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Abstract In this paper we develop the governing equatiorgase in point concerns the inelastic behavior of porous ma-
of the coupled damage-plasticity model, which is capable tfrials [1] [13] or more general class of the inelastic mate-
representing the main mechanisms of inelastic behavior mals under cyclic loading. For any such case, the minimum
cluding irreversible plastic deformation, change of etast- requirement we need for representing with irreversible de-
sponse and the localized failure. We show in particular hdarmation and change of elastic response leads to a coupled
such model should be implemented within the stress-baskinage-plasticity model [7] [9] [12] [16]. The class of cou-
variational formulation, providing an important advargagpled damage-plasticity models studied in this work is even
for local computation of the internal variables, which thusiore general from the initial models of this kind propos-
remains very robust and even non-iterative for the casein§ plasticity criterion in terms of damage-modified effec-
linear hardening model. Several simple examples are ptiwe stresses [7] [9] [16] in that it accommodates the inde-
sented in order to illustrate the kind of response the modedndent criteria, the first for triggering the evolution bét
can represent. irreversible deformation as opposed to the second govern-
. _ _ ing the evolution of the elastic response modification [4] [6
Keywords coupled damage-plasticitgtress interpolation  The main objective of this work is to discuss the theoretical
cyclic loading formulation of such a coupled damage-plasticity model, as
well as the numerical implementation. We show how to build
the corresponding strain energy for such model and how to
compute the evolution of its internal variables over a typi-
cal time step of the incremental / iterative scheme. We show

It is often the case that the basic phenomenological modlﬂs;oartiC“lljar that the strlgss-lt)ased int.erpolrz]ition ﬁan_ load |
of inelastic behavior, on one side plasticity and on anoth@r\’.e?)/I robust numerical Imp ementztlon where the wtelrna
damage, cannot represent in a reliable manner all the salié{!aPles computation is guaranteed to converge. The latte
phenomena observed in inelastic behavior of real matéf-thus an additional advantage to what has been illustrated

als. In other words, for a number of applications one neeBViously [17] about a superior accuracy of stress-based fi

not only a reliable representation of irreversible defaiora NIt €lément approximations.
upon unloading as provided by the plasticity model [2] [11]

[18] but also the elastic response modification upon unload-

ing such as provided by the damage model [8] [10]. The
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2 Variational formulation of coupled damage-plasticity ~ In equations (4) abové is Young's modulusk® andK? are

model plastic and damage hardening moduli, whemggando; are
yield and fracture limits, respectively. We note in passing
2.1 Governing equations of the constitutive model that no essential restrictions are introduced with 1D case,

and very much the same development is followed for 2D or
In this section we first present the governing equations fP cases. .
this constitutive model of coupled damage-plasticity. Weve ~ The total dissipation produced by this coupled damage-
in particular that all these equations can be derived fropigsticity model, which must remain non-negative, can be
three main ingredients: additive split of the total deformavritten by appealing to the second principle of the thermo-
tion field, the strain energy and yield / damage criteriapglo dynamics [11]:
with the principle of maximum dissipations for damage an

plasticity. More precisely, we first assume that the total d <9 =0e-y

formatione can be split additively into elastic paat, plastic ) G axe 4

parteP and damage pagt to write: =0( 90 ¢ )+ 0(% —&)+ ©
-p. d =d .

e=¢e%4eP4 ¢l 1) Gép_%fu%b_%{d

Contrary to the plastic deformation which is the main in- N g PEEN ¢ _

~~ ~~

ternal variable for plasticity, the damage deformationus | 7 24
the vehicle for connecting two models and the main inter-
nal damage variable still remains the damage compli@nce

through the resultd = Do which will be proved shortly af- 1. Elastic process which is characterized by the frozen val-

