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Abstract. The ability to accurately determine elastic properties of orthotropic materials

is important in the design and health assessment of composite structures. Direct methods

using strain gauges and extensometers for estimating orthotropic properties have become

popular in recent years. In cases where strains are highly localized, the material properties

are inhomogeneous, or the material has localized damage, the use of these measurement

schemes often provides insufficient information. To address this, we propose an inverse

method, based on Quasi-Static Elasticity Imaging (QSEI) for determining inhomogeneous

orthotropic elastic properties using distributed displacement measurements obtained from

Digital Image Correlation (DIC). The QSEI-based approach is first tested with simulated

noisy displacement data considering in-plane deformations of plate geometries undergoing

stretching and bending. Following, experimental DIC measurements are applied to test the

feasibility of the QSEI-based approach. Elastic properties of uni-directional CFRP beams

with and without localized damage are estimated using the proposed approach. Results

demonstrate the feasibility of the proposed inverse approach.
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1. Introduction

Experimentally estimating elastic properties of composite materials is challenging due to

the materials’ orthotropy [1], requiring the estimation of four or more coefficients [2]. It is

then no surprise that orthotropic elastic properties, such as Poisson ratios, elastic moduli,

and shear modulus, are often determined using analytical or numerical modeling [3–5]. In

cases where using such models results in unacceptable uncertainty (e.g. characterizing novel

materials), hybrid experimental-numerical approaches are commonly employed. Owing to

their simplicity, the use of direct methods, employing strain gauges and extensometers are

often used for determining orthotropic properties [6–8]. However, these methods are limited,

in that, the measurement devices only offer point information averaged over the length of

the gauge. For composite structures with highly localized strains, inhomogenity in material

properties, or localized damage, direct methods often offer insufficient information. For this

reason, employment of methods using full-field measurements, such as guided/lamb waves

[9–11], electrical methods [12] and Digital Image Correlation (DIC) [13–16] have recently

become popular.

The use of distributed measurement systems coupled with computational inverse

regimes have been successful in determining orthotropic elastic properties assumed to be

homogeneously distributed. Possibly the first efforts to determine such properties utilized

modal analysis and early implementations of the Finite Element Method, representative

works include [17–19]. Later, developments using Bayesian [20] and superposition-based

[21] approaches showed notable improvements in accuracy. These methods were based on

Kirchhoff’s theory of thin plates, and therefore neglected the influence of the shear modulus.

In more recent years, researchers have proposed regimes for computing all the homogeneous

orthotropic elastic properties, including the shear modulus, using a multitude of approaches,

for example, by using flexural resonance frequencies of beams [22, 23], neural networks [24],

and mixed full-field methods [25–27].

In the light of the significant successes of these works, few regimes exist to reconstruct

(estimate, using an inverse method) highly inhomogeneous distributions of orthotropic

elastic properties which may result from, for example, mechanical damage, environmental

degradation, or manufacturing errors. Inspired by the recent advances utilizing full-field

measurements to characterize composite materials, we propose an inverse algorithm for

estimating inhomgeneously-distributed orthotropic elastic properties for composite structures

in plane-stress using DIC measurements. The approach proposed herein is similar to those

used by researchers in the field of inverse problems, such as in “two-step” applications of

Quantitative Photoacoustic Tomography [28, 29].

The proposed inverse algorithm is rooted in concepts of Quasi-Static Elasticity

Imaging (QSEI), which aims to determine inhomogeneous elastic moduli using quasi-static

displacement fields. While applications of QSEI in structural applications are scarce (cf.

[30–32] for closely-related approaches), QSEI is well developed in medical applications,

e.g. to image tissue abnormalities [33–37]. In this work, we utilize concepts in QSEI
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and stacked approaches for simultaneous inverse estimation of multiple unknown distributed

parameter fields [38, 39]. Specifically, we propose a framework for simultaneous estimation

of inhomogeneous orthotropic elastic properties by employing a stacking method using

constrained least-squares optimization.

This article is organized as follows. First, we describe estimated parameters using

the proposed scheme. After, we describe the inverse problem, the solution to the inverse

problem, and the DIC approach used to obtain experimental displacement fields. Following,

we test the QSEI algorithm using simulated displacement data for in-plane plate stretching

and bending. We then use experimental displacement measurements obtained using DIC to

test the feasibility of the scheme for imaging uni-directional carbon fiber reinforced polymer

(CFRP) beams with and without localized damage. Finally, discussion and conclusions are

presented.

2. Determining orthotropic elastic properties using QSEI

2.1. Estimation parameters

In this work, we study 2-D othotropic geometries neglecting out-of-plane deformations. For

simplicity, we assume the geometry has uni-directional fiber orientation in the longitudinal

direction (x-direction), denoted by the subscript “1.” The transverse direction (y-direction)

is denoted with the subscript “2.” Based off these preliminaries, the orthotropic properties

we are required to estimate are given by the constitutive stress-strain (σ − ǫ) relation for

plane stress [40]:
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(1)

where E1 and E2 are the elastic moduli, ν12 and ν21 are the Poisson ratios, G12 is shear

modulus, and C is the stiffness matrix. From Eq. 1, it is apparent that five elastic properties

need to be estimated.

2.2. Defining the inverse problem

The inverse problem is stated as follows. Given the 2D domain Ω(x, y), boundary information

∂Ω(x, y), measured displacement field um, and external forces F : determine the parameter

field χ = [E1(x, y), E2(x, y), ν12(x, y), ν21(x, y), G12(x, y)]
T . Assuming a Gaussian noise

model, the observation model for the inverse problem has the form

um = U(χ) + e (2)
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where U(χ) are the simulated displacements and e is the Gaussian-distributed noise. To

compute the simulated displacement field, U(χ), we employ the Finite Element Method.

