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Abstract—Coupled space learning is an effective framework
for heterogeneous face recognition. In this paper, we propose

a novel coupled discriminant analysis method to improve the

heterogeneous face recognition performance. There are two main
advantages of the proposed method. First, all samples from dif-

ferent modalities are used to represent the coupled projections,

so that sufficient discriminative information could be extracted.
Second, the locality information in kernel space is incorporated

into the coupled discriminant analysis as a constraint to improve

the generalization ability. In particular, two implementations of
locality constraint in kernel space (LCKS)-based coupled dis-

criminant analysis methods, namely LCKS-coupled discriminant

analysis (LCKS-CDA) and LCKS-coupled spectral regression
(LCKS-CSR), are presented. Extensive experiments on three cases

of heterogeneous face matching (high versus low image resolution,

digital photo versus video image, and visible light versus near
infrared) validate the efficacy of the proposed method.

Index Terms—Face recognition, heterogeneous face recognition,
coupled discriminant analysis, coupled spectral regression, locality

constraint in kernel space.

I. INTRODUCTION

F ACE recognition has attracted much attention due to its

potential value in security and law enforcement applica-

tions and its theoretical challenges. Although face recognition

under controlled environments has been well addressed, its per-

formance in many real world applications is still far from sat-

isfactory. One of the main problems is that often the quality
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Fig. 1. Examples of heterogeneous face image matching. From left to right: vi-
sual light (VIS) versus near infrared (NIR), VIS versus 3-D depth, digital photo
versus video, and photo versus sketch.

(modality) of probe images and gallery images differs so much

that the face recognition performance does not meet the ex-

pected performance. For example, in the video surveillance sce-

nario, the gallery images are usually high resolution photos,

while the probe images are of low resolution and some times in

near infrared (NIR) modality. In law enforcement applications,

sketch images are usually used to compare with photos. These

factors introduce a number of challenges for face recognition.

Matching face images of different modalities is referred to as

heterogeneous face recognition [1]. Fig. 1 shows some common

heterogeneous face matching scenarios in real applications.

A number of face representation approaches have been intro-

duced, including subspace based holistic features and local ap-

pearance features [2], [3]. Typical holistic features include the

well known Principal Component Analysis (PCA) [4], Linear

Discriminate Analysis (LDA) [5] and their many extensions like

[6], [7]. Local appearance features, like Gabor [8], [9], local bi-

nary patterns (LBP) [10] and their combination [11], [12], have

been shown to be more robust to illumination, expression and

pose variations than holistic appearance features.

The framework of combining local features and holistic fea-

tures (subspace learning) is one of state-of-the-art approaches

in face recognition [3]. Generally speaking, the pipeline of this

framework can be roughly divided into three stages (Fig. 2).

First, face images are normalized in terms of their size and inten-

sity. Second, effective local features robust to face variations are

extracted. Finally, a discriminant subspace is learned for classi-

fication. Following this methodology, the purpose of heteroge-

neous face recognition can be formulated as finding a discrimi-

nant subspace which makes different classes separable for het-

erogeneous data.

1556-6013/$31.00 © 2012 IEEE
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Fig. 2. Three stages in face recognition based on the framework of local fea-
tures and subspace learning.

Different from traditional face recognition (visible to vis-

ible band face matching with similar image quality), the dif-

ficulty in heterogeneous face recognition mainly comes from

the appearance differences between face images of different

modalities. One intuitive idea is to reduce the difference in ap-

pearance from different modalities so that the heterogeneous

face recognition performance can be improved. According to

the processing pipeline in Fig. 2, the efforts in heterogeneous

face recognition methods can be divided into three categories.

In the first category, methods focus on the process in the first

stage, which are usually called analysis by synthesis methods.

The face samples of one modality are first transformed to an-

other modality so that the face appearance difference is min-

imized. Traditional face recognition methods can be then ap-

plied to the samples of the same modality. The representative

works in this category include [13]–[15]. Tang and Wang [13]

developed the eigen-transform method to synthesize a sketch

image from a target photo and then performed recognition be-

tween pseudo-sketch image and real probe sketch. Liu et al. [14]

proposed a local linear preserving method to synthesize sketch

images from photos and then used a nonlinear discriminant anal-

ysis to recognize the sketches. Wang and Tang [15] utilized

MRF modeling to synthesize sketch/photo from photo/sketch

images.