The last statement leads to two possible interpretations:

terwards. ues of the internal variables wi#? = 0, P = 0, D=0
We can postulate the strain energy of the coupled damageand &9 = 0, which also implies that plastic and damage
plasticity model according to: dissipationsZP = 0 and 29 = 0. We thus obtain from
W(u,0,€P,D,EP, &%) = equations (5) the constitutive equations for the stress, th
T 3 3 2) definition of the damage strain as well as the hardening
Wo(e%) + @ (e, D) + ZP(EP) + Z9(&) variablesgP andq® according to:
where, for generality, we accounted for eventual hardening . axe
effects with&P and &9 as hardening variables for plasticity 2 =0 =& = 90 Elo
and damage. Iyl
The plasticity and damage mechanisms of inelastic be- ed — 9X _ Do
havior are activated, respectively, for a zero-value ofta Jo B 6)
ity and damage criterion: o = _0=P _KPEP
¢°(0.0°) =0, ¢f(0,q) =0 ©) &P
In equation (3) abovegP andq® are the stress-like variables d_ _0_5d — _Kdgd
which control the evolution of the plasticity and damage 4= 0&d

thresholds as a function of hardening variab§@sand ¢,
respectively.

Model problem in 1D setting which we choose in order
to clearly illustrate the developments to follow considars
simple quadratic form of strain energy and a linear isotropi

2. By assuming the last results to remain valid for the in-
elastic process, we can obtain the corresponding inter-
pretation of the inelastic dissipation for an inelastic-pro
cess where internal variables evolution takes place:

hardening with: O< 9 — O.ép+qpép+o.éd +qdéd @)

Yo(°) = o€~ x%(0) o0 o

with  x%(o) = EGE‘lo The only remaining hypothesis which is needed is the
4 d &4 one based on maximizing the dissipation in any such inelas-

Y°(e%.D) = 0¢” — x%(0,D) tic process. The latter can be set as the corresponding con-

strained minimization problem and handled by the Lagrange

1
. d _
with  x%(0,D) = ;0Do multiplier method [6] [19] according to:

(4)
=p(£P) — Lzpkpgp i _gP Py _ gd d
=P(EP) = 58°KPE o) I e 2 (0:d) = 7(0,d7)]
=4(g%) = Zedkdg = max min [#(0.¢f) +2%(0. ) ©
¢*(0,0°) = |o] - (gy—P) LP(0,0°) =-2"(0,9°) + V" ¢°(0.0P)

¢"(0.9") =|o| - (o; — ) 2%0,q") = -2%0,q") + - ¢*(0,q")



The Kuhn-Tucker optimality conditions for those kind These values of plastic and damage multipliers can be
of minimization problem can then be written providing thexploited to obtain the stress rate constitutive equations
evolution equations for all the internal variables alonghwi
the loading / unloading conditions for plasticity and damag? = C*(¢ — &%)

Components:
0P . NG 0P
_ _ P p_
0= oo € +Vp50:>£ Vpda
A . L0 0P
_ _ _EP P p_
0=Fg = V55 ¢ V"aqp
P
O:di:(pp
o ©)
o4 et . 3¢
0= 55 =-Do+V55 =Do=y5=
0= o T g 7 G
0.9

ol doP
cep_ E_ %EE% — EKp
B 99 E 9P _ OgP doP 0¢P T E 4 KP
do — do ogP déP dgp 2
g = C¥gd (12)
9¢° y-1pny-19¢° “1ed
ced _ p-1 D D5 DK

0¥ 10¢ 0¢ e ow D14 KY
g

do oqd d&d 9qd

These two equations can be combined in order to obtain
the elasto-plastic-damage tangent modulus leading to:

) . cepced

= epd epd = >
o =C*¢ C Con g co 13
cepd _ ED-1KPKH

- ED KP4+ ED!Kd 4+ EKPKY + D-1KPKd

where the explicit form for linear hardening case is also
recorded.

