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Abstract 
 

The experimental study and model validations for the coupled dynamics of a cable-harnessed 

beam structure is presented. The system under consideration consists of multiple pre-tensioned 

cables attached along the length of the host beam structure positioned at an offset distance from 

the beam centerline. Analytical model presented by the coupled partial differential equations 

(PDEs) for various coordinates of vibrations are found and the displacement frequency response 

functions (FRFs) obtained for both Euler-Bernoulli and Timoshenko based models are compared 

to those from the experiments for validation. The results are shown to be in very good agreement 

with the experiments.  

 

1. Introduction 
 

Research studies pertaining to the cable-harnessed structures and their dynamics has received 

lot of attention by the space industry in the past few years. For so long, the dynamic effects of the 

electronic and power cables on such structures were studied using ad-hoc models that involved 

model updating techniques to match the experimental and model results through modifications of 

mass, stiffness and damping properties, [1]. Applications other than space structures in which 

cables play an important role in the structural dynamics include power lines and marine 

applications, [2–4]. With the extensive use of lightweight structures in aerospace applications, 

obtaining a dynamic model that accurately accounts for the mass, stiffness and damping effects of 

these cables becomes more important,[5,6]. In this regard, Goodding et al, [5,7] have performed 

Finite Element Analysis (FEA) on cable-harnessed beam structures to study the bending vibrations 

in which they report that at lower modes, cables mass effects dominate whereas for higher modes, 

their damping effects become more important. Coombs et al,[8] further considers the effects of 

distributed mass, stiffness and damping of cables in which they are modeled as continuous beam 

structures using shear-beam theory analytical models. The paper reported that the shear beam 

mailto:kyerrapr@uwaterloo.ca
mailto:salehian@uwaterloo.ca


 

American	Society	of	

Mechanical	Engineers	

 

	

ASME	Accepted	Manuscript	Repository	
	

Institutional	Repository	Cover	Sheet	

 

 

    

 
First Last  

 

 

ASME Paper Title: Coupled Dynamics of Cable-Harnessed Structures: Experimental Validation 
 

 

  
 

 

Authors: Karthik Yerrapragada, Armaghan Salehian 
 

 

ASME Journal Title: Journal of Vibration and Acoustics 
 

 

 

Volume/Issue    141/6                                                                    Date of Publication (VOR* Online)   July 15, 2019 

 

ASME Digital Collection URL: 

https://asmedigitalcollection.asme.org/vibrationacoustics/article/doi/10.1115/1.4043990/

pled-Dynamics-of-CableHarnessed-Structures 
 

 

 

DOI: https://doi.org/10.1115/1.4043990 
 

 

 

 

 

 

 

*VOR (version of record) 

	
 

James Zhan 



VIB-18-1553 Salehian- 2 

 

model for cables predicts better damping than the Euler-Bernoulli beam model for the bending 

vibrations of cable-harnessed structures. Babuska et al,[6] modeled both the host structure and the 

cable using Euler-Bernoulli beam theory and the model studies the bending vibrations. The paper 

reports that at lower modes, the cabling induces stiffening effects and at higher modes, the cable 

starts to resonate and also the damping effects become dominant. Ardelean et al, [9] performed 

FEA analysis on cable loaded plate structures and their experimental validations.  

Choi et. al, [10] modeled bending vibrations of cabled structures using Timoshenko beam 

theory. In their theoretical model, both the host-structure and cable are modeled using beam theory 

and the cable is attached to the host structure using tie-down structures. The frequency response 

functions for the bending modes from the governing partial differential equations are obtained 

using the Spectral Element Method and the results are compared with the experiments. The paper 

concludes that the Spectral element model presented in the paper uses fewer number of 

discretization elements when compared to finite element modeling techniques and gives good 

match with the experiment. Spak et. al, [11–15] models the cables using the shear and Timoshenko 

beam theory and developed models to determine various effective properties of the space flight 

cables such as density and Young’s modulus. Spak et al models both the host structures and cables 

using beam theory and developed mathematical models using PDEs to study the bending 

vibrations. They obtained the frequency response function using the Distributed Transfer Function 

Method (DTFM) to predict the damping induced by cabling. Spak et al, [14] also reported that 

when host structure is harnessed with thick space flight cables, the presence of bending-torsional  

modes are observed experimentally; however, their analytical model neglects the effects of 

coupling between various coordinates of motion such as the out of plane, in-plane bending, torsion 

and axial motion in the cabled structure.  