This is done using piece-wise linear triangular elements assuming incompressible plane-stress

conditions. The forward model is written as

Uj =
Nn∑

i=1

K(χ)−1
ji Fi (3)

where Nn is the total number of unknown displacements and K(χ)−1
ji and Fi are the

compliance matrix and force vector, respectively [36, 41].

The reconstruction problem, estimating χ from um, is ill-posed. This means that at

least one of the well-posedness criteria (uniqueness, stability, and existence) does not hold.

Practically speaking, the ill-posedness of estimating χ from um results in solutions that are

sensitive to measurement noise, modeling errors, and outlier data [42, 43]. Due to the ill-

posedness of this problem, we employ regularization in the constrained least-squares (LS)

minimization problem, which is written as

ℓχ = arg min
E1>E2

E2>0
G>0

0<ν12<0.5

{||Le(um − U(χ))||2 +Rχ(χ)} (4)

where Rχ is a compound regularization functional, Le is a square triangular matrix computed

as the Cholesky factor of the inverted noise covariances W−1 (i.e. LT
e Le = W−1), and || · ||

denotes the Euclidean norm. The constraints shown on E2, G12 and ν12 in Eq. 4 are required

for physically-realistic solutions of χ based on known ranges for similar unidirectional CFRP

materials [5]. The constraint E1 > E2 is related to prior knowledge of fiber orientation.

These constraints were handled using cubic polynomial barrier functions.

In this paper, our method of regularization assumes that unknown parameters or

material properties may be modeled using smooth distributions of χ. While sparsity-

promoting regularization methods‡ may be used for estimating damage locations in materials

with relatively homogeneous backgrounds, they are not appropriate for cases with large

fluctuations in background distributions. Based on this realization, we select smoothness

promoting regularization of the form:

Rχ = ||Lχ(χ− χexp)||
2 (5)

where χexp is the homogeneous five-parameter solution computed by solving: χexp =

min ||(um − U(E1, E2, ν12, ν21, G12)||
2. In vectorized form, χexp compiles the five expected

values, i.e. χexp = [E1,exp, E2,exp, ν12,exp, ν21,exp, G12,exp]
T where the shorthand “exp” is used

in the lower right hand subscript to denote that it is an expected value for a given elastic

property. Further, Lχ is a spatially-weighted matrix for each estimated material property

‡ For example, by employing the Total Variation functional [44, 45].
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(for example, RE1
= ||LE1

(E1−E1,exp)||
2). Here, we would like to add some specific remarks

regarding the regularization used in this work:

• We may compute Lχ using the Cholesky factor of the inverted prior covariance matrix

Γχ (i.e. Γ−1
χ = LT

χLχ§), where the covariance matrix element (i, j) for a distributed

parameter ω at locations xi and xj is given by

Γω(i, j) = a exp
(
−

||xi − xj||
2

2b

)
+ cδij (6)

where a, b, and c are positive scalars and δij is the Kronecker delta function.

• Rχ and Γχ are important components of the inverse problem, as they incorporate prior

information in the solution of Eq. 4 and significantly impact the behavior during iterative

minimization described in the following section.

• The use of spatially-weighted regularization, as adopted herein, is not common in

applications of QSEI. However, as demonstrated in [47], the contrast of reconstructed

images has improved from the use of utilizing spatially-weighted regularization.

2.3. Solving the inverse problem

The QSEI problem is solved iteratively using a Gauss-Newton (GN) approach to update the

solution of χ at each iteration k (designated by the right-hand subscript). The algorithm

is equipped with a line-search regime for determining the step size ∆k in the parameterized

solution

χk = χk−1 +∆kχ̄ (7)

where ∆kχ̄ is the total change in the estimated parameters from the previous step and χk and

χk−1 are the current and previous step estimates, respectively, given by the stacked vectors

χk =




E1,k

E2,k

ν12,k

ν21,k

G12,k




and χk−1 =




E1,k−1

E2k−1

ν12,k−1

Ø

G12,k−1



. (8)

In this concatenated formulation, we also inscribe the elastic components in χk and χk−1 with

the subscripts k and k − 1 to emphasize that they are updated and stored at each iteration.

To compute χ̄ we stack the LS updates for each elastic parameter as follows:

§ See [46] for additional details related to the computation of Lχ and Γχ.
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χ̄ =




(JT
E1,k−1

W−1JE1,k−1
+ Γ−1

E1
+Hc,E1

)−1(JT
E1,k−1

W−1(um − U(χk−1))− gE1
− gc,E1

)

(JT
E2,k−1

W−1JE2,k−1
+ Γ−1

E2
+Hc,E2

)−1(JT
E2,k−1

W−1(um − U(χk−1))− gE2
− gc,E2

)

(JT
ν12,k−1

W−1Jν12,k−1
+ Γ−1

ν12
+Hc,ν12)

−1(JT
ν12,k−1

W−1(um − U(χk−1))− gν12 − gc,ν12)

Ø

(JT
G12,k−1

W−1JG12,k−1
+ Γ−1

G12
+Hc,G12

)−1(JT
G12,k−1

W−1(um − U(χk−1))− gG12
− gc,G12

)




(9)

where “J” refers to a Jacobian with respect to an estimated elastic property designated in

the lower right-hand subscript, for example JE1,k−1
is “the Jacobian with respect to E1,k−1.”