By admitting that a negative value of yield and damage

criteria corresponds to the elastic process, we can writ@ 2 Hellinger-Reissner type of variational principle
generalized form of the loading / unloading conditions with

y'>0 ;

F>0

(10)

With all the equations governing the evolution of internal
variables listed in previous section, we can obtain the gov-
erning equations for other state variables by appealinigeto t
Hellinger-Reissner type of variational principle; namédy

the fixed values of the internal variables, we can seek the
stationarity condition for the energy functional:

The plastic and damage multipliers remain equal to zero in o o £d
any elastic process and we easily show from equations @Bm(U: 0,eP,D,&P,&%) =

that there is no change of internal variables. On the othe

du

§ _
hand, the plastic and damage multipliers take positive va/f [=Xx%(0) - Xx"(0,D) + G(& —&P)jdv — /r u-tdA

ues in an inelastic process with the corresponding change o
internal variables computed from equations (9). The values

(14)

of multipliers can be computed from the consistency condisere the last term corresponds to the external energy pro-
tions imposing that the stress field remains admissible widlaced by the boundary traction forces.

respect to the chosen yield and damage criteria:

>0 5 ¢°=0 ; ¢°=0
agP . d¢P .,
:>daa+dqpq =0
9E (& — &)
P a
= V= e op v ariw
90 —dc ~ OqP dEP dgp (11)
V>0 ; ¢'=0 ; ¢'=0
o¢f . ag
j%O’—f‘a—qdq =0
ad 1
:>)'ﬂ_ %D 1£d
0 ) 1000 _ 097 dgf 0¢°
90 9o ~ 9qf d&9 aqd

At the fixed values of internal variables, one can obtain
from relation (14) above the corresponding variationakequ
tions:

O - GU(U, G: Spv D: Epa Ed7W>
dw —
= [ Sroav— [w-TaA
o dx r
0= GO’(U7 g, gp: D: Ep: Ed: T)
du
= [ 1(==—-&P-~Do—-E~lo)av
/Q (dx )

wherew andt are, respectively, the virtual displacement and
virtual stress fields. It is easy to see that the Euler-Laggan
equations corresponding {@5), is nothing else but the lo-
cal equilibrium,‘é‘,—" = 0, accompanied by the natural bound-
ary conditiono - njr, whereas the same kind of equation for

(15)



(15), leads to the additive decomposition of the total de Noniterative solution to local problem
formation into elastic, plastic and damage compon%t;
E-lo+e&P+Dao. 3.1 Coupled damage-plasticity internal variable
We seek an approximate solution to equations (15) bpmputations
using the finite element method [21]. To that end, we choose
the standard isoparametric interpolations for the digplacThe local problem of plastic and damage flow computation,
ment field along with the stress field representation discoyet referred as the central problem of computational inelas

tinuous from element to element: ticity, is solved by an incremental procedure. In each incre
N _ h ment we employ the implicit Euler scheme to integrate the
U= UNa(X)da 0| ge =SBy model evolution equations in (9) to obtain:
- . (16) . . .
wh= UNa(x)ca ;o Tge =S W% Local problem of internal variables computation
Qe

We indicate in (16) that the same kind of interpolations algVen: B €R:Dn, &P, &3

chosen for real and virtual fields as the optimal choice fdrind: P ,D,,;,&P . &%, (20)
this kind of problems [6] [21]. With these approximationsSuch that °, - @, =0 , VA, @, =0

on hand we can write the discrete form of the variational

equations in (15): with the last condition which is needed in order to guarantee
_ the admissibility of the computed stress in the sense of the
0=Gl= an(g/ B;SOdV By —/ NatdA) chosen criteria. More precisely, we first start by integmti
a 2 re the evolution equations in (9) by the implicit Euler scheme,
_~h T which leads to:
O_Ga_%yb(Z/QeSoBadv.da .
P — P n+1
_ Z/Qes'orEflsjdV Be Eni1 = & T Voi 30,
Cc d(pp
— +1
-y [ Spsav-p- [ Serav) =+ g
c n+1 ot (21)
By considering.that the yirtu_al fields in;erpolation pap . ,0,,, =Dno, 4+ yg+1 +1
rameters can be picked arbitrarily we obtain from (15) the 00,4

discrete form of the equilibrium equations which we con- d )
structed by the finite element assemBly ; of the elements Sn1=&n T+ Yg+1W
contributions: n+1