In the second category, researchers pay attention to the second

stage and try to extract consistent features from heterogeneous

face images. Proper texture descriptors are designed and ap-

plied to the heterogeneous images to reduce the feature gap

between them. Liao et al. [16] first utilized the difference of

Gaussian (DoG) filter to preprocess the visible light and near

infrared images to reduce the appearance difference and then

extracted multiblock local binary pattern (MBLBP) to represent

faces. Klare and Jain [17] used HoG and LBP descriptors and

learnt an ensemble of discriminant projections. In the matching

phase, they incorporated sparse representation classifier (SRC)

to improve the performance of heterogeneous face recognition.

In [18], researchers proposed to extract SIFT and multiscale

local binary patterns (MLBP) features from forensic sketches

and mug shot photos, respectively. Multiple discriminant pro-

jections are then learned to improve the performance of forensic

sketch-photo matching. Zhang et al. [19] proposed a learning

based coupled information-theoretic encoding descriptor to cap-

ture a discriminant local structure for photo-sketch images and

applied PCA+LDA classifier to compute the dissimilarity of

samples. All the above methods try to reduce the gap between

heterogeneous face images at the feature level and apply tradi-

tional face classification methods to realize the recognition task.

Methods in the third category focus on the subspace learning

stage and try to find a common discriminant subspace to clas-

sify heterogeneous data. Coupled projections for samples from

different modalities are learned and used to project the data onto

the common discriminant subspace. Lin and Tang [20] proposed

Fig. 3. Difference in projection representations between the proposed method
and KCSR [23]. In KCSR, the projections for modality I or II are represented
based on the data frommodality I or II, respectively. In the proposedmethod, the
coupled projections are constructed based on all the data from both modalities
I and II.

a common discriminant feature extraction (CDFE) method to

transform query faces captured using near infrared or sketch

images and target faces of visible spectrum onto a common dis-

criminant feature subspace, where the ratio of between scatter

matrix to within scatter matrix is maximized. Although CDFE

achieves high recognition rate on training set, its generaliza-

tion performance is poor. Yi et al. [21] utilized canonical cor-

relation analysis (CCA) to exploit the essential correlations in

PCA [4] and LDA [5] subspaces of VIS and NIR images and

Yang et al. [22] proposed regularized kernel CCA to learn the

relationship between VIS and 3-D face data spaces. However,

their method does not consider class label information in CCA

and thus it does not fully utilize the discriminative information

helpful in classification. Lei and Li [23] proposed the coupled

spectral regression (CSR) method to deal with heterogeneous

face recognition problem and achieved a better generalization

performance than previous methods.

This work belongs to the third category. There are three con-

tributions of this paper. (i) Unlike previous work (e.g., [23]),

where the projections for different heterogeneous modalities are

constructed by the samples from the correspondingmodality, we

not only use the samples from the same modality, but also sam-

ples from another modality for the coupled projections. There-

fore, we use all the samples from multiple modalities to form

the coupled projections. Fig. 3 gives a visualization of the dif-

ferences in the projection representation between the proposed

method and the previous ones. (ii) The existing methods do not

adequately explore the locality information in the kernel space.

In this work, we explore the locality information in the kernel

space and incorporate it as a constraint into the discriminant

analysis process to improve the generalization ability of the de-

rived subspace. (iii) we present two locality constraint in kernel

space (LCKS) based methods with discriminant analysis and

spectral regression frameworks, namely LCKS based coupled

discriminant analysis (LCKS-CDA) and LCKS based coupled

spectral regression (LCKS-CSR), respectively, to deal with het-

erogeneous face matching problem. Preliminary results of this

work have been published in [24].

The remainder of this paper is organized as follows.

Sections II and III describe locality constraint in kernel space
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and provide details of the two algorithms, namely LCKS-CDA

and LCKS-CSR. Extensive experimental results and discus-

sions on three different heterogeneous face matching scenarios

are presented in Section IV. In Section V we conclude the

paper.