With regards to the analytical modeling efforts on dynamics of cable-harnessed structures, 

Martin et al, [16–22] have performed extensive research in this area. They have modeled 

harnessing cables on host beam structures using both bar elements and string model theories to 

develop low order, high-fidelity distributed parameter models for bending vibrations of the cable-

harnessed beam structures with periodic patterns. Their research pertains to the analytical models 

and experimental validations for both mass and stiffening effects of the added cables where they 

are wrapped around a beam structure in a periodic pattern for several geometries such as zigzag 

and diagonal wrapping patterns. The homogenization technique used in their work is based on the 

energy equivalence method similar to [23–28] to obtain PDE’s for bending vibrations coordinates 

only. In their studies, the effects of the pre-tension of the cable and compression in the host beam 

structure due to pre-tension in harnessing cables are included. Other research by Martin et al, [29] 

considers analyzing bending vibrations of cable-harnessed beams with non-periodic wrapping 

patterns. All the previous research studies performed by Martin et al primarily focuses on the 

bending coordinates only and the coupling effects between various coordinates of vibrations are 

ignored in their studies.  



VIB-18-1553 Salehian- 3 

 

In this regard, Yerrapragada et al [30–32], extends the work by Martin et al [16–21] to develop 

analytical models that include these coupling effects. Yerrapragada et al, [31] presents analytical 

models based on both Euler-Bernoulli and Timoshenko beam theories to study these coupling 

effects for a harnessed beam structure where longitudinal cables are attached along the length of a 

host beam structure. The energy transfer between various coordinates of vibrations are studied and 

the effects of various cable parameters on the system’s dynamic behavior and frequencies are 
studied. They have shown that as the cables become dominant, these coupling behaviors are not to 

be neglected and must, therefore, be included in the system’s dynamic modeling for better 

accuracy. The current paper focuses on the experimental validation of the analytical models 

developed in [31] for the coupled vibrations of these cable-harnessed structures. The 

experimentally validated coupled model is also compared to the previous modeling techniques on 

the decoupled vibrations by Martin et al [16–21] for accuracy. To validate each coordinate of 

vibration, both in-plane and out-of-plane bending tests are performed and the displacement 

frequency response functions for both tests are shown to identify each of these modes of vibrations. 

The comparisons between the coupled and previously decoupled models and the experiments 

clearly show the need for including these coupling effects to obtain better accuracy for the dynamic 

models of cable-harnessed structures.      

Nomenclature 𝐴𝑏 Cross sectional area of the beam 𝐴𝑐 Cross sectional area of the cable 𝑏 Width of the beam 𝑏1 − 𝑏9 Strain energy coefficients for Euler Bernoulli-based model 𝑐1 − 𝑐15 Strain energy coefficients for Timoshenko-based model 𝐸𝑏 Young’s Modulus of the beam 𝐸𝑐 Young’s modulus of the cable 𝐺𝑏 Shear Modulus of the beam ℎ Thickness of the beam 𝑘1 − 𝑘6 Kinetic energy coefficients 𝑙 Length of the beam 

n Number of cables used  𝑟𝑐 Radius of the cable  𝑇 Pre-tension of the cables 𝑢(𝑥, 𝑡) Axial displacement 𝑣(𝑥, 𝑡) In plane bending displacement 𝑤(𝑥, 𝑡) Out of plane bending displacement 𝑤𝑏(𝑡) Base excitation 𝑥𝑎 Actuation location 
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𝑥𝑠 Sensing location 𝑦𝑐 y coordinate of the center of the cable (𝑦𝑐 = 𝑏2 − √𝑛. 𝑟𝑐)  𝑧𝑐 z coordinate of the cable (𝑧𝑐 = ℎ2) 𝜑(𝑥, 𝑡) Rotation of cross-section about z axis 𝜅 Shear Correction Factor 𝜌𝑏 Density of the beam  𝜌𝑐 Density of the cable 𝜓(𝑥, 𝑡) Rotation of cross-section about y axis 𝜃(𝑥, 𝑡) Torsional displacement 𝜔 Natural Frequency 𝜔𝑓 Driving frequency 

 

2. Analytical Model 

Presented in this section includes the vibrations mathematical modelling for the cable-

harnessed structure shown in Figure. (1). As described before and motivated by the applications 

of the space structures, the beam structure considered is harnessed with a cable attached 

longitudinally at an offset position shown along the y-axis. As previously shown in Ref.[31], the 

offset position induces an asymmetry in the system that results in coupling between various 

coordinates of vibrations such as the out-of-plane and in-plane bending, axial and torsion. 