B} 0 peT de . (fe In any of those two equations we do not know the value
AL, < ) > { nyl } = Al 1{ ntl } of yr$+1 nor yﬁ+1 and hence we start with the elastic trial state,
n+1

Fe — HE’e—|— HD,e g€ ;
( n+1 n+l which considers the trial values of pIastic';trggr”l'a' =0and

18 . i . .
(18) damage multlpher:;/gfl'aJ = 0, which implies that the inter-
where nal variables will not change from the previous increment.
B This allows us to compute the trial values of stress or rather
Fe= [ S'Bav ; f&,,= / NTt,, ,dA its interpolation parametef''@-() according to:
Qe re n+1
Ee _ Te=—1 . De __ T ial (i . e\ — (i X
H=® = QeS E™"Sdv Hn+1 = /QeS Dn+1SdV (29) Br?—lt-rllah(l) — (HE'e—l— HE'E) 1(Fed§£i . eﬁle) 2
be T op - glrial (i) _ ggtrial (i)
ey = /QeS EpadV n+1 n+1

he. The corresponding trial values of the damage and yield

We have indicated in (18) above that the solution to t . e
(sditeria can then be written:

equilibrium problem is sought at a given pseudo-time val
t,,, of the imposed loading program with), , =d(t,,,) and _otria _
B..1 = B(t,,1). The main source of nonlinearity in this set of ™1~ "n+1
equations pertains to the corresponding value of the iaterng'/? = ort]j'j"r(')| — (o, —q%)
variables for plasticity and damage definedL:Qyl andD,, ,

respectively. As shown in the next section, the latter can Bédoth of these trial values are negative, the elastic siep
computed by incremental analysis with no need to iterateisiconfirmed as the good guess; if only one of them is posi-
each increment. tive, the problem remains of standard form [6] [18], and the

"
oy~ (oy—af)

(23)



most interesting is the case where both trial values are pos-1In (28) above g = &0 is the corresponding localized
itive. The latter one will further be elaborated upon. Tatthatrain representation by Dirac function_positionedxatr

end, we first make use of the auxiliary result: is the localized strain parameter, wheré&ags the function
‘ ‘ which defines the influence zone of the discontinuity typi-
o = (E 14 Dn)*l(erg'}rl —&h) cally limited to a single finite element. The latter allows to
-1 1/ write:
Ohi1 = (E "+ Dn+1) (gr(mlj-l - 5r?+1)
_ QP o¢f t=— [ Godx (29)
trial -1 -1 n+1 +1
= —(E D le
ni1 — (E77+Dn) (Vr$+1 30, + Vr?+1 aan+1>

o4 wheret is the traction at discontinuity.
(24) We also ought to modify the strain energy in (2) in order
The last result provides the justification for the stress pt account properly for the fracture energy which is needed

rameters update with: to completely break the bond between two parts of the body:
Bra = B — (HES+ HROHGRE + 6fy) W)= @)+ 5P(8) (30)
p _
pe — [ gTyP d(pn+1dv where (-) is already defined in (2). The final modifica-
Ot yn+1(9 25 : ; P L
Qe Ony1 (25)  tion concerns the corresponding criterion defining thesstre
e . d¢r?+1 value g, at which the bond starts breaking, as well as the
Oni1 = /Qe S"Vi 50n+1dv si)ftenlng law: .
Moreover, the same auxiliary result can be exploited #(t,q) = [t| — (o, —q(&)) <0
obtain the values of the multipliers by enforcing the yield —= o2 (31)
and damage criteria locally at each Gauss quadrature pohs —K& ; Gy =—=
which allows us to write: 2K
0= b — With the remaining ingredients of the softening model
- ‘Rn+1 - obtained by the principle of maximum dissipation, we can
(pr?-i-trllal —[(E"14+D,) 1+KP Vo (E14 Dn)*lyrfJrl carry out the computation in the very much same manner
d as already presented for the coupled model. The only differ-
0= ‘P_n+1 = ence concerns computing the trial value of the driving trac-
‘Pr?ir"l'al —(E 1ty Dn)*ly&l —[(E7 4+ Dn) KW, tion at discontinuity:
26 . .
(26) i _ —/ G, dx (32)
The latter reduces to a set of two equations with the mul- 1~
tipliers as unknowns, which can be solved in a close form: all,
Vr?+1 where the corresponding stress parameter values aretfachis
Ay = by the coupled damage-plasticity model as described in this