II. LOCALITY CONSTRAINT BASED COUPLED

DISCRIMINANT ANALYSIS

Without loss of generality and for ease of representation, we

take VIS versus NIR faces matching as an example to describe

our algorithm. Denote the sample data of the two modalities

as and ,

where and are indicators of different modalities and

and are the number of samples. We first perform a non-

linear mapping to transform the data to a high-dimensional

kernel space where the data is usually considered to be more

linearly separable. and

denote the data in the

transformed kernel space. The purpose of coupled discriminant

analysis is to find coupled projections in the kernel space,

with which the transformed samples are projected onto a

common discriminant subspace, where the low-dimensional

embeddings are well classified. According to [25], the pro-

jections learned from the training samples lie in the space

spanned by the training samples. Therefore, the projections

and for VIS and NIR faces can be linearly repre-

sented as and

. Note that in pre-

vious methods like CDFE [20] and KCSR [23], the projections

of VIS/NIR faces are supposed to be linearly represented

by the face data belonging to VIS/NIR, respectively. That is

and . In our for-

mulation, all the samples from VIS and NIR make contributions

to the coupled projections. Therefore, all available informa-

tion contained in samples between VIS and NIR is utilized.

Denoting

, we have

(1)

Similar to LDA [5], we can define the between and within

class scatter in the reduced common subspace as follows:

(2)

where and are defined as

(3)

where is the number of classes; is the index set of samples

belonging to the th class in modality is the number of

samples in the th class for modality are the mean

vectors for modality and in transformed kernel space and

are the corresponding mean vectors for the th class in

the kernel space.

Substituting (1) into (3), we have

(4)

where

,

in which is the inner product function between

and are the mean vectors of and

from the th class and are the mean vectors of all

and vectors, respectively.

Defining

, (4) can

be reformulated as

(5)

Substituting (5) into (2), and can be reformulated as

(6)
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Fig. 4. Illustration of the principle of locality constraint in kernel space. If the
two samples are similar, the corresponding combination coefficients should be
similar; otherwise, the coefficients are independent.

where and are defined as

(7)

Like in LDA, the purpose of coupled discriminant analysis is

to find projection that maximizes the ratio of to as

(8)

A. Locality Constraint

In practice, we always find that while the solution of (8) per-

forms well on the training set, its generalization on unseen data

is poor due to the limited number of training samples and high

dimensionality of data. In order to deal with this problem, we

impose some prior information on the objective function to limit

the solution space to improve the generalization performance.

As revealed in many previous studies [26], [27], locality infor-

mation is an important clue in manifold learning. In most ex-

isting manifold learning methods (e.g., LPP, NPE), researchers

try to find a subspace that best preserves the manifold struc-

ture in the data space. In this work, we do not aim to preserve

the local structure of the data, but to exploit the discriminant

subspace for classification. We adopt an alternative way to uti-

lize the data manifold information to improve the generaliza-

tion performance. As mentioned above, the learned projection

can be represented as a linear combination of training samples.

The solution to the projective vector can be transformed to find

the linear combination coefficients for the projection. Generally,

different samples make different contributions to the learned

projection. That is, the coefficients of different samples used to

form the projection are different. The principle of our idea is

that if two samples are similar, their contributions to the pro-

jection should also be similar; otherwise, their contributions to

the learned projection are independent to some extent (Fig. 4).

Based on this idea, we impose the locality information in kernel

space onto the process of coupled projection learning to alle-

viate the overfitting problem of its solution. Compared to the

previous methods, there are two characteristics of the proposed

locality information utilization. First, it is imposed on the com-

bination of coefficients rather than the projected data, so that the

projected data are allowed to change its neighboring structure,

which is not inconsistent with the nonlinear mapping. Second,

we explore the locality information in the kernel space rather

than in the input data space. The manifold information in kernel

space which is usually ignored in previous methods is exploited.

In this way, information in both the input data space and kernel

space is utilized. The locality constraint in kernel space was

firstly proposed in [28] and has been shown to be helpful to im-

prove the homogeneous face recognition performance. Specif-

ically, suppose the similarity between samples and is ,

which is defined as,

(9)

Our idea can be formulated as minimizing the following

criterion

(10)

where is the Laplacian matrix over the samples

and is a diagonal matrix in which . It is easy

to verify that by minimizing , the difference in coefficients

whose corresponding samples are similar would be small, which

is consistent with our motivation.

