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Abstract

Cross-domain image synthesis and recognition are typi-

cally considered as two distinct tasks in the areas of com-

puter vision and pattern recognition. Therefore, it is not

clear whether approaches addressing one task can be eas-

ily generalized or extended for solving the other. In this

paper, we propose a unified model for coupled dictionary

and feature space learning. The proposed learning model

not only observes a common feature space for associating

cross-domain image data for recognition purposes, the de-

rived feature space is able to jointly update the dictionaries

in each image domain for improved representation. This is

why our method can be applied to both cross-domain image

synthesis and recognition problems. Experiments on a vari-

ety of synthesis and recognition tasks such as single image

super-resolution, cross-view action recognition, and sketch-

to-photo face recognition would verify the effectiveness of

our proposed learning model.

1. Introduction

Many computer vision problems can be approached as

solving the task of associating data or knowledge across

different domains. For example, as depicted in Figure 1,

image super-resolution (SR) [5] takes one or multiple low-

resolution (LR) images for producing the corresponding

high-resolution (HR) versions. On the other hand, cross-

view action recognition utilizes training data captured by

one camera, and thus the designed features or classifiers can

be applied to recognize test data at a different view [4]. For

the above cross-domain image synthesis (e.g., image SR)

and recognition (e.g., cross-view action recognition) prob-

lems, how to represent and relate data across different do-

mains become a major challenge [20, 25, 10, 16, 12].

With the goal to transfer the knowledge from the source

to target domain, recent developments in transfer learning

[15] have shown promising results for cross-domain recog-

nition problems. Among techniques for addressing such
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Figure 1. Illustration of cross-domain image synthesis or recogni-

tion problems. Note that D, A, U, and P are the dictionaries,

coefficients, projection matrices, and projected data observed at

the associated image domain (i.e., data X or Y), respectively.

recognition tasks, domain adaptation [1] particularly favors

the scenarios in which labeled data can be obtained at the

source domain, but only little or no labeled target domain

data is available. As a result, unlabeled data from both do-

mains will be utilized for relating the knowledge across dif-

ferent domains. Generally, approaches like [12, 16, 18, 10]

focus on determining a common feature space or represen-

tation using cross-domain unlabeled data pairs, so that clas-

sifiers trained in this feature space can be applied to recog-

nize the projected test data. For example, Li et al. [10] de-

termined a feature subspace via canonical correlation anal-

ysis (CCA) [8] for recognizing faces with different poses.

For cross-camera action recognition, Liu et al. [12] pro-

posed a bag-of-bilingual-words (BoBW) model as a shared

feature representation, which is used to describe the same

action data captured by different cameras. A Partial Least

Squares (PLS) based framework was recently proposed by

Sharma and Jacobs [16] for solving cross-domain image

recognition. As pointed out in [19], although the above fea-

ture spaces well preserve cross-domain data structures (e.g.,

data correlation), they cannot be easily extended to image

synthesis problems due to the lack of data representation or

reconstruction guarantees.
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For image synthesis, one typically deals with raw or

noisy input data for recovering its desirable version. Among

existing approaches, coupled dictionary learning assumes

that some relationships between raw and desirable image

data exist and aims at learning a pair of dictionaries for de-

scribing cross-domain image data. As a result, information

extracted from the input domain can be applied to synthe-

size images at the output domain accordingly. For example,

Yang et al. [25] assumed that LR image patches have the

same sparse representations as their HR versions do, and

proposed a joint dictionary learning model for SR using

concatenated HR/LR image features. They later imposed

relaxed constraints on the observed dictionary/coefficient

pairs across image domains for improved performance [24].

Wang et al. [19] further proposed a semi-coupled dictionary

learning (SCDL) scheme by advancing a linear mapping for

cross-domain image sparse representation. Their method

has been successfully applied to applications of image SR

and cross-style synthesis.

In addition to the aforementioned assumptions on image

priors, most prior image synthesis algorithms focused on

data representation/reconsturction when designing or opti-

mizing their proposed formulation. As argued in [7], if one

needs to perform classification after obtaining the desirable

output images (e.g., face recognition after hallucination), it

would be preferable to integrate image synthesis and recog-

nition algorithms into a unified framework instead of solv-

ing them separately. Another potential yet practical issue

of the most prior synthesis approaches is that, their need to

collect cross-domain training image data beforehand might

not be applicable for real-world applications like single im-

age SR or denoising.