1 il section. A more detailed description of dealing with soften
( (E7'4Dn)~*+KP  (E7'4Dp)* ) { ‘Prfjrtl_al } ing phenomena for 1D and 2D cases is presented previously
Jtri

(E'4+Dn)t (E'+D,) t+K¢ p in [5].

(27)

With this computation of multipliers we can easily carry ouj Finite element interpolations
the corresponding updates of internal variables in (21).

At this stage we can turn to the global computation phase,
which should provide the new iterative value of the trial
stress, or rather the stress parame@ﬁ*”*”. The cor-

The proposed damage-plasticity model can be further dgsponding set of equations to be solved can be written as:
hanced in order to handle the softening response without any

3.2 Softening response computation

mesh dependency. In that aspect we will follow the develop- Fedﬁ'ﬂfl) — (HES+HR®) B, —eR®—gPe — o8,
ment presented in [5] for plasticity model. The key ingredi- (Prf+1
ent pertains to a modification of the strain field which aIIowFs _ | —&p Py o984
a correct representation of the total strain field: - . n+l 0T Inldan
do N +1 Iqf
€= ax +Ga + &a (28) —Ed &V, a?gi

)
I
o

€



(33) 4.1 1D case with 2-node truss-bar finite element

By taking into account that the solution of (33) is Sougﬂpterpolatlons

at the known values of multipliers and internal variableg, very clear illustration of the result in (37) can be given fo
we can further linearize this system and perform the sta

condensation [3]. The linearized form of the remaining fir e simplest choice of hybrid stress interpolations for a 2-
9 "MHodes truss bar element where displacement field is a linear
equation can be written as:

polynomial and the stress field a constant:

0=Lin[G G +DGs - A
(i+1) _ o U‘nH 0 Bn+1 (34)  U"(X)|ge = Ny ()05 + Ny(x)d5
EAY Bn+1 + ABn+1 X _X
. Ny (x) =1- T N(x) = T (38)
with A
DGy = —[HE®+HPe 4 Gp’+1 Gdfl] B(0)lge = SXB" 3 S) =
n n
be 09n+1 . (p In this case we obtain the following results (valid for unit
Gro = / - cross-sectiol = 1):
n+1 aBn+l oe [ n+1 00§+1 )
p p p 1 1
9P, (fw Rer 9982 9%, Fe= [(W-7 jlox=[-1 1
00,., 0 P, dfnp+1 P, 00,1 (35) 1 e
d HE=e:/ 1)=(Ldx= =
Gle — agnfl — [ gy 62¢r?+1 |e( )E( ) E
1T 9B., Jo 1902 e
i 2 HRe = [ (1DA(Tdx= ¢
O (d(pr?+l doh1 5‘Pr?+1> d¢r?+1 1° Do
e
00,1 00, A&, 905" 90, GPe, :/ 1)%(1)(1)(: %
We note that all the results in (35) are computed with the o (39)
corresponding admissible values of internal variablescivh gde _ / (1)= 1 (1)dx = r
are obtained for the given best iterative guess on displace?* Kd Kd
ment and stress parameters. The improved parameters valg_,ilil@s_ / 1)ePdx
can be obtained, if needed, by solving the linearized form of n
equilibrium equations in (18): QP
O = /(1> /o "L dx
A FeT Adel) Ons1
Aei1<Fe (HE® 4+ HPe 4 GPe dee)> A el Ghi1
nr1 T Cnia n+1 n+1 de dx
fe n+1
= { _QQJ(W% With these results on hand the tangent stiffness matrix in
) n+l (37) can be explicitly written as:
i+ (<)
d§+1 dn+1 +Ad§+1 epd 1 -1
E, D, d, 1 -
gn-&-l Fed& (H ° +H e) n-él) eﬂ gn-&-l gnfl Krl+1 F: <_1 1 )
) . 111 1, 40
The last equation in (36) above can be solved at the elfar1 = (E T ﬁ + Kp + @) (40)
ment level which allows to reduce the system to the standard ED-1KPKY
form and to obtain the element tangent stiffness matrix: = n
EKPKY + ED;1KP + ED;1Kd + D 1K PKd
Al {FeT(HE® 4 HR® 4+ GPe +GLf,)™ 1F8Ad§+l _
~ ~ We note that the tangent elasto-plastic-damage modulus
Kel 37) in discrete problem computed in (40) is the same as the cor-
i responding one for the continuum problem in (13). This kind
n+1 FeT(HEe—i—HDe—}-Gﬁfl—{—Ggfl) -1 ﬁ-f—l)l} p g p (13)