Further details on the computation of J will be provided later in this section. The presence

of the placeholder Ø in Eqs. 8 and 9 and the absence of Jν21,k−1
in Eq. 9 results from the

fact that ν21,k may be computed using the symmetry of C with the relation

ν21,k = ν12,k
E2,k

E1,k

. (10)

Additionally, the variables gc,E1
, gc,E2

, gc,ν12 , and gc,G12
are the gradient vectors and Hc,E1

,

Hc,E2
, Hc,ν12 , and Hc,G12

are the Hessian matricies computed from the polynomial constraints

on χ; the first subscript “c” denotes “constraint” and the following subscript denotes the

elastic property. The gradients related to the prior models (cf. Eq. 5), gE1
, gE2

, gν12 , and

gG12
, were computed following [48]. The gradient with respect to E1,k−1 would, for example,

be computed using

gE1
= E1,k−1 − E1,expΓ

T
E1
. (11)

As noted previously, the GN approach requires computation of the stacked Jacobian

Jχk−1
= ∂U

∂χk−1

= [JE1,k−1
, JE2,k−1

, Jν12,k−1
, JG12,k−1

]T = [ ∂U
∂E1,k−1

, ∂U
∂E2,k−1

, ∂U
∂ν12,k−1

, ∂U
∂G12,k−1

]T at

each iteration k. To compute Jχ, we employ the perturbation method with central differencing

following [49]. The computation of Jχk−1
is not trivial. Computing Jχk−1

is the most expensive

and time-consuming portion of the proposed algorithm. This is because computing Jχk−1

requires 8Nn + 1 computations of U(χ) per iteration. One alternative to the proposed least-

squares algorithm is to the adjoint method, as described in [36]. The use of adjoint method

in stacked applications will be examined in future works.

3. DIC approach

In this work, we use an iterative Optical Flow/LS approach for determining the displacement

field um, which serves as an input to the inverse algorithm outlined in the previous section.

The DIC approach is modeled after the well-known LS algorithm described in [50]. Broadly

speaking, the aim of the DIC algorithm is to map the central coordinates (xl, yl) of the

reference image subsets to the central coordinates of the deformed image’s subsets (x′

l, y
′

l).



Imaging inhomogeneous orthotropic structures 7

Assuming a linear change in pixel intensities between grayscale images α(xl, yl) and β(x′

l, y
′

l),

we have

Aα(xl, yl) + B = β(x′

l, y
′

l), l = 1, 2, 3 . . . n (12)

where A is an intensity change coefficient and B is an intensity shift and n refers to the

number of pixels in the reference subset.

To determine the displacement mapping function, we first write Eq. 12 in terms of

the integer pixel displacement components q and v (note: um = [q, v]T ) and the sub-pixel

displacement components ∆q and ∆v

x′

l = xl + q +∆q + qx∆xl + qy∆yl (13)

and

y′l = yl + v +∆v + vx∆xl + vy∆yl (14)

where the subscripts “x” and “y” denote the parameters’ x and y directional components.

By substituting Eqs. 13 and 14 into Eq. 12, we obtain

β(xl + q +∆q + qx∆xl + qy∆yl, yl + v +∆v + vx∆xl + vy∆yl)− Aα(xl, yl)− B = 0 (15)

Taking the Taylor expansion of Eq. 15 about β(xl + q, yl + v) and collecting only first-

order terms, we obtain the following function

π(p) = β + βx∆q + βxqx∆xl + βxqy∆yl + βy∆v + βyvx∆xl + βyvy∆yl − Aα− B ≈ 0 (16)

where p = [∆q, qx, qy, ∆v, vx, vy, A, B]T is a vector of unknown parameters. We may

then optimize the function π using an iterative Newton-based scheme

π(pk) = π(pk−1) +∇π(pk−1)(π(pk)− π(pk−1)) ≤ tol (17)

where pk is the solution vector at the kth iteration, tol is the stopping criteria and π(pk−1) is

defined by

π(pk−1) = β(xl + q +∆qk−1 + qx,k−1∆xl + qy,k−1∆yl,

yl + v +∆vk−1 + vx,k−1∆xl + vy,k−1∆yl)− Ak−1α(xl, yl)− Bk−1).
(18)
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We may now write the iterative LS solution for pk−1 in Eq. 17 as

pk = pk−1 − [∇π(pk−1)
T∇π(pk−1)]

−1∇π(pk−1)
Tπ(pk−1). (19)

The DIC regime was selected for the following reasons: (i) fast minimization of Eq. 17,

(ii) the scheme allows for large translations, rotations, shear deformations, and combinations

thereof, and (iii) the lack of computing resources required. We remark that, in the case of

large rotations, selection of the initial parameter field should be selected with care (cf. [51]

for more information).

4. Outline of DIC-QSEI algorithm and computing approach

The algorithm for the joint DIC and QSEI is shown in Figure 1. The flow chart begins with

the input of digital images into the DIC algorithm, which outputs the displacement field um

when the residual is lower than a given tolerance. Following, the displacement fields serve as

data inputs for the QSEI regime, which utilizes a GN regime to minimize the cost function,

after which the the elastic parameters are recovered. Additional technical details regarding

DIC and QSEI are provided in the previous two sections.

Start: input reference and deformed digital images

DIC

π(pk) = π(pk−1) +∇π(pk−1)(π(pk)− π(pk−1)) ≤ tol?

um = [qk, vk]
T

QSEI Input Ω, ∂Ω, and F

ℓχ,k−ℓχ,k−5

ℓχ,k−5

≤ tol?