B. Consistency Constraint

As introduced in [23], although the projections for hetero-

geneous modalities are different, they are generated and used

to describe the same object (e.g., face), so the coupled projec-

tions should not differ too much. Similar ideas have also been

adopted in many multiview learning methods like [29], [30]. In

order to improve the robustness of the solution and avoid the

overfitting problem, we impose a penalty on the difference be-

tween the coupled projections onto the objective function as

(11)

Combining (8), (10) and (11), we obtain the objective formu-

lation of the coupled discriminant analysis as

(12)

where and are defined as

(13)
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Fig. 5. Locality constraint in kernel space-based coupled discriminant analysis
(LCKS) algorithm.

By solving the generalized eigen-value problem

with its leading eigenvalues, we can

finally obtain the solution to LCKS-CDA by splitting the result

into and appropriately. Fig. 5 shows the major steps of

the LCKS-CDA algorithm.

III. LOCALITY CONSTRAINT BASED COUPLED

SPECTRAL REGRESSION

Spectral regression is an effective subspace learning frame-

work [31], deducing from the graph embedding view of sub-

space learning. Different from the traditional subspace learning,

which finds the discriminant subspace directly, spectral regres-

sion finds the subspace projections in two steps. First, it finds

the most effective low-dimensional embeddings for the orig-

inal sample data; second, it learns the projection between the

low-dimensional embedding and the original data with regres-

sion techniques. Previous work has shown that spectral regres-

sion is an effective method to learn the discriminant and robust

subspace for classification. Recently, Lei and Li [23] extended

the spectral regression and proposed coupled spectral regres-

sion (CSR) for matching heterogeneous faces. Coupled projec-

tions are learned for different modalities respectively with ap-

propriate regression methods. This work proposes an improved

CSR method, namely locality constraint in kernel space based

coupled spectral regression (LCKS-CSR) by incorporating the

locality information in kernel space into the CSR learning.

In [31], it was proved that for LDA, LPP, or NPE, whose sim-

ilarity matrix can be represented as block-dialog formulation, its

low-dimensional embeddings can be con-

structed directly as

(14)

where is the number of classes and is the number of th

class samples. Since the samples of different modalities have

different distributions in data space, their projections should

also be different. CSR aims to learn the projections and

for modality and , respectively to satisfy and

, where and denote samples from the

two modalities and and are the corresponding low em-

bedding representations extracted from .

As described in the last section, denoting the trans-

formed sample data in high-dimensional kernel space as

and ,

we assume that the coupled projections are represented by all

samples from different modalities. That is, and

, where and are the combina-

tion coefficient vectors for coupled projections. The objective

function of CSR can then be formulated as

(15)

By incorporating the locality constraint in kernel space (10)

and the consistency constraint (11), the objective function of

LCKS-CSR is formulated as

(16)

where the first two terms are data fitting items and the last two

terms are the locality and consistency constraints that help to

improve the generalization performance of the solution. Param-

eters and control the trade-off between the data fitting accu-

racy and the generalization capability. By setting the derivatives

of objective function with respect to and to zero, we have

(17)

where

(18)

With proper matrix manipulation, we can obtain the solution

and as

(19)

where

(20)

After obtaining and , one can get the projections and

for different modalities via (1).

IV. EXPERIMENTS

As shown in (19) and (20), the solution to LCKS-CDA and

LCKS-CSR can be represented as a series of inner product of
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sample vectors. Therefore, we can use kernel trick as in SVM

[32] to represent the data transformation implicitly. The RBF

kernel is utilized in the

following experiments.

We compare the proposed methods with state-of-the-art

methods (CDFE [20], [21], LCSR [23], KCSR

[23] etc.) on different face databases. Three heterogeneous

face recognition problems, including high resolution versus

low resolution, digital photo versus video image and visible

light (VIS) versus near infrared (NIR), are tested respectively

to show the effectiveness of the proposed methods. In order to

preserve the discriminant information as much as possible and

compare different methods fairly, we preserve the dimension-

ality of subspace of all the compared methods to be ,

where is the number of classes.

A. Parameter Selection

There are three parameters in the proposed LCKS-CDA and

LCKS-CSR algorithms. One is in the RBF kernel and the

other two are the trade-off parameters and in (12) and (16).

In this experiment, we determine these three parameter values

on the PIE database in the case of high resolution versus low

resolution heterogeneous face recognition problem.