of conclusion holds only for 1D case.

~~
zel(i)
n+1

It is important to note that the tangent stiffness matri.2 2D case with 4-node hybrid stress Pian-Sumihara finite
of this kind has been computed without any local iteratiaslement interpolations

(which is in sharp contrast with displacement-type formu-
lation which requires a local iterative procedure to coreputhe described formulation was implemented according to
the stress). displacement and stress interpolation proposed by Pian and



Sumihara (e.g. see [14]). In this case, the displacemedt figl Numerical Examples

interpolation is written in terms of natural coordinates

andn, as a bilinear polynomial expression, which is idenn this section we present several illustrative numeritzat s

tical to the standard 4-node isoparametric element (eeg. $fations, which consider the typical response curves far co

[21]), i.e. crete in compression and in tension, as well as the response

of porous metals. The implementation of the proposed model

1 and all the computations are carried out with the general pur

Na(ny,1,) = Z(l+ Na11) (1+ Ne2Ny), (41) pose finite element program FEAP [20].

wheren,,, n,, are the corresponding nodal value of natural

_coordlnatgs (_equal te1). On 'ghe other hand, the stress field ) | 5cjization of the strain in a simple traction test
interpolation in natural coordinates no longer corresgdnd
the one provided by a 4-node isoparametric element, and

X SH first example presents the response of a bar computed
be written as:

during a single cycle of loading and unloading, as described
in Figure la. The finite element for the bar is composed
O, =A+A 0N, of three 2-nodes truss-bar elements with unit cross-sectio
Oy = Ag+ A, 1 and unit length. Th_e _materlal mod_el for the bar is the cou-
pled damage-plasticity proposed in this work. The model
012 = As. (42) can handle both the strain hardening and the softening re-
This kind of stress interpolation provides the element wigponse phase. The latter starts at the ultimate stressoflue
nearly optimal performance in bending dominated problems, = 30MPa, chosen for all the elements except the one in
Moreover, the choice of the shape functions in (42) impligee middle where a slightly reduced ultimate stress value is
that equilibrium equations are directly verified in the pereset toog, = 29.9MPa. This choice is made in order to control
domain, i.ediv, o = 0 for each set of parameteks. the section where the strain will localize, here attribuied
Next we transform the interpolation into the global cothe element in the middle, and turn this kind of bifurcation
ordinate system(x,,X,). In order to preserve the statical adproblem into a limit load problem.
missibility (div, 0 = 0 — div, 0 = 0), the transformation As shown in Figure 1b, the plasticity component is ac-
has to be of the form (e.g. see [21]), tivated first at point A, with the damage model following
shortly and activated at point B. Since then until ultimate
T stress both plasticity and damage components are active and
0(%,%) = T(N1,1M2) (111, 12) T (M1, ). (43) coupled as described previously. At point C, the ultimate
If, in top of that, we demand that the constant stress fiestfess is reached and yet another inelastic mechanism of the
is properly transformed, the transformation ten3ghas to strain softening process is activated within the weakened
be constantT (n,,n,) = T. The most efficient choice hassection” in the middle of the bar. Following that point the
proven to be localized deformatiom will occur only in the middle of the
bar. The localized strain leads to stress reduction an@s$orc
the rest of the bar to unload with inelastic straiftsand 9
Tij=3;(n.=0,n,=0) (44)  remaining fixed (see Figure 1c).
where We assume herein that the localized strain is equivalent
to a plasticity-like mechanism, which allows us to compute
Ix the irreversible localized strain value at sectl_‘quhenzt'he
Ji(ny,np) = ik B (45) stress fully unloads to zero; namely, we obtais P + £ in
‘9’71' section” ande = €P in any other section. This plasticity-
gge mechanism for strain softening can be replaced by a
amage-like model, which would apply the localized strain
disappearance upon the stress unloading. Whatever is our
choice made for the softening mechanism, the computed re-