Finish: recover E1, E2, ν12, ν21, and G12

yes

yes

Figure 1. Algorithm outline for DIC/QSEI estimation of orthotropic elastic parameters.
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In our computing approach, all computations were executed in a load sharing facility

using four quad-core Xeon processors running at 3.3 GHz with 64 Gb of memory allocated.

In this work, we computed the four Jacobians (for E1, E2, ν12, and G12) in parallel (one

on each quad-core processor), since computing the Jacobians consumed the majority of the

computational time. For the linesearch and evaluation of the cost function, only one of the

quad-core processors was used, since evaluating these are relatively low in computational

demand compared to computing the Jacobians.

5. Simulation study

In this section, we test the QSEI algorithm in a controlled setting using noisy simulated DIC

displacement data generated from the forward model. We begin by discussing the simulated

geometries and simulation conditions. Following, we present the simulation results with

discussion and analysis of the QSEI algorithm’s performance.

5.1. Simulation geometries and conditions

We begin by generating randomized (blob-like) distributions of E1, E2, ν12, and G12 and

superimposing them on the data-simulation mesh. To simulate experimental conditions,

DIC displacement data is obtained using a fine mesh and adding η = 1.0 and 2.0% noise

standard deviation to the data. Following, the data is interpolated onto a coarser inverse

mesh using spline interpolation. Three geometries are studied: (i) a stretched plate, (ii) a

cantilevered beam in bending, and (iii) a beam in three point bending. The FEM meshes,

boundary conditions, and external forces for each case are shown in Figure 2.
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Data Simulation Mesh𝑵𝒆𝒍 = 𝟏𝟐𝟓𝟎 Inverse Mesh𝑵𝒆𝒍 = 𝟐𝟎𝟎

Data Simulation Mesh𝑵𝒆𝒍 = 𝟐𝟎𝟎𝟎
Inverse Mesh𝑵𝒆𝒍 = 𝟑𝟐𝟎

Case (i)

Cases (ii,iii)

FEM Meshes

Loading and Boundary Conditions

Case (i) 𝑭 = 𝟐𝟎𝟎, 𝟎𝟎𝟎𝑵/𝒎
𝑭 = 𝟏𝟎, 𝟎𝟎𝟎𝑵

Case (ii)

𝑭 = 𝟏𝟎𝟎, 𝟎𝟎𝟎𝑵
Case (iii)

Figure 2. Schematic illustration of structural geometries, loading conditions, boundary

conditions, and FEM meshes. Case (i) 0.25 m × 0.25 m stretched plate with fixed left end:

200,000 N/m load evenly distributed among right side nodes, case (ii) 0.1 m × 1 m plate

bending with fixed left end: 10,000 N shear load evenly distributed among right side nodes,

and case (iii) three-point plate bending with a 100,000 N central point load. Each geometry

had a plate thickness of 0.015 m.

The meshing for cases (ii) and (iii) is identical, this choice was made based off available

computational resources. We note that the total number of estimated parameters is

proportional to the number of elements in the inverse mesh Nel. In general, QSEI regimes aim

to reconstruct one elastic parameter (usually isotropic E or ν), resulting in 1×Nel unknown

parameters. However, here, we aim to reconstruct four elastic parameters, and therefore have

4 × Nel unknown parameters. For example, in cases (ii) and (iii) we estimate 1280 elastic

parameters. In general, inverse estimation of over 103 elastic parameters is computationally

demanding [36].
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The selection of simulated elastic parameters for this study was done based on

representative values available in literature for unidirectional carbon-fiber composites [52–

54]. In all cases, the elements are assumed to have uni-directional fibers oriented parallel to

the horizontal axis shown in Fig. 2. In preliminary simulation studies, it was found that

the reconstruction of randomized inhomogeneous distributions of E1, E2, and G12 with low

variability (for example, less than 10% the magnitude of a homogeneous distribution) was

rather straightforward. Since we are interested in reconstructing materials that may have

significant inhomogeneity, the variability of parameters E1, E2, and G12 used were 66% of

the homogeneous literature values (e.g., E1 = E1,homogeneous ±
1
3
E1,homogeneous). For ν12, a

total variability of 6.5% was selected; higher variability in ν12 resulted in poor performance

of the algorithm during preliminary trial runs. The poor performance was caused by three

primary factors (i) since ν21 is computed as a function of E1, E2, and ν12 via Eq. 10, no prior

information is directly used in modeling its distribution, (ii) ν21 was not constrained during

minimization, and (iii) compound misestimation in computing ν21 before optimized values of

E1, E2, and ν12 are reached. The range of the true elastic parameters used in simulations are

reported in Table 1 and shown visually in the following section.

Table 1. Elastic properties used in simulations.

E1 (GPa) E2 (GPa) ν12 (GPa) ν21 (GPa) G12 (GPa)

Case (i) 300 ± 100 30 ± 10 0.325 ± 0.025 ν12
E2

E1

45 ± 15

Case (ii) 300 ± 100 30 ± 10 0.325 ± 0.025 ν12
E2

E1

45 ± 15

Case (iii) 300 ± 100 30 ± 10 0.325 ± 0.025 ν12
E2

E1

45 ± 15

5.2. Simulation results

5.2.1. Case (i): plate stretching The reconstructions for case (i), are shown in Figure 3

plotted atop the displaced geometries. At both levels of noise, reconstructions well capture

the true elastic distributions. At η= 2.0%, reconstructions are blurrier than at η= 1.0%.