The PIE database [33] consists of 41 368 images from 68 sub-

jects under different poses, illumination and expression condi-

tions. Five near frontal poses (C05, C07, C09, C27, C29) and all

the images under different illuminations and expressions are se-

lected. There are 170 images for each individual. The images

are randomly partitioned into gallery and probe sets. Specif-

ically, 5 images for each person are selected to construct the

gallery set and the remaining images are used to construct the

probe set. For every image, the high resolution image is cropped

into 32 32 size and the low resolution image is obtained by

first downsampling the high resolution one to the low resolu-

tion size and then upsampling it to the 32 32 size. Two low

resolution sizes 16 16 and 8 8 are tested in the experiment.

In the training phase, both the high and low resolution images

in the gallery set are used. In testing phase, the high resolution

images in gallery set are registered and low resolution images

in probe set are tested. The random split is conducted 10 times

and the mean recognition rate is reported.

For , we set it to empirically according to

the average distance between the samples [34].

For and , we select the values in the range

.

Fig. 6 shows the recognition rate trends of LCKS-CDA and

LCKS-CSR with respect to and for 16 16 and 8 8

resolution images, respectively. For LCKS-CDA, the optimal

values of and are and , respectively, when the

low resolution image size is 16 16. While for the 8 8 low

resolution images, the optimal values of and are

and , respectively. We finally set values of both and

, for LCKS-CDA, to in the following experiments.

For LCKS-CSR, in the case of 16 16 resolution, the best

accuracy is achieved when both and are chosen to be ,

Fig. 6. Recognition rate trend of LCKS-CDA [(a), (b)] and LCKS-CSR [(c),
(d)] with respect to and . (a) LCKS-CDA; 16 16 resolution. (b) LCKS-
CDA; 8 8 resolution. (c) LCKS-CSR; 16 16 resolution. (d) LCKS-CSR;
8 8 resolution.

while for 8 8 images, the optimal values of and are

and , respectively. The optimal choice of parameters for

16 16 and 8 8 resolutions are similar and in the following

experiments, the values of for LCKS-CSR are fixed as

and , respectively.

B. Multi-PIE: High Resolution versus Low Resolution

In the proposed method, the coupled projections are learned

from all available samples from different modalities, while in

earlier studies, the projections are supposed to be represented

by samples from the corresponding modality, respectively. In

order to verify the advantage of the proposed method, we first

compare the two coupled projection representations on the PIE

database. For ease of representation, the CDA and CSRmethods

with these two projection representation assumptions are de-

noted as and , respectively, de-

noting CDA/CSR learning from all samples in different modal-

ities or learning from samples in single modality. In this ex-

periment, the values of and in CDA and CSR are set to 0

in order to compare the two representations fairly. The training

and testing protocols are the same as in Section IV-A.

Fig. 7 shows the recognition results of the two projection rep-

resentation methods. It shows that the method that determines

both the coupled projections based on all samples from dif-

ferent modalities outperforms the previous method, in which

the coupled projections are determined by samples from single

modality. These results further indicate that the proposed pro-

jection representation method helps to improve the heteroge-

neous face recognition performance.

In the following part, we compare the proposed LCKS-CDA

and LCKS-CSR methods with LDA, CDFE, ,

LCSR and KCSR methods in the case of high resolution
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Fig. 7. Recognition rates of , , , and . The super-
scripts and denote, respectively, “learning from all samples” and “learning
from single modality.”

versus low resolution face recognition1 on the Multi-PIE face

database. The parameters of CDFE, , LCSR and

KCSR are adopted according to the recommended values in

their original papers. For LDA, we combine the heterogeneous

data (high resolution and low resolution images) together and

train a single projection matrix for high and low resolution data.

The Multi-PIE database [35] is an extended version of PIE

which contains 337 subjects from 4 sessions under different

poses, illumination conditions and expressions. The frontal

views with neutral expression under different illuminations are

selected. There are 18 420 images in total from 337 subjects

with 20–60 images per subject. In this experiment, we divide

the database into three sets, namely training set, gallery set

and probe set. In training set, 100 subjects with 20 images per

person are selected. We select another 100 persons to construct

the gallery and probe sets. For ease of representation, we use

to denote that images per subject are selected to con-

struct the gallery set and the remaining images are used as the

probe set. There is no intersection between the training set and

gallery/probe set. In testing phase, the low resolution images

in the probe set are compared with high resolution ones in the

gallery set. The random split is run 10 times and the mean

recognition rate along with the standard deviation are reported.