is the jacobian tensor. Therefore, the stress can finally
expressed as,

0=S8A, (46) sult will not depend on the mesh grading.
where
10100 , _ _
s=Tlo1010]|7T". 47) 52 Cyclic behavior of concrete under compression
00001

The constitutive model presented herein can also represent
The remaining part of computations follows closely ththe behavior of concrete under cyclic loading. Indeed, ¢a Fi
one presented for 1D case, with consistent matrix whichie 1b, the portion AB of the curve represent the plastic be-
ought to be computed by inversion. havior of the material before the appearance of micro cracks
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Fig. 1 a) Description of the bar; b) Response of element 2; ¢) Respohielements 1 and 3

at point B. The portion BC represents the fracture processalogous to those of the proposed model without kinematic
zone (FPZ) which is assumed to develop in the whole baardening.

In the FPZ,e = £°+ &P + &% with &P the irreversible part By introducing the kinematic hardening law in the plas-
of the deformation due to the fact that micro cracks do ntitity model, we can better represent some local hysteretic
necessarily close entirely upon unloading because some gdrenomena that occur in concrete and generally associated
ticles may have penetrate in them. When the ultimate strégssliding in cracks as shown in Figure 2b plotted with the
oy is reached, strain diminishes in the whole bar except fiollowing parametersE = 30GPa, oy = 8MPa, 0; = 21MPa,
sections where macro cracks appear. Under tension, thedg—: 28MPa, HP = 40GPa, K¢ = 8GPa andK = —1.6GPa.
calized strain parameter clearly is the size of the crack

opening perpendicular to the loading direction. Under com-

pression, macro cracks develop parallel to the loadingdire; 3 criteria for porous metals in tension

tion and the physical interpretation af is somewhat less

straightforward to provide than for the localized failure iTpe porous metal coupled model was built along the lines of

tension. _ the pioneering work of Gurson ([1]), however with impor-
To represent local hysteretic phenomena of concrete lgnt difference regarding the present model, which has the

havior under cyclic loading in compression (see Figure 2ajlity to describe the closing of pores at unloading. Postu

we enrich the continuum plasticity model presented in thgting that it is only spherical part of stress which detevesi

that purpose, we introduce the internal variaklke along
with its conjugate state variablg’. The strain energy can

then be written in a slightly generalized form with respect tp?(a,g%) = (tr(0)) — (0% —7), (50)
2):
wheretr (o) denotes the trace of the tenspand< - > the
W(u,o,eP,D,EP &9 kP) = Macauley brackets:
WP + 4(°.D) + ZP(EP) + ZUED +AP(KP) (4g
dAP <x>={Xx20 (51)
ﬁrpz_m:_HpKP T 10;x<0°