Although subtle, this observation is perhaps most clear in the comparison of E2(η = 2.0%)

to E2(η = 1.0%). Such a result is expected as noise corruption is well known to have a

blurring effect on the image quality using QSEI [35].
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η = 1.0%

η = 2.0%

𝑇𝑟𝑢𝑒

Figure 3. Reconstructions for case (i) plotted atop the displaced geometries. Top row,

true distributions of χ; middle row, reconstructed estimates with η = 1.0%; bottom row,

reconstructed estimates with η = 2.0%. Units of E1, E2, and G12 are in GPa; ν12 and ν21
are unitless.

Of the estimated parameters, reconstructions of ν12 have the largest visual discrepancy

with respect to the true distributions. In general, however, ν12, E2, and ν21 estimates are

notably higher in magnitude than the true images. This indicates that misestimation of one

parameter has a compound effect on the estimation of others. Upon inspection of Eq. 1,

it is clear that, in each non-zero entry of C, misestimation of one elastic parameter may be

compensated by another constitutively-linked elastic parameter. This realization indicates

that high-degree of non-uniqueness in the estimation of Eq. 4. In the discussion portion of

the simulation study, we will reanalyze these qualitative visual observations quantitatively.

5.2.2. Cases (ii,iii): plate bending Reconstructions for cases (ii) and (iii) are shown in

Figure 4 plotted atop the displaced geometries. We again observe that, in general, the true

distributions of the elastic properties are captured in the QSEI reconstructions. It is clear,

however, that the reconstructions in plate bending (i) compare less favorably to true images

than the plate stretching reconstructions and (ii) are more sensitive to added noise.



η = 1.0%
η = 2.0%

𝑇𝑟𝑢𝑒

η = 1.0%
η = 2.0%

𝑇𝑟𝑢𝑒
Case (ii)

Case (iii)

Figure 4. Reconstructions for cases (ii,iii) plotted atop the displaced geometries. For each case: top row, true distributions of χ;

middle row, reconstructed estimates with η = 1.0%; bottom row, reconstructed estimates with η = 2.0%. Units of E1, E2, and G12

are in GPa; ν12 and ν21 are unitless.
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A primary contributor to the decreased quality of plate bending reconstructions is

influence of boundary conditions. Upon inspection of Figure 2, we observe that the ratio

of constrained nodes to degrees of freedom is much higher for case (i) than cases (ii) and (iii).

The added constraints significantly affect the local deformation fields (decrease smoothness)

and incorporate prior information into the solution regime via ∂Ω. It is interesting to

note that, although reconstruction quality is generally considered to be proportional to the

magnitude of the measured field [42, 46, 55], the effect of boundary constraints appears to

more significantly effect reconstruction quality (note the magnitude of bending vs. plate

stretching displacements). Further supporting this realization: case (ii) has a higher ratio of

constrained nodes to degrees of freedom than case (iii), which is reflected in the increased

quality of case (ii) reconstructions relative to case (iii).

As a whole, case (iii) reconstructions are notably smoother than case (ii) reconstructions.

Moreover, compounding effects and compensation of constitutively-linked elastic parameters

are more evident in case (iii) than case (ii). Indeed, localized peaks and valleys in case (iii)

estimations ν12 and G12 are not well reconstructed, especially at η=2.0%. We remark again,

that these observations are based off visual observation and require quantification, which is

provided in the following section.

5.3. Discussion of simulation results

5.3.1. Quantitative analysis of reconstructed images from simulated data

In the previous subsections, it was shown that the proposed QSEI approach captured the

true distributions of elastic properties. As a whole, visual observations indicated that the

presence of increasing noise blurred and diminished reconstruction quality. Moreover, it was

claimed that the plate-stretching reconstructions provided the most accurate estimation of

elastic parameters, followed successively by cantilever and three point plate bending. Here,

we aim to quantify these observations by computing the root mean square error for each

estimated quantity. For example, the RMSE for E1 is calculated using

RMSE(E1) =

√∑Nel

l=1(Ê1,true − E1,inverse)2

Nel

(20)

where Ê1,true are the true elasticity moduli interpolated onto the coarse mesh with the same

spline functional used to interpolate simulated DIC data onto the inverse mesh.

The RMSEs for cases (i-iii) are shown in Figure 5. Results from Figure 5 confirm the

visual observations from the previous subsections. Based off these results, we may conclude

that (a) higher noise increased the RMSE for each estimated parameter, (b) estimates of E1,

E2, ν12, and G12 were most accurately reconstructed in case (i) and most poorly reconstructed

in case (iii), and (c) estimation of ν21 did not follow the trend noted in (b) due to compounded

errors in estimating E1, E2, and ν12.
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(a) (b) (c)

Figure 5. Computed RMSEs for all estimated parameters: (a) case (i), plate stretching;

(b) case (ii), cantilever plate bending; (c) case (iii), three-point plate bending. The x-axis is

labeled with the the noise level η, which is 1.0% or 2.0%.

There are numerous contributors influencing the RMSEs and quality of reconstructions

in this simulation study, including geometrical, numerical, and material factors. In the

following list, we highlight key sources affecting the reconstructions and providing a brief

discussion of each (cause : effect).

• Noise: increasing random noise increased RMSE and decreased reconstruction quality.

• Interpolation error: interpolating noisy data from the fine simulation mesh to the coarse

inverse mesh decreased reconstruction quality.

• Discretization error: increases RMSE and decreases reconstruction quality. Described

in detail in [48], the criticality of discretization errors scales with the size of the inverse

problem.