Depending on the system parameters, stronger coupling may be observed between some of the 

coordinates. The coupling between the coordinates results in a significant drop for the frequencies 

of the dominant modes of vibrations due to the stronger presence of the other modes for the coupled 

system as shown later in the results. 

     The details for the displacement field assumptions, derivations of the strain and kinetic energy 

expressions, the resultant governing partial differential equations, natural frequencies and mode 

shapes are presented in Ref.[31]. Both Euler Bernoulli and Timoshenko models are considered. 

For the Euler Bernoulli model, the following 4 PDEs for the coupled coordinates of vibrations for 

out of plane, in plane, torsional and axial modes are presented.   −𝑘1�̈� + 𝑏1𝑢′′ +  𝑏6𝑣′′′ + 𝑏7𝑤′′′𝑟𝑒𝑙 = 0 (1a) −𝑘2�̈� − 𝑏2𝑣′′′′ − 𝑏6𝑢′′′ − 𝑏5𝑤′′′′𝑟𝑒𝑙 + 𝑏9𝜃′′ = 0 (1b) −𝑘3�̈�𝑟𝑒𝑙 − 𝑏3𝑤′′′′𝑟𝑒𝑙 − 𝑏7𝑢′′′ − 𝑏5𝑣′′′′ + 𝑏8𝜃′′ = 𝑘3�̈�𝑏 (1c) −𝑘4�̈� + 𝑏4𝜃′′ + 𝑏9𝑣′′ + 𝑏8𝑤′′𝑟𝑒𝑙 = 0 (1d) 

The boundary conditions associated with the fixed and free ends are shown in the Appendix 

Equations. (A.1) and (A.2) respectively. 



VIB-18-1553 Salehian- 5 

 

where 𝑢(𝑥, 𝑡), 𝑣(𝑥, 𝑡), 𝑤𝑟𝑒𝑙(𝑥, 𝑡), 𝜃(𝑥, 𝑡) are the motions in the axial, in-plane bending, out-of-

plane bending and torsion respectively. Also, 𝑤𝑏(𝑡) is the base excitation provided to the 

cantilevered structure in the out of plane bending direction. Therefore, 𝑤𝑟𝑒𝑙 is the relative out of 

plane bending motion of any point on the structure with respect to the base. Superscript ( )′denotes 

partial derivative with respect to spatial coordinate and superscript ( )̇ denotes partial derivative 

with respect to time. The coefficients for the Euler-Bernoulli model partial differential equations 

(Equations 1 (a) – 1(d)) are shown in the Appendix (Equation. (A.3)).  

Similarly, the governing partial differential equations of motion along with the boundary 

conditions for the Timoshenko model can be found as, [31].  −𝑘1�̈� + 𝑐1𝑢′′ + 𝑐8𝜑′′ + 𝑐9𝜓′′ = 0 (2a) −𝑘2�̈� + 𝑐2𝑣′′ + 𝑐12𝜃′′ + 𝑐11𝜑′ = 0 (2b) −𝑘3�̈�𝑟𝑒𝑙 + 𝑐3𝑤′′𝑟𝑒𝑙 + 𝑐13𝜃′′ + 𝑐15𝜓′ = 𝑘3�̈�𝑏 (2c) −𝑘4�̈� + 𝑐4𝜃′′ + 𝑐12𝑣′′ + 𝑐13𝑤′′𝑟𝑒𝑙 = 0 (2d) −𝑘5�̈� + 𝑐5𝜑′′ − 𝑐7𝜑 + 𝑐8𝑢′′ − 𝑐11𝑣′ + 𝑐10𝜓′′ = 0 (2e) −𝑘6�̈� + 𝑐6𝜓′′ − 𝑐14𝜓 + 𝑐9𝑢′′ − 𝑐15𝑤′𝑟𝑒𝑙 + 𝑐10𝜑′′ = 0 (2f) 

The boundary conditions for the fixed and free ends for these are also listed in the Appendix. 