It is worth noting that, sparse representation has been

widely applied to various image synthesis and recognition

tasks [3, 25, 22]. Besides the aforementioned work of image

SR [25], Elad and Aharon [3] proposed to utilize an over-

complete dictionary observed from an input noisy image,

and thus the associated noise patterns can be removed from

the reconstructed image for denoising purposes. The formu-

lation of sparse representation was also applied by Wright et

al. for recognizing face images [22]. Recently, Zhang et al.

[26] addressed both face restoration and recognition prob-

lems by jointly estimating the blurring kernel and sparse

representation. As noted in [16, 12], however, the use of a

single linear operator for relating face images and their de-

graded versions might not be preferable for general image

recognition problems. Nevertheless, sparse representation

has been shown to be a very effective technique in repre-

senting or recognizing image data.

1.1. Our Contributions

The main contribution of this paper is to present a joint

model which learns a pair of dictionaries with a feature

space for describing and associating cross-domain data.

Since our proposed model iterates between the stages of

coupled dictionary and feature space learning during opti-

mization, we not only learn a common feature space for re-

lating cross-domain image data, this derived feature space

will be utilized to update the observed dictionary pair for

improved data representation in each domain. Therefore,

our model is able to address both cross-domain synthesis

and recognition problems, while most existing works (e.g.,

[16, 19]) focus on solving either task and lack the ability for

the other. As confirmed later by our experiments, our pro-

posed model can be applied to a variety of cross-domain

image synthesis and recognition tasks such as single im-

age super-resolution, cross-camera action recognition, and

sketch-to-photo face recognition.

2. Coupled Dictionary and Feature Space

Learning

In Section 2.1, we present the problem formulation and

explain how we represent and associate cross-domain im-

age data by jointly solving coupled dictionary and common

feature space learning problems. Optimization details for

the training stage of our model are presented in Section 2.2.

2.1. Problem Formulation

Let image sets X = [x1, . . . ,xn] ∈ Rd1×n and Y =
[y1, . . . ,yn] ∈ Rd2×n be n unlabeled data pairs extracted

from two different domains, whose dimensions are d1 and

d2, respectively. Coupled dictionary learning can be ap-

proached as solving the following minimization problem:

min
Dx,Dy,Ax,Ay

EDL(X,Dx,Ax) + EDL(Y,Dy,Ay)

+ECoupled(Dx,Dy,Ax,Ay).
(1)

In (1), EDL denotes the energy term for dictionary learning

and is typically in terms of data reconstruction error. The

coupled energy term ECoupled regularizes the relationship

between the observed dictionaries Dx ∈ Rdx×k1 and Dy ∈
Rdy×k2 , or that between the resulting coefficients Ax ∈
Rk1×n and Ay ∈ Rk2×n. Note that k1 and k2 are the

numbers of dictionary atoms for Dx and Dy , respectively.

In our work, we consider the formulation of sparse rep-

resentation for EDL, since it has been shown to be very ef-

fective in many image synthesis or recognition tasks. For

the coupled energy term, we do not explicitly relate the dic-

tionaries Dx and Dy . Instead, we impose association func-

tions relating the resulting coefficients Ax and Ay . Once

the relationship between Ax and Ay is observed, Dx and

Dy can be updated via EDL accordingly. Therefore, we can

convert (1) into the problem below:

min
Dx,Dy ,Ax,Ay

‖X−DxAx‖
2

F
+ ‖Y −DyAy‖

2

F

+λ{‖Ax‖1 + ‖Ay‖1}+ γF(Ax,Ay)

s.t. ‖dx,i‖2 ≤ 1, ‖dy,i‖2 ≤ 1, ∀i,

(2)

24972497



where λ and γ are the regularization parameters, and

F(Ax,Ay) is the association function defining the cross-

domain relationship in terms of Ax and Ay . Since our goal

is to describe and relate cross-domain data, we now elabo-

rate our determination of F(Ax,Ay).