In our experiments, all the images are cropped to 32 32 size.

For the low resolution images, the images are first down-

sampled to and then they are upsampled to 32 32 size.

Fig. 8 shows high resolution image examples with four low res-

olution sizes 16 16, 8 8, 6 6 and 4 4, respectively.

Table I lists the recognition rates of LDA, CDFE, LDA+CCA,

LCSR, KCSR, LCKS-CDA and LCKS-CSR onMutli-PIE data-

base. From the results, we can see that the performances of

1Note that for high resolution versus low resolution face recognition, there are
many methods that utilize a super-resolution technique to synthesize high reso-
lution images, followed by face recognition between high resolution images. In
this experiment, we take high resolution versus low resolution as an example of
heterogeneous face recognition and focus on subspace related methods.

Fig. 8. Cropped face image examples for three subjects. From left to right: high
resolution (32 32), followed by low resolution (16 16, 8 8, 6 6, 4 4)
images.

coupled projection based methods (CDFE, LDA+CCA, LCSR,

KCSR, LCKS-CDA and LCKS-CSR) are significantly better

than that of LDA, indicating that the coupled projection strategy

for heterogeneous face recognition is effective. Generally, the

spectral regression based methods (LCSR, KCSR, LCKS-CSR)

achieve better recognition performance than traditional dis-

criminant analysis methods (CDFE, LDA+CCA, LCKS-CDA).

It indicates that the spectral regression is a good alternative

framework of subspace learning and can lead to better gen-

eralization than the traditional frameworks. Comparing the

proposed method with existing ones (LCKS-CDA versus

CDFE, LDA+CCA and LCKS-CSR versus LCSR, KCSR), the

performances are similar for 16 16 and 8 8 resolutions.

However, in the lower resolution case of 6 6 and 4 4, the

proposed methods (LCKS-CDA and LCKS-CSR) outperform

their counterparts significantly. For example, LCKS-CSR

improves the recognition rate of KCSR by 6–20 percent when

the low resolution size is 4 4. In KCSR, the projections for

high and low resolution data are derived from the high and

low resolution samples, respectively. LCKS-CSR learns the

coupled projections by utilizing high and low resolution images

together. The good performance of LCKS-CSR, especially in

lower resolution cases, validates that it is possible to utilize

more discriminative information between heterogeneous data.

This property along with the locality constraint are helpful to

improve the generalization capability. Overall, LCKS-CSR

achieves the best recognition performance among the various

heterogeneous methods considered here.

C. Digital Photo versus Video Frame

The digital photo and video database was collected by us

under the surveillance scenario. There are 311 subjects and for

each subject, there are 5 photo images and 5 frames/images se-

lected from videos. There are in total 1 555 digital photos and

1 555 video frames, respectively. The face images in these two

modalities have significant pose and image quality variations.

All the images are cropped into 35 30 size according to auto-

matically detected eye coordinates. Fig. 9 shows some example

images cropped from digital photo and video frame sets.

In this experiment, we randomly partition the original data-

base into training and testing sets. The training set contains

150 persons with their digital photos and video images and the

remaining images from 161 persons form the testing set. There

is no intersection between training and testing sets in terms of

subject or image. In the testing phase, the digital photos are reg-

istered in the gallery and the video images are considered as
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TABLE I
PERFORMANCE COMPARISON (MEAN ACCURACY (%) STD) OF HIGH VERSUS LOW RESOLUTION FACE RECOGNITION ON MULTI-PIE
DATABASE. FOUR LOW RESOLUTION CASES (16 16, 8 8, 6 6, AND 4 4) ARE TESTED. G2, G5 AND G10 MEAN 2, 5, 10

IMAGES PER SUBJECT ARE RANDOMLY SELECTED IN THE GALLERY SET

Fig. 9. Cropped face image examples of digital photo (first row) and video
image/frame (second row).

the probe images, which is consistent with the practical appli-

cations. Both the rank-1 recognition performance and receiver

operating characteristic (ROC) performance are reported.