• Boundary conditions/constraints: increasing boundary constraints improved reconstruc-

tion quality. This was particularly clear in case (i), where (a) the ratio of constrained

nodes to total degrees of freedom was the highest and (b) RMSE was the lowest.

• Distribution of material properties: can have a positive or negative effect on

reconstruction quality. Significant fluctuations of χ in areas of high sensitivity are

preferred to high fluctuations of χ in areas of low sensitivity. Although, “areas of high-

sensitivity” is not well defined in literature, we broadly deduce that “high sensitivity

areas” have the following attributes based off general principles of inverse problems: (a)

high signal-to-noise ratio, i.e. large measured displacements um and (b) information

related to localized deformation fields, such as large displacement gradients ∇um.

• Prior models for χ: accurate prior models are essential. In this case, we have prior

knowledge that distributions of χ are smooth, therefore we use smoothness-promoting

regularization instead of, for example, TV- or L1-based regularization which promote

sparsity and may result in reconstructions that do not represent the problem physics

well.
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• Physically-realistic constraints on χ: improve reconstruction quality. The constraints on

χ are required to ensure the parameters are within physically-realistic limits, resulting in

realistic solutions. Preliminary simulation results indicate that the constraint E1 > E2

was critical in obtaining accurate estimates of E2 and G12.

• Jacobian estimation: poor estimation of Jχ decreases reconstruction quality or may lead

to minimization of Eq. 4 in the wrong direction. Although first-order central differencing

was satisfactory for reconstructions herein, reconstruction quality can be improved using

higher order estimations of Jχ (at the cost of computational time). In preliminary

studies, lower-order estimation of Jχ, using forward or backwards differencing, generally

resulted in poor reconstruction quality.

5.3.2. Analysis of computations

In this subsection, we aim to gain additional insights into the behavior of the proposed

QSEI regime by analyzing the computations. Of practical importance, we begin by providing

the computing time for each of the six QSEI reconstructions using simulated data. To do

this, we have tabulated the total number of iterations, total computing time, and average

computing time per iteration in Table 2.

Table 2. Computational performance of the proposed QSEI regime

Reconstruction
Iterations

k

Total Computing Time

(min)

Time/Iteration

(min)

Plate Stretching (η = 1%) 21 126.52 6.03

Plate Stretching (η = 2%) 30 177.28 5.91

Cantilever Beam (η = 1%) 26 236.60 9.10

Cantilever Beam (η = 2%) 30 288.33 9.61

3-Point Beam (η = 1%) 29 264.98 9.14

3-Point Beam (η = 2%) 30 276.60 9.22

From Table 2, we observe that all reconstructions reached the stopping criteria between

20 and 30 iterations. In every case, the number of iterations for η = 2% was highest. This

may result from the relative infeasibility of the prior models. Indeed, in a rough sense, we

may consider that the weights of Lχ and Le result in a relative tradeoff between the resolution

and noise attenuation in the reconstructed images. One way of improving the algorithm’s

performance is to adaptively select regularization/weighting parameters at each iteration.

On the other hand, we observe from Table 2 that the total computing times scaled

linearly with the number of iterations and the mesh density, which is anticipated since none

of the computations (evaluation of the forward model, objective function, and Jacobian) are

dependent on the noise level. We do note, that the computation of the Jacobian amounted

to approximately 90% of the total computation times and is the major computational

disadvantage of this regime. What is not apparent in Table 2, however, is the minimization

behavior of the objective function (Eq. 4) throughout the iterations. This behavior,



Imaging inhomogeneous orthotropic structures 17

quantified in terms of the relative objective function drop at each iteration, is shown in

Fig. 6 for all the simulation cases.

Figure 6. Relative drop in the objective function ℓ at each iteration k.

Fig. 6 shows similar behaviors in the relative drops and rates of relative drops between

objective functions. Indeed, in all cases, the drops in the objective functions generally become

smaller as the iteration number increases. This is a common feature of Jacobian-based LS

optimization regimes – large initial decreases in the objective function values and gradual

flattening as iterations increase. One subtle difference, however, is observed in the initial

behavior of the plate stretching in comparison with the bending cases; that is, the large

initial relative drops for plate stretching cases are sustained for longer. This may result from

the more uniform global sensitivity of plate stretching to changes in χ, which manifested in

larger drops of the objective function and lower RMSE values (as observed in the previous

section) relative to the bending cases.

6. Experimental program

In this section, we utilize DIC to obtain the displacement fields from three-point bending

tests of uni-directional CFRP beams. Using the DIC data, we aim to reconstruct images

of damaged and undamaged specimens by employing the QSEI algorithm proposed herein.

We begin by detailing the experimental program. Following, we present the reconstructions

using experimental data and provide a discussion of the results.
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6.1. Experimental setup

Experimental validation of the QSEI algorithm was conducted using quasi-static three-

point bending of pultruded CFRP beams. A total of three samples were tested: case (a),

undamaged sample; case (b), sample with localized damage 25.0 mm left of center; and

case (c), sample with localized damage 25.0 mm right of center. Flat-bottomed holes were

drilled off-center in order to artificially generate a local deviation in stiffness as outlined in

[56]. The diameter and depth of the holes were determined using optical microscopy and

the expected drop in flexural rigidity due to reduction in cross-section area was determined

using CAD software. The bending setup was constructed following ISO 14125 guidelines

[57]. A span-to-thickness ratio of 40 was selected to ensure the beam deformations were

primarily bending with small shear forces in comparison. This allowed for large displacement

fields without significant localized damage near the supports and externally-applied load. It

should be noted that the roller diameter used is larger than the 6 mm diameter recommended

by ISO14125 [57]. This mainly affects the effective span under large deflection conditions

[58]. This effect was mitigated by limiting the maximum deflections to approximately 5.0

mm (further discussed in the following section).