A recent SR work in [25] assumed that LR image patches

have the same sparse representations as their HR ver-

sions do, and proposed a joint dictionary learning model

for representing LR and HR image pairs. Thus, the as-

sociation function F(Ax,Ay) in [25] can be defined as

‖Ax −Ay‖2F with an infinitely large γ. To relax this as-

sumption, Wang et al. [19] presented a semi-coupled dictio-

nary learning (SCDL) model and considered F(Ax,Ay) =

‖Ax −WAy‖2F . In other words, SCDL assumes the sparse

coefficients from one domain to be identical to those ob-

served at the other domain via a linear projection W.

In order to better describe and associate cross-domain

data, we incorporate common feature space learning into

the original coupled dictionary learning scheme. In our

work, we first replace F(Ax,Ay) in (2) by F(Px,Py) =

‖Px −Py‖2F = ‖UxAx −UyAy)‖2F , where Ux ∈
Rkc×k1 is the projection matrix for Ax, and Px =
UxAx ∈ Rkc×n is the projected data of X in the kc-

dimensional common feature space. The same remarks are

applied to Uy and Py . It can be seen that we transform the

common feature space learning problem into the learning

of projection matrices Ux and Uy , which will be utilized to

relate cross-domain data in the derived feature space. Dif-

ferent from prior joint or semi-coupled dictionary learning

works, this further relaxes assumptions on the observed dic-

tionaries or sparse coefficients. In other words, instead of

minimizing ‖Ax −Ay‖2F or ‖Ax −WAy‖2F as [25, 19]

did, we consider F(Ax,Ay) = ‖UxAx −UyAy‖2F as the

association function when solving the coupled dictionary

learning problem.

It is worth noting that the solution pair Ux and Uy is not

unique when minimizing F(Px,Py) = ‖Px −Py‖2F =

‖UxAx −UyAy‖2F (e.g., a trivial solution would be Ux =
Uy = 0). Therefore, we need additional constraints to en-

sure the uniqueness of Ux and Uy . In our work, we not only

require the common feature space to relate cross-domain

data, we also need this space to exhibit additional capabil-

ities in recovering images in one domain using data pro-

jected from the other. To be more precise, for an arbitrary

instance p in the common feature space which is projected

from the image set X (or Y), we can derive αy = U−1
y p (or

αx = U−1
x p) so that the output image in the other domain

can be reconstructed by calculating Dyαy (or Dxαx).

From the above observations, we define F(Px,Py) =
∥

∥Ax −U−1
x Py

∥

∥

2

F
+
∥

∥Ay −U−1
y Px

∥

∥

2

F
for the purpose of

cross-domain image synthesis. Once the solutions Ux and

Uy are derived, we have Ax ≈ U−1
x Py and Ay ≈ U−1

y Px.

It can be seen that, if multiplying both sides by Ux or

Uy , we have Px ≈ Py which implies the minimization

of ‖Px −Py‖2F . This is the reason why the resulting fea-

ture space can be considered as a common representation

for data from different domains. In our work, we have

k1 = k2 = kc since Ux and Uy need to satisfy the

above function for cross-domain synthesis guarantees. Note

that SCDL [19] relates cross-domain data by minimizing

‖Ax −WAy‖2F , which considers W as a squared matrix

and also has k1 = k2. The final formulation of our pro-

posed model solves the following optimization problem:

min
Dx,Dy ,Ax,Ay ,Ux,Uy

‖X−DxAx‖
2

F
+ ‖Y −DyAy‖

2

F

+γ{
∥

∥Ax −U
−1

x Py

∥

∥

2

F
+

∥

∥Ay −U
−1

y Px

∥

∥

2

F
}

+λ{‖Ax‖1 + ‖Ay‖1}+ λR{
∥

∥U
−1

x

∥

∥

2

F
+

∥

∥U
−1

y

∥

∥

2

F
}

s.t. ‖dx,i‖2 ≤ 1, ‖dy,i‖2 ≤ 1, ∀i.

(3)

In (3), parameters γ and λ balance image representation

and sparsity, respectively. We impose additional constraints

on U−1
x and U−1

y (regularized by λR) for numerical stabil-

ity and to avoid over-fitting.