Table II lists the recognition performance of different

methods for digital photo versus video frame recognition and

Fig. 10 shows the corresponding rank and ROC curves. In

particular, the rank-1 recognition rate and verification rates

when the false accept rate is set at 0.1, 0.01, 0.001 are reported.

From these results, one can see that the proposed LCKS based

methods achieve better recognition performance than existing

ones. LCKS-CDA improves the rank-1 performance of CDFE

and by more than 10 percents. LCKS-CSR

enhances the rank-1 recognition rates of LCSR and KCSR

by 5 percent. These results indicate that LCKS is effective in

improving the heterogeneous face recognition performance of

coupled subspace learning. Comparing the results of spectral

regression based methods (LCSR, KCSR, LCKS-CSR) with

other methods, one can find that the spectral regression based

method always achieves better performance than others, indi-

cating that spectral regression is an effective subspace learning

framework which provides better generalization performance.

Overall, the proposed LCKS-CSR method achieves the best

performance in terms of all indices.

D. CASIA-HFB: VIS versus NIR

The CASIA-HFB database is an extended version of the HFB

database [36] collected by CBSR for heterogeneous biometric

TABLE II
PERFORMANCE COMPARISON (%) ON DIGITAL PHOTO

VERSUS VIDEO FRAME MATCHING

Fig. 10. (a) CMC and (b) ROC curves of different methods on digital photo
versus video frame database.

research. There are 300 subjects, for each of which there are

5 VIS images and 5 NIR images. In this experiment, we use the

images of the first 150 subjects for training and the remaining

150 subjects constitute the testing set. There is no intersection

between the training and testing sets in terms of subjects and

images. In the testing phase, the VIS images of each subject

are registered as the gallery set and the NIR ones are used as the

probe set. The rank-1 recognition rate and the receiver operating

characteristic (ROC) performance are reported. All images are

cropped to 32 32 size according to the automatically detected

eye coordinates. Fig. 11 shows some VIS and NIR face images

from this database.

We compare the proposed LCKS-CDA and LCKS-CSR

methods with CDFE [20], [21], LCSR and

KCSR methods and use the LDA as the baseline method. The
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Fig. 11. Cropped VIS and NIR face image examples of three subjects. The left
three columns are VIS images and the right three columns are the corresponding
NIR images.

TABLE III
PERFORMANCE COMPARISON (%) ON VIS VERSUS NIR DATABASE

Fig. 12. (a) CMC and (b) ROC curves of different face heterogeneous recog-
nition methods on VIS-NIR database.

parameters of these methods are set to the recommended values

in their papers. For the LDA method, the VIS and NIR images

are combined together to learn a single projection for VIS and

NIR images. Table III lists the performance (rank-1 recognition

rate, verification rates (VR) at false accept rates (FAR) of

0.1, 0.01 and 0.001) of different methods and Fig. 12 shows

the corresponding rank and ROC curves. We omit the rank

curve of CDFE for ease in illustration. Surprisingly, CDFE and

methods perform worse than LDA, indicating

that their generalization is very poor in this case. The proposed

LCKS-CDA method outperforms LDA, but not by much. In

contrast, the spectral regression based methods (i.e., LCSR,

KCSR, LCKS-CSR), achieve significantly better results than

others. It shows that the spectral regression is a good alternative

to the traditional subspace learning and has better generaliza-

tion performance. Overall, the proposed LCKS-CSR achieves

the best performance in terms of all indices, supporting the

conjecture that the locality information and the representation

derived from all the samples is helpful to improve the hetero-

geneous face recognition performance.

V. CONCLUSION

This paper incorporates locality constraint in kernel space

into coupled subspace learning to solve the heterogeneous face

recognition problem. Both the coupled projections proposed

here are supposed to be represented by all available samples

from different modalities, so that the mutual information be-

tween different modalities is sufficiently explored. The locality

information in kernel space is modeled and imposed onto

the combination coefficients properly. In this way, structures

of the data in the input space and transformed kernel space

are utilized, resulting in more discriminative information for

heterogeneous face recognition. Two implementations, namely

LCKS-CDA and LCKS-CSR are presented. Experiments on

various databases demonstrate that the proposed LCKS based

methods do improve the performance of heterogeneous face

recognition.
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