤ k < , in Theorem ., we obtain Corol-

lary .. �

Remark . (i) Corollary . is an extension of the recent coupled fixed point result of
Berinde (Theorem  in []) to a coupled coincidence point theorem for a pair of compat-
ible mappings having the mixed g-monotone property.
(ii) Again, the choice of functions F and g in Example . shows thatCorollary . ismore

general than Theorem . in [], since the contractive condition (.) is more general
than (.). Indeed, the contractive condition (.) does not hold for the choice of functions
F and g , but (.) holds exactly for k = 

 with x = – and y =  and yields (, ) as the
coupled coincidence point of F and g .

Corollary . Let (X,≤) be a partially ordered set and suppose there exists a metric d on
X such that (X,d) is a complete metric space. Let F : X × X → X, be a mapping having
the mixed monotone property on X such that there exist two elements x, y ∈ X with x ≤
F(x, y) and y ≥ F(y,x). Suppose there exists a real number k ∈ [, ) such that

d
(
F(x, y),F(u, v)

)
+ d

(
F(y,x),F(v,u)

) ≤ k
[
d(x,u) + d(y, v)

]
(.)

for all x, y,u, v ∈ X with x≥ u, y≤ v. Suppose either
(a) F is continuous, or
(b) X has the following property:
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(i) if a non-decreasing sequence {xn} → x, then xn ≤ x for all n;
(ii) If a non-increasing sequence {yn} → y, then y≤ yn for all n.

Then F has a coupled fixed point in X.

Proof Taking g to be the identity mapping in Corollary ., we obtain Corollary .. �

Remark . (i) By considering the condition of continuity of F in Corollary ., we obtain
Theorem  in [].
(ii) Again, the choice of the function F in Example . shows that Corollary . is more

general than Theorem . (i.e., Theorem . in []) and Theorem . in [], since the con-
tractive condition (.) is more general than (.) and (.). Indeed, the contractive con-
ditions (.) and (.) do not hold for the choice of the function F , but (.) holds exactly
for k = 

 with x = – and y =  and yields (, ) as the coupled fixed point of F .

Now, in order to prove the existence and uniqueness of the coupled common fixed point
for our main results, we need the following lemma.

Lemma . Let F : X × X → X and g : X → X be compatible maps and let an element
(x, y) ∈ X × X such that gx = F(x, y) and gy = F(y,x) exist, then gF(x, y) = F(gx, gy) and
gF(y,x) = F(gy, gx).

Proof Since the pair (F , g) is compatible, it follows that

lim
n→∞d

(
gF(xn, yn),F

(
g(xn), g(yn)

))
= ,

lim
n→∞d

(
gF(yn, xn),F

(
g(yn), g(xn)

))
= ,

whenever {xn} and {yn} are sequences in X such that limn→∞ F(xn, yn) = limn→∞ g(xn) = a,
limn→∞ F(yn,xn) = limn→∞ g(yn) = b for some a,b ∈ X. Taking xn = x, yn = y and using
gx = F(x, y), gy = F(y,x), it follows that

d
(
gF(x, y),F(gx, gy)

)
=  and d

(
gF(y,x),F(gy, gx)

)
= .

Hence, gF(x, y) = F(gx, gy) and gF(y,x) = F(gy, gx). �

Theorem . In addition to the hypothesis of Theorem ., suppose that for every
(x, y), (x*, y*) ∈ X ×X, there exists a (u, v) ∈ X ×X such that (F(u, v),F(v,u)) is comparable
to (F(x, y),F(y,x)) and (F(x*, y*),F(y*,x*)). Then F and g have a unique coupled common
fixed point; that is, there exists a unique (x, y) ∈ X × X such that x = g(x) = F(x, y) and
y = g(y) = F(y,x).