We would like to point out that, the joint dictionary learn-

ing approach in [25] and SCDL in [19] can be viewed as

special cases of our proposed model by having Ux = Uy =
I for [25] or Ux = I and Uy = W for [19]. Nevertheless,

our model is more general since we advocate the decom-

position/relaxation of W by learning Ux and Uy with bi-

directional regularizations. This explains why our model

can be applied for solving both synthesis and recognition

problems. In the next subsection, we will detail the opti-

mization process at the training stage for deriving the dic-

tionary pair, sparse coefficients, and the projection matrices.

2.2. Optimization

While the objective function in (3) is not jointly convex

to D, A, and U, it is convex with respect to each of them

if the remaining variables are fixed. Given training image

data X and Y, we apply an iterative algorithm (as shown

in Algorithm 1) to optimize the dictionaries D, coefficients

A, and projection matrices U, respectively. We now discuss

how we update these variables in each iteration.

2.2.1 Updating Dx and Dy

We first apply the approach of joint dictionary learning [25]

to calculate Dx and Dy for the initialization of the opti-

mization process. When updating the two dictionaries dur-

ing each iteration, we consider the sparse coefficients A and

projection matrices U as constants. As a result, the original

problem of (3) can be simplified into the following forms:
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Algorithm 1 Our Proposed Model

Input: Data matrices X and Y, parameters γ, λ, and λR

1. Initialize D0 and A0 by [25], and U0 as I.

2. Let P0
x ← U0

xA
0
x and P0

y ← U0
yA

0
y .

while not converged do

3. Update Dk+1
x and Dk+1

y by (4) with Ak
x, Ak

y , Uk
x,

and Uk
y derived from the previous iteration.

4. Update Ak+1
x and Ak+1

y by (5) with Dk+1
x , Dk+1

y ,

Uk
x, and Uk

y .

5. Update Uk+1
x and Uk+1

y by (7) with Dk+1
x , Dk+1

y ,

Ak+1
x , and Ak+1

y .

6. Pk+1
x ← Uk+1

x Ak+1
x and Pk+1

y ← Uk+1
y Ak+1

y

end while

Output: Dx, Dy , Ux and Uy

min
Dx

‖X−DxAx‖
2

F
s.t. ‖dx,i‖2 ≤ 1, ∀i,

min
Dy

‖Y −DyAy‖
2

F
s.t. ‖dy,i‖2 ≤ 1, ∀i,

(4)

which is a quadratically constrained quadratic program

(QCQP) problem with respect to Dx or Dy , and the so-

lutions can be solved using Lagrange dual techniques [9].

2.2.2 Updating Ax and Ay

Similar to dictionary updates, the projection matrices U and

dictionaries D are fixed when we calculate the solutions

of sparse coefficients Ax and Ay . Besides the standard

sparse coding formulation, we have additional terms asso-

ciated with common feature space learning when updating

A. Thus, we convert (3) into the following problem:

min
Ax

‖X−DxAx‖
2

F
+ λ ‖Ax‖1 + γ

∥

∥Ax −U
−1

x Py

∥

∥

2

F
,

min
Ay

‖Y −DyAy‖
2

F
+ λ ‖Ay‖1 + γ

∥

∥U
−1

y Px −Ay

∥

∥

2

F
.

(5)

To further simplify the above problem, we combine the

first and final terms in (5) and rewrite the minimization

problem as follows (take Ax for example):

min
Ax

∥

∥

∥
X̃− D̃xAx

∥

∥

∥

2

F
+ λ ‖Ax‖1 ,

where X̃ =

[

X√
γU−1

x Py

]

and D̃ =

[

Dx√
γ I

]

. This simpli-

fied version has the exact formulation as that of the standard

sparse coding does. One can simply choose existing solvers

like SPAMS [13] for deriving the solutions.

2.2.3 Updating Ux and Uy

When updating the projection matrices, only the terms as-

sociated with Ux and Uy in (3) need to be considered into

Algorithm 2 Cross-Domain Image Synthesis

Input: Input X̂; Dx, Dy , Ux and Uy trained by Alg. 1.

1. Initialize Â0
x by (8) and Â0

y by (9).