The selected experimental boundary conditions were pinned-fixed (left support–right

support). The right support cylinder was fitted with coarse-grit sandpaper to ensure a

fixed condition whereas the left support and the loading nose were lubricated to allow free

movement in the horizontal direction. The speed of testing was 3.0 mm/min and force, time

and cross-head displacement were recorded during the tests. The experimental setup is shown

in Figure 7.
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Figure 7. Three-point bending setup with sample and right-side defect dimensions

(dimensions in mm).

One face of the CFRP beam was sanded to produce a planar surface from top to bottom

of the beam. Otherwise, the corner fillets typically present in pultruded rods would make
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the edges difficult to image. The corner fillets on the backside were not sanded in order to

avoid breaking fibers and to minimize possible variations in the beam cross-section. The

analytically calculated second moment of area Ixx with a 0.5 mm radius fillet on the backside

is 1.8% smaller than the approximation of a rectangular cross-section with sharp corners

(Ixx = bh3

12
). It should be noted that the measured flexural stiffness is slightly lower than

the theoretical (rectangular) value since the effects of the corner fillets were neglected in the

analysis.

To obtain the DIC displacement field, a white speckle pattern was air-brushed on the

sanded beam surface to provide a contrast pattern. An example image of a displaced beam

with an applied DIC contrast pattern is shown in Figure 8 within the experimental setup.

A Basler acA2000-340km camera with 2048 pixel × 1088 pixel resolution was used to record

images of the side of the beam during bending. In the DIC computational approach, we

utilized a subset size of 11 × 11 pixels. The selection of the subset size was was determined

based on an ad hoc process aiming to obtain ample displacement resolution to clearly

distinguish displacement gradients near the hole location. This process resulted in a total

of 1,070 subsets enclosing the beam geometry each containing approximately 2-4 speckles,

where a square with a side length of approximately 3-5 pixels was found to be adequate to

resolve an average-sized speckle. This regime which was found to be satisfactory for the small

displacement fields.

Figure 8. Example image of a displaced beam with sprayed DIC contrast pattern in

experimental conditions.

Elastic properties (assumed to be homogeneous) of the composite material were

measured for comparing with the QSEI reconstructions. E1 and ν12 were measured using a

uniaxial tensile test with strain gauges bonded parallel and perpendicular to fiber direction,
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following the procedures in ISO527-5 [59]. E1 was calculated using linear regression of the

stress-strain data in the strain interval 0.0005-0.0025. ν12 was measured as a function of

strain, where the accepted value was taken after stabilization. E2 was obtained using micro-

DIC in transverse compression. The cross-section of the beam was polished and the fibers

themselves were used as a contrast pattern. A specimen was compressed between two steel

discs and strain was measured using DIC and a virtual strain gauge in DaVis software by

LaVision GmbH.

While homogeneous estimation of E1, E2, ν12, and ν21 (via Eq. 10) is rather straight

forward, G12 is difficult to measure experimentally [60]. Therefore a literature value for a

similar unidirectional carbon fiber composite was utilized [5]. It is unclear, however, how

the experimental shear modulus values were obtained in the literature estimate. Analytical

equations by Chamis [3] were also used with the fiber and resin values provided to us by

the manufacturer of the CFRP rod, but it is unclear how the shear modulus of the fiber

was measured. Using these methods we obtain values for G12 in the range of 4.7-7.6 GPa

(≈ 6.0 ± 2.0 GPa). A summary of the composite material elastic properties is presented in

Table 3

Table 3. Homogeneous elastic properties based on experimental data and literature

estimates.

E1 (GPa) E2 (GPa) ν12 (GPa) G12 (GPa)

Method Tensile test Transverse compression Tensile test Literature and analytical

Value 148.0 7.0 0.29 6.0 ± 2.0

6.2. DIC-QSEI imaging

The DIC algorithm presented in section 3 was used to determine the displacement field of

the composite beams. For each case (cf. section 6.1 for details), two photographs were used

in the DIC algorithm, a reference image (before loading) and the displaced-beam image. For

the displaced-beam images, photographs meeting following criteria were prescribed (i) the

beams are required to be below the limit of large vertical displacements and (ii) no damage

is observed in the load-displacement curves. Criteria (i) was computed using L
10

= 10.2 cm,

following [58]. Ten times the span is also considered the limit for linear behavior in [57].

By inspecting the load-displacement curves, the criteria for the limiting point force Fm

was conservatively determined to be Fm = 150 N. The limiting force corresponded to a

displacement of approximately 5.0 mm for all beams and was therefore the controlling criteria.

Images taken at Fm and images from the reference configurations were analyzed to

obtain the DIC displacement field. The DIC displacement fields were then interpolated using

spline interpolation onto the QSEI mesh; these displacement fields um were then used in the

minimization of Eq. 4 following the regime outlined in Figure 4. The QSEI mesh consisted

of Nel = 1632 triangular elements with a maximum dimension of 0.75 mm. This mesh
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was selected based on available computational resources and the desired resolution of the

reconstructions; in this study, the desirable maximum element dimension was less than the

radii of the localized damages. An example of a displaced QSEI mesh is shown in Figure 9.

Figure 9. Example of a displaced QSEI grid using an interpolated displacement field

obtained using DIC.