Proof By Theorem ., the set of coupled coincidences is non-empty. In order to prove the
theorem, we shall first show that if (x, y) and (x*, y*) are coupled coincidence points, that
is, if gx = F(x, y), gy = F(y,x) and gx* = F(x*, y*), gy* = F(y*,x*), then

gx = gx* and gy = gy*. (.)
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By assumption, there is (u, v) ∈ X × X such that (F(u, v),F(v,u)) is comparable with
(F(x, y),F(y,x)) and (F(x*, y*),F(y*,x*)). Put u = u, v = v and choose u, v ∈ X so that
gu = F(u, v), gv = F(v,u).
Then, similarly as in the proof of Theorem., we can inductively define sequences {gun}

and {gvn} such that gun+ = F(un, vn) and gvn+ = F(vn,un).
Further, set x = x, y = y, x* = x*, y* = y* and, in the same way, define the sequences

{gxn}, {gyn} and {gx*n}, {gy*n}. Then it is easy to show that

gxn+ = F(xn, yn), gyn+ = F(yn,xn)

and

gx*n+ = F
(
x*n, y

*
n
)
, gy*n+ = F

(
y*n,x

*
n
)

for all n ≥ .

Since (F(u, v),F(v,u)) = (gu, gv) and (F(x, y),F(y,x)) = (gx, gy) = (gx, gy) are comparable,
then gu ≥ gx and gv ≤ gy. It is easy to show that (gun, gvn) and (gx, gy) are comparable,
that is, gun ≥ gx and gvn ≤ gy for all n≥ . Thus by (.),

ϕ

(
d(gun+, gx) + d(gvn+, gy)



)

= ϕ

(
d(F(un, vn),F(x, y)) + d(F(vn,un),F(y,x))



)

≤ ϕ

(
d(gun, gx) + d(gvn, gy)



)
–ψ

(
d(gun, gx) + d(gvn, gy)



)
. (.)

Since ψ is non-negative, we have

ϕ

(
d(gun+, gx) + d(gvn+, gy)



)
≤ ϕ

(
d( gun, gx) + d(gvn, gy)



)
.

By the monotonicity of ϕ, we have

d(gun+, gx) + d(gvn+, gy)


≤ d( gun, gx) + d( gvn, gy)


. (.)

Thus, the sequence {dn} defined by dn = d(gun ,gx)+d(gvn ,gy)
 , is a monotonically decreasing se-

quence of non-negative real numbers, so there exists some d ≥  such that limn→∞ dn = d.
We shall show that d = . Suppose, to the contrary, that d > . Then taking limit as

n→ ∞, in (.) and using the continuity of ϕ, we have

ϕ(d) ≤ ϕ(d) – lim
dn→d

ψ(dn) < ϕ(d),

a contradiction. Thus, d = ; that is, limn→∞ dn = .
Hence, it follows that gun → gx, gvn → gy.
Similarly, one can show that gun → gx*, gvn → gy*.
By the uniqueness of the limit, it follows that gx = gx* and gy = gy*. Thus, we proved

(.).
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Since gx = F(x, y), gy = F(y,x) and the pair (F , g) is compatible, then by Lemma ., it
follows that

ggx = gF(x, y) = F(gx, gy) and ggy = gF(y,x) = F(gy, gx). (.)

Denote gx = z, gy = w. Then by (.),

gz = F(z,w) and gw = F(w, z). (.)

Thus, (z,w) is a coupled coincidence point.
Then by (.) with x* = z and y* = w, it follows that gz = gx and gw = gy; that is,

gz = z, gw = w. (.)

By (.) and (.),

z = gz = F(z,w) and w = gw = F(w, z).

Therefore, (z,w) is the coupled common fixed point of F and g .
To prove the uniqueness, assume that (p,q) is another coupled common fixed point of

F and g . Then by (.), we have p = gp = gz = z and q = gq = gw = w. �

Corollary . In addition to the hypothesis of Corollary ., suppose that for every
(x, y), (x*, y*) ∈ X ×X, there exists a (u, v) ∈ X ×X such that (F(u, v),F(v,u)) is comparable
to (F(x, y),F(y,x)) and (F(x*, y*),F(y*,x*)). Then F and g have a unique coupled common
fixed point; that is, there exists a unique (x, y) ∈ X × X such that x = g(x) = F(x, y) and
y = g(y) = F(y,x).

Proof Taking ϕ(t) = t
 and ψ(t) = ( – k) t ,  ≤ k <  in Theorem ., we obtain Corol-

lary .. �

Remark . Indeed, (, ) is the unique coupled common fixed point of the maps F and
g in Example . in view of Theorem . and Corollary ..
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