2. Let P̂0
x ← UxÂ

0
x, P̂0

y ← UyÂ
0
y , and Ŷ0 ← DyÂ

0
y

while not converged do

3. Update Âk+1
x and Âk+1

y by (5) with Ŷk, P̂k
x, P̂k

y ,

Ux and Uy .

4. Update P̂k+1
x ← UxÂ

k+1
x , P̂k+1

y ← UyÂ
k+1
y ,

and Ŷk+1 ← DyÂ
k+1
y

end while

Output: Output Ŷ

the optimization process. With fixed D and A, we solve the

following ridge regression problems for updating U:

min
U

−1
x

γ
∥

∥Ax −U
−1

x Py

∥

∥

2

F
+ λR

∥

∥U
−1

x

∥

∥

2

F
,

min
U

−1
y

γ
∥

∥U
−1

y Px −Ay

∥

∥

2

F
+ λR

∥

∥U
−1

y

∥

∥

2

F
.

(6)

From (6), the analytical solutions of U can be derived as:

U
−1

x = AxP
T
y (PyP

T
y + (λR/γ)I)

−1,

U
−1

y = AyP
T
x (PxP

T
x + (λR/γ)I)

−1.
(7)

To verify that U−1
x and U−1

y are invertible, we take U−1
x

for example and need AxP
T
y = AxA

T
y U

T
y (or AxA

T
y )

in (7) to be nonsingular. Recall that Ax ∈ Rk1×n and

Ay ∈ Rk2×n with k1 = k2. Since we have the number

of patches/instances n ≫ k1 for image data, it is less likely

to have singular AxA
T
y ∈ Rk1×k1 . While this has been

confirmed by our experiments, one can add small perturba-

tions for inverse guarantees if needed.

Once the optimization is complete, we can apply the de-

rived model for cross-domain image synthesis/recognition.

3. Cross-Domain Image Synthesis & Recogni-

tion

We now discuss how we apply the proposed model for

solving image synthesis and recognition problems. In par-

ticular, examples of single image SR and cross-view action

recognition will be presented.

3.1. Cross-domain image synthesis

To address cross-domain image synthesis problems, we

first collect cross-domain image/patch pairs for training pur-

poses. Once the training stage is complete, we apply the

learned model to synthesize the output image Ŷ from the

input image X̂. This is achieved by calculating the sparse

coefficients Âx of X̂ via solving

min
Âx

∥

∥

∥
X̂−DxÂx

∥

∥

∥

2

F
+ λ

∥

∥

∥
Âx

∥

∥

∥

1

. (8)
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Algorithm 3 Cross-Domain Image Recognition

Input: Labeled training data X and unlabeled test data Y.

D and U trained by Alg. 1 using unlabeled data pairs.

1. Initialize A0
x and A0

y by (8).

2. P0
x ← UxA

0
x and P0

y ← UyA
0
y

while not converged do

3. Update Ak+1
x and Ak+1

y by (5) with other variables

derived from the previous iteration.

4. Pk+1
x ← UxA

k+1
x and Pk+1

y ← UyA
k+1
y

end while

5. Train classifiers C using Px.

6. Use C to predict the labels L of Py

Output: C and L

Once Âx is produced, we associate it to Ây by (3) in the

derived common feature space:

Ây ≈ U
−1

y P̂x = U
−1

y UxÂx. (9)

If necessary, one can apply (5) to iteratively update the es-

timates Ây . Finally, we have Ŷ = DyÂy as the final syn-

thesized output, as shown in Algorithm 2.

3.2. Cross-domain image recognition

To recognize images at the target domain using labeled

source-domain data, we first collect unlabeled data pairs

from both domains for learning the models D, A, and

U. Next, we apply the observed Dx and Dy to calculate

the sparse coefficients Ax and Ay for the labeled source-

domain data X and target-domain test data Y. The matrices

Ux and Uy then project these coefficients into the common

feature space by Px = UxAx and Py = UyAy . Finally,

classifiers can be designed using Px in this feature space,

and recognition of Py can be performed accordingly. The

pseudo code for cross-domain image recognition is shown

in Algorithm 3.