Reconstructions of χ for cases (a-c) are shown in Figure 10. In general, estimations

of χ in the undamaged beam are relatively homogeneous and in agreement with values

provided in section 6.1. The homogeneity of the images is expected since the fibers are

evenly distributed and uni-directional. One possible deviation is the estimation of G12,

which is significantly different than values provided in Table 3. We would like to remark,

however, that homogeneous literature and computed values of G12 are decidedly varied and

do not use the same fiber material as the material tested here. Furthermore, the analytical

micro-mechanical solutions vary greatly when transverse properties are involved [61]. It is

therefore difficult to determine if the differences in G12 estimated herein are in significant

error.



Case (a)

Case (b)

Case (c)

Figure 10. Reconstructions of χ for cases (a-c) plotted atop the displaced geometries of uni-directional composite beams. Case (a),

undamaged beam; case (b) beam with localized damage on the left hand side; and case (c) beam with localized damage on the right

hand side. Units of E1, E2, and G12 are in GPa; ν12 and ν21 are unitless.
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Images of cases (b) and (c) clearly show the localized damages in reconstructions of

E1, ν12, and ν21. The damaged locations are most distinct in reconstructions of E1. This

is an expected result, since the properties and orientation of the reinforcement fibers are

the primary contributor of the beams’ bending stiffness and therefore E1 has the largest

effect on the measured displacement field. In addition, the method presented here provides

a quantitative measure of the local stiffness, which can be used to estimate the extent of

damage. The reduction in flexural rigidity due to the artificial defects is calculated to be

25% and a similar drop is seen in E1. In the case of ν12 and ν21, we observe local increases in

the areas of damage. This indicates that the damaged regions have become more complaint

in the directions parallel and perpendicular to the direction of bending stresses. Such an

observation is consistent with the fact that the damaged region is locally less stiff than

surrounding regions.

On the other hand, reconstructions of E2 and G12 do not discernibly localize damage.

There are two possible explanations for this, which are highlighted as follows. Firstly, E2

and G12 significantly affect transverse deformations; however, since this beam is very slender,

perturbations in these parameters are difficult to capture in the measured displacement fields.

Secondly, cross-talk between parameters E2, ν12, and G12 due to the non-uniqueness of the

inverse problem (cf. the discussions in section 5.2) may have had a mutual effect on the

accuracy of each reconstruction. Cross-talk may be mitigated using more precise constraints

based off knowledge of the material properties and/or physical realizations [49].

As a whole, reconstruction errors using experimental data may result from a number of

the points highlighted in section 5.3. Of particular practical importance are the interpolation

of DIC displacement data onto the QSEI mesh and the handling of noise statistics in Eq.

9. In cases where precise information related to transverse deformations are required (i.e.

in accurate estimation of E2 and G12), high-degree polynomial or spline interpolation are

recommended. In preliminary analysis, it was found the linear or quadratic interpolation

were insufficient, often leading to large fluctuations in E2 and G12 due to errors in the

interpolated values of um. Indeed, the high sensitivity of E2 and G12 to um are observed near

the supports, where there are significant contact strains. Moreover, the noise statistics in

this work were assumed to be Gaussian. While this assumption was adequate for this work

in a controlled laboratory setting, it may not be sufficient all cases where DIC data is used.

For example, camera translation or rotation in field applications may result in systematic or

skew-symmetric noise statistics significantly corrupting the QSEI algorithms assuming only

Gaussian noise statistics.

To summarize, the results presented in the section demonstrate the experimental

feasibility of the proposed QSEI/DIC algorithm for simultaneous reconstruction of

inhomogenous orthotropic elastic properties in both damaged and undamaged states. In

cases with more uncertainty in DIC measurements, future research is required to improve the

algorithm’s performance with respect to (i) cross-talk between estimated parameters and (ii)

the handling of noise statistics.
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7. Conclusions

Accurate determination of orthotropic properties is important in the design and health

assessment of composite structures. In the present contribution to this field, we propose

a regime for simultaneously reconstructing inhomogeneous orthotropic elastic properties.

Possible applications include damage detection, materials characterization, and state

estimation. The algorithm is based on concepts from Quasi-Static Elasticity Imaging

(QSEI), utilizing displacement fields obtained from Digital Image Correlation (DIC). We

begin by providing the technical background for QSEI and DIC. Following, the algorithm is

tested in a simulation study, where various structural geometries, boundary conditions, and

loading conditions ar analyzed. Lastly, we experimentally investigate three-point bending of

unidirectional composites with and without localized damage.

The results support the feasibility of the coupled QSEI/DIC regime for reconstructing

inhomogeneous elastic properties with or without the presence of localized damage.

Simulations results for in-plane plate bending and stretching show that reconstructions of

significant inhomogeneity in all orthotropic properties are possible in the presence of random

noise and interpolation errors. In the experimental program, estimation of undamaged elastic

material properties and damage localization are demonstrated in three-point bending of uni-

directional CFRP beams. The quantitative information gained is valuable in engineering

applications for two reasons. Firstly, all of the elastic constants of the undamaged material

are needed for structural finite element models. Secondly, the results of damaged beams

can be directly used for simulating post-damage performance of a component without

having to specify damage morphology in the model. More research is needed to confirm

the detection capabilities of realistic and distributed damage types. In field applications,

with more uncertainty in DIC measurements, additional research is required to improve the

algorithm’s robustness to (i) cross-talk between estimated parameters and (ii) the handling

of non-Gaussian noise statistics.
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