The yield criterion is also modified from (4) in order to acl_—lere we neglect the possibility that the material can be dam-
y : . . aged in compression. To model the plasticity of metal ma-
count for the elastic domain translation:

trix, we used the von Mises criterion:
@°(0,0°,1°) =[o+ 1P| - (0y—g") <O (49)
@°(0,0°) = \/dev(o) : dev(a) — (o) — ), (52)
If the imposed loading program considers only a com-

pression or a tensile loading (without unloading), the farm wheredev(o) denotes the deviatoric part of the tensor
lation and implementation of such a modified model remaitev(o) = o — tr(o).
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Fig. 2 a) Experimental result for cyclic behavior of concrete imgoession (from [15]); b) Numerical result for cyclic bef@wof concrete in
compression by using the proposed coupled damage-ptastiodel

From the choice of the criteria it follows that the evo- We observe the complete disappearance of shear band
lution of damage variables depends only upon the spheri¢igure 4), a typical response of metals or alloys with von
part of the stress tensor and the evolution of plastic veegabMises criterion, when damage is also taken into account. Be-
upon its deviatoric part. Hence, the two nonlinear phenorsides, we notice that in the case where both phenomena are
ena appear uncoupled in strain space. This is the direct cantivated either region is reduced to a smaller volume, but
sequence of the initial physical presumption that the opethe differences between the maximum and minimum value
ing of the micro-cracks is due to positive spherical part af &P and&¢ is larger. With other words, the phenomena are,
the stress and sliding of crystal planes due to the stress devhen activated simultaneously, more localized.
ator. The former corresponding to damage and the latter to
plasticity.

Finally, we use an exponential hardening law for eithgf conclusion
phenomenon, plasticity and damage,

The coupled damage-plasticity model proposed in this work
9°(&P) = (o — oB)(1—e %) goes beyond the minimum requirement we need for any such
dozdy _ ~d d _pdgd model of representing the irreversible deformation anehgba
q'(&%) = (of —o0)(1-e ") (53)  of elastic response, in that it also includes the strainiizaa
where g? and gd are saturation values of stress, wheredi®n softening phase. Any of the basic mechanisms of inelas-
bP andb? are the material parameters governing the rate ¢ behavior is governed by an independent criterion, which
saturation. specifies at what stage the corresponding evolution would
The model is illustrated on an example of a rectangulatart.
plate with a circular hole in the middle, submitted to asienpl ~ We have presented the governing equations for such model,
tension test. By exploiting symmetry conditions, only onghich can be of interest for number of problems dealing with
quarter of the model is used in the analysis; See Figure 3cyclic constitutive behavior. We have also shown that the
The material properties taken in the calculation were tlvest manner to provide the robust numerical implementation
following; (i) for elasticity: Young's modulus: = 240GPa  for such a model relies upon the direct stress interpolation
and the shear modulug,= 92GPg; (ii) for plasticity: yield The latter provides the possibility to avoid any local item
stressgy = 170MPa, hardening limit stressz® = 210MPa  loop and much improves the model robustness.
and saturation parametéf, = 50; (iii) for damage: fracture |t is clear that a constitutive model of this kind can be
stresso; = 170MPa, hardening limit stresszs = 210MPa  very useful for representing a number of experimentally ob-
and saturation parametéf, = 50. served inelastic phenomena including failure. Howeves, th
choice of model parameters, or rather the sequence of ac-
In Figures 3 and 4 we show how the spreading of plastiivation of each mechanism, ought to identified with care.
ied and damaged regions will change with the other phEhis question is currently studied for a simpler constiiti
nomenon being activated. Different stages of activation ofodel of anisotropic damage, with respect to modern testing
either plasticity or damage models are illustrated by coprocedures under heterogeneous stress field (see [22]); how
tours of hardening variablés® and&9, respectively. to generalized these developments to current model will be
examined in our future work.
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Plastic Hardening
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b)

Fig. 3 a) One quarter of the specimen: geometry and boundary conditions; b) Plasticity model: contours of the plastic hardening variable &P
showing typical shear bands.

¢

Plastic Hardening
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a)

Damage Hardening
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Fig. 4 Coupled damage-plasticity model: a) contours of the plastic hardening variable &P, and b) contours of the damage hardening variable
d
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