As noted in Section 1 and [11], cross-domain recogni-

tion approaches based on common feature space learning

do not necessarily take class label information into their

problem formulations (e.g., integrate the stage or regular-

ization term of classifier learning). This is because that, the

goal of correspondence-mode approaches like [4, 12] and

ours is to derive a common feature space using only unla-

beled cross-domain data pairs. Once this space is observed,

one can project source-domain training (labeled) data and

target-domain test data into the derived space, and apply

standard classifiers like SVM for recognition.

3.3. Examples

3.3.1 Single-image super resolution

Single-image SR aims at synthesizing a HR image based on

one LR input. Although promising SR results have been

achieved by example or learning-based methods [5, 25], a

..
.

Down-

Sampling

Data Y

y

..
.

Data X

x

Interpolation

I0  

I�1  B�1  

B0  i i

Figure 2. Producing cross-domain data X and Y from an input im-

age I0 (for learning our model for single image super-resolution).

major concern is their need to collect training LR and HR

image data for designing the SR models. To address this

problem, recent approaches like [6, 23] assumed the reoc-

currence of patches within and across image scales, so that

the SR outputs can be predicted accordingly.

Different from [6, 23], we advance a self-learning strat-

egy which constructs cross-domain training data directly

from the input image, which allows us to apply our pro-

posed model for solving single-image SR problems. Thus,

unlike most learning-based SR approaches, we do not col-

lect training image data beforehand, and no particular post-

processing algorithm is required.

Figure 2 shows how we generate cross-domain training

data from a LR input I0. We first construct the image pyra-

mid {Ii} by downgrading I0 into several lower-resolution

versions (i.e., I−1, I−2, etc.). With a scaling factor of 2,

the size of Ii−1 is a quarter of that of Ii. In contrast to

the pyramid {Ii}, we upsample the resolution of each Ii−1

by the same factor to obtain its higher-resolution version

Bi. We note that the pyramid {Ii} consists of the input

image and its downsampled versions, and thus can be con-

sidered the ground-truth target-domain image set Y. On

the other hand, each image Bi is an interpolated version of

Ii−1 (or a blurred version of Ii). Thus, we have {Bi} as

the source-domain image set X. Note that we perform both

up/downsampling by bicubic interpolation in our work.

Once image sets X and Y are produced, we design our

SR model using Algorithm 1. To super-resolve the input LR

image I0, we upsample I0 into the interpolated version B1

and consider B1 as the input image X̂. Finally, Algorithm 2

can be applied to calculate Ŷ for X̂ as the final SR output.

3.3.2 Cross-view action recognition

For cross-view action recognition, one needs to recognize

test data captured at one camera using labeled training data

at a different view. Recent works like [4, 12, 11] advanced

domain adaptation techniques and utilized unlabeled data

pairs (pre-collected from both camera views) for deriving a

common feature space. As a result, training and testing can

be performed in this space.
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Table 1. Comparisons of PSNR values of different SR approaches.

airport airplane boat child lena man aerial

bicubic 26.99 25.31 28.19 32.75 27.31 27.12 25.15

ScSR [25] 27.32 26.03 28.72 33.40 27.71 27.77 25.45

SCDL [19] 26.35 24.82 27.9 32.89 27.39 27.04 26.58

Glasner [6] 27.28 26.27 28.86 33.48 27.83 27.74 25.57

Ours 27.76 26.79 29.63 34.29 28.51 28.42 26.42

We consider the same setting above and use unlabeled

data pairs (e.g., action data not of interest) collected by both

cameras for learning our model. Once the training is com-

plete, we take labeled source-view data as X and target-

view test data as Y, and we calculate their coefficients Ax

and Ay . Finally, we train classifiers using projected labeled

data Px = UxAx in the derived feature space, and perform

recognition of Py = UyAy in the same space.

4. Experiments

4.1. Single Image Super-Resolution

We first evaluate the performance of single image SR for

cross-domain image synthesis. The images to be super-

resolved are collected from the USC-SIPI1 and Berkeley

image segmentation databases [14]. We downgrade the

ground-truth HR images with 256 × 256 pixels into 128 ×
128 pixels as test LR inputs (as [25] did), and thus the mag-

nification factor is 2 in each dimension. When applying our

self-learning scheme to produce cross-domain training data

from the LR input, we have the lowest resolution of the im-

age Ii as 32× 32 pixels (i.e. i = −2 in Section 3.3.1). The

size of each image patch xi and yi in Figure 2 is 5×5 pixels,

and the numbers of dictionary atoms for both Dx and Dy

are k1 = k2 = 512. We empirically set the regularization

parameters λ = γ = 0.01, and λR = 0.001.

We consider the methods of ScSR [25], SCDL [19] and

Glasner et al. [6] for comparisons. For the method of

[6], we apply the code implemented by Yang et al. [23].

Since both ScSR and SCDL require training LR and HR im-

age data, we download the code and data from the project

websites of [25] and [19]. For fair comparisons, no post-

processing is applied to any of the above methods.

Table 1 compares the results of different SR methods in

terms of PSNR. It can be seen that our method achieved

the highest PSNR values for most of the images, and gener-

ally outperformed state-of-the-art SR approaches including

ScSR and SCDL. It is worth repeating that, ScSR and SCDL

were particularly designed to address image SR, while our

model can be applied to both cross-domain synthesis and

recognition problems. Thus, our improvements over such

methods are appreciable. In addition to PSNR, we also

compare the SSIM values of the above approaches. We

obtained the highest average SSIM value of 0.8813, while

those produced by bicubic, ScSR, SCDL, and Glasner were

1Available at http://sipi.usc.edu/database.

0.8526, 0.8675, 0.8562, and 0.8610, respectively. Example

SR results are shown in Figures 3∼5 for comparisons.

4.2. Cross-View Action Recognition

We first address cross-view action recognition as one of

the cross-domain image recognition tasks. We consider the

IXMAS multiview action dataset [21] which contains video

frames of eleven action classes. In this dataset, each ac-

tion video is performed three times by twelve people, and

videos of the same action are synchronically captured by

five cameras (i.e., cam0 to cam4). Example action videos at

different camera views are shown in Figure 6. In our exper-

iments, we choose the same bag-of-features (BOF) model

to describe action data as [12] did (the BOF models are cal-

culated from spatial-temporal cuboids extracted from each

video at each view using 1000 visual words). Following the

same leave-one-action-out strategy as in [12], we take one

action class to be recognized, and thus all videos of that ac-

tion are excluded from the selection of the unlabeled data

set. We have k1 = k2 = 50, and the regularization parame-

ters are also set as λ = γ = 0.01 and λR = 0.001.

Besides CCA which determines a correlation subspace

for cross-domain data, we consider two recent approaches

of [4, 12] which also focus on deriving common feature

spaces for cross-domain recognition. Table 2 compares

the performance of different methods, in which the aver-

age recognition rates (for all actions) at particular camera-

view pairs are listed. For all methods considered, nonlinear

SVMs with Gaussian kernels [2] are trained at the derived

feature space using labeled data projected from the source

view, and recognition is performed on test data projected

from the target view. From this table, we see that our ap-

proach achieved the highest or comparable recognition re-

sults as state-of-the-art methods did.

It is worth repeating that, we consider the setting where

only unlabeled cross-domain data pairs are available for

learning the domain adaptation model (as [4, 12, 16] did).

Therefore, comparisons with methods utilizing label infor-

mation for associating cross-domain data would be out of

the scope of this paper. Nevertheless, the above results con-

firmed the superiority of our model over CCA and [4, 12].

4.3. Sketch-to-Photo Face Recognition

We now address a more challenging task of sketch-to-

photo face recognition, in which features at source and tar-

get domains are very different (i.e., sketches vs. photos).

In our experiments, a subset of the CUHK Face Sketch

Database (CUFS) [20] containing sketch/photo face image

pairs of 188 CUHK students is considered (see examples

shown in Figure 7). We randomly select 88 sketch-photo

pairs as unlabeled data for training our proposed model, and

the remaining 100 image pairs are used for evaluating the

recognition performance. In particular, the photo images of
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Figure 3. Example SR results and the corresponding PSNR values. Images from left to right: Ground truth, Bicubic (PSNR: 32.75), Glasner

et al. [6] (PSNR: 33.48), Yang et al. [25] (PSNR: 33.40) , Wang et al. [19] (PSNR: 32.89) and ours (PSNR: 34.29).

Figure 4. Example SR results and the corresponding PSNR values. Images from left to right: Ground truth, Bicubic (PSNR: 27.31), Glasner

et al. [6] (PSNR: 27.83), Yang et al. [25] (PSNR: 27.45) , Wang et al. [19] (PSNR: 27.39) and ours (PSNR: 28.51).

Figure 5. Example SR results and the corresponding PSNR values. Images from left to right: Ground truth, Bicubic (PSNR: 27.12), Glasner

et al. [6] (PSNR: 27.74), Yang et al. [25] (PSNR: 27.77) , Wang et al. [19] (PSNR: 27.04) and ours (PSNR: 28.42).
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Figure 6. Example actions of the IXMAS dataset. Each row repre-

sents an action at five different camera views.

the 100 image pairs are viewed as source domain data and

will be projected onto the derived feature space. The cor-

responding sketches will be treated as test data at the target

domain for recognition. Once the test images are also pro-

jected onto the same feature space, recognition is performed

by nearest neighbor (NN) classifiers (as the same classifica-

tion strategy as [16] did). We repeat the above process five

times, and list the average recognition results of different

methods in Table 3. We have the same regularization pa-

rameters λ = γ = 0.01 and λR = 0.001 for our model.

Besides considering CCA as the baseline approach, we

consider the methods of Tang & Wang [17], PLS [16], bi-

linear model [18], SCDL [19], and joint dictionary learning

Figure 7. Example sketch-photo image pairs in the CUFS dataset.

[25] for comparisons. For SCDL, joint dictionary learning,

and our model, we set the numbers of atoms to be learned

k1 = k2 = 50 for the dictionary pair the same at both image

domains. For the bilinear model, we select 70 PLS bases

and 50 eigenvectors as [16] did. For joint dictionary learn-

ing and SCDL, we take the calculated sparse representations

as features for performing recognition.

From Table 3, it can be seen that our approach achieved

the highest recognition performance. It is worth noting that,

since the approaches of SCDL and joint dictionary learning

were not designed for cross-domain recognition (and did

not explicitly derive a common feature space for associating

cross-domain data), they are not expected to achieve com-

parable results as ours does. From the above experiments,

the effectiveness of our proposed model for cross-domain

image recognition can be successfully verified.

5. Conclusions

We presented a unified model for jointly solving cou-

pled dictionary and common feature space learning prob-
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Table 2. Comparisons of recognition rates on the IXMAS dataset. Note that each row corresponds to a source camera view of interest, and

each column indicates a target camera view (and the method to be evaluated).

cam0 cam1 cam2 cam3 cam4

CCA [4] [12] Ours CCA [4] [12] Ours CCA [4] [12] Ours CCA [4] [12] Ours CCA [4] [12] Ours

cam0 – – – – 64.39 72 75.46 75.76 66.16 61 64.40 73.99 69.70 62 67.68 63.89 55.81 30 65.99 72.48

cam1 64.90 69 75.72 76.77 – – – – 63.89 64 64.23 68.18 67.42 68 68.10 65.40 54.04 41 56.02 61.11

cam2 65.91 62 70.33 79.04 61.11 67 66.25 74.24 – – – – 66.67 67 71.34 81.82 48.99 43 62.42 66.92

cam3 65.66 63 73.74 71.97 58.08 72 65.62 64.90 67.93 68 71.30 77.78 – – – – 46.21 44 58.04 59.85

cam4 51.01 51 71.34 69.44 47.22 55 66.29 68.94 54.29 51 70.88 69.70 47.98 53 63.55 65.91 – – – –

Table 3. Performance comparisons for sketch-to-photo recognition

Tang & Wang [17] PLS [16] Bilinear [18] CCA

81 93.6 94.2 94.6

SCDL [19] Yang et al. [25] Ours

95.2 95.4 97.4

lems. In our work, the derived feature space not only asso-

ciates cross-domain data for performing recognition, it also

updates the dictionaries in each data domain for improved

image representation. As a result, the proposed model can

be applied to both cross-domain synthesis and recognition

problems. From our experiments, we confirmed that our

method outperformed state-of-the-art approaches which fo-

cused on either learning dictionaries or deriving feature rep-

resentations for particular cross-domain image synthesis or

recognition tasks.
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