Equations. (A.4) and (A.5) respectively. 

where 𝑢(𝑥, 𝑡), 𝑣(𝑥, 𝑡), 𝑤𝑟𝑒𝑙(𝑥, 𝑡), 𝜃(𝑥, 𝑡), 𝜓(𝑥, 𝑡), 𝜑(𝑥, 𝑡), are the motions in the axial, in-plane 

bending, out-of-plane bending, torsion, rotations of the cross-section about y and z axes 

respectively. The coefficients in Equation (2) are listed in the Appendix (Equation. (A.6)). 

Next, the solutions to the PDEs above are found to obtain the natural frequencies and mode shapes 

and ultimately the frequency response functions, in particular the one for the out-of-plane bending, 

for experimental validations is shown in Equation (3)  

𝑊(𝜔𝑓) = | 1𝜔𝑓2 + ∑ 𝑘3. 𝑊𝑖,𝑟𝑒𝑙(𝑥 = 𝑥𝑠). ∫ 𝑊𝑖,𝑟𝑒𝑙(𝑥) 𝑑𝑥𝑙𝑥=0𝜔𝑖2 − 𝜔𝑓2
∞

𝑖=1 | 
 

 

(3) 

Here, 𝑥𝑠 is the sensing location, 𝜔𝑓 is the excitation frequency and 𝜔𝑖 is the natural frequency 

associated with the 𝑖𝑡ℎ mode. Also, 𝑊𝑖,𝑟𝑒𝑙(𝑥 = 𝑥𝑠) is the relative mass normalized mode shape 

value of the 𝑖𝑡ℎ mode at the sensing location for the out-of-plane bending.  
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3. Experimental Setup and Results 

Figure. (2) shows the experimental setup for the cable harnessed system under the base 

excitations. The system consists of 10 pre-tensioned cables attached to the host structure as shown. 

The host structure is a beam made of Aluminum 6061 alloy and the cable is an 80-pound strength 

Power Pro Super 8 Slick fishing line. The material and geometrical properties are presented in 

Table. (1). A 2075E The Modal Shop electrodynamic shaker and a 2050E09 The Modal Shop 

power amplifier are used to provide the excitations. To control the acceleration profile for the 

shaker base excitations, a PicoCoulomB (PCB) accelerometer 352A24 and Siemens LMS 05 

Mobile (SCM) Supervisory Control And Data Acquisition System (SCADAS) data acquisition 

unit are used. This data acquisition system is also used to obtain the frequency response functions. 

A Polytec OFV-5000 laser vibrometer controller and Polytec OFV-505 sensor head are used for 

vibration measurements.   

     The structure is mounted on the shaker as shown in Figure. (2) and is subjected to the sine 

sweep base excitations in the out-of-plane bending direction (z-axis) from 15 to 500 Hz using the 

Siemens LMS Sine Control Module. The frequency response functions are measured in the out-

of-plane bending direction as well. In order to make sure that the added tape to attach the cables 

to the beam has not resulted in any noticeable dynamic effects, the experimental frequency 

response functions for the host beam structure without any cables both before and after adding the 

tape are measured and shown in Figure. (3). The FRFs comparison for the two systems clearly 

indicates that the added tape has no noticeable effect on the host beam structure’s dynamics. It is, 

therefore, expected that the tape used for attaching the cables will have no measurable dynamic 

impact on the cable-harnessed system either.  

     Further as a sanity check, the experimental frequency response function for the host beam 

structure with the added tape is compared to the analytical results for the host beam structure with 

no tape or cable. The good match between the two shown in Figure. (4) further proves that the 

added tape has no noticeable effect on the dynamics of the host beam structure and, therefore, it 

can be ignored in the rest of the analysis for the cable harnessed beam structure as well.       

     Next step involves obtaining the experimental frequency response functions for the cable-

harnessed beam structure with pre-tensioned cables. Modular weights are used to apply the cable 

pre-tension while the unit is being assembled. The cables are attached at an offset distance along 

the y-axis as shown in Figure. (2). The cables are twisted together and closer view of the cable 

bundle is presented in Figure. (2c). The total pre-tension applied is 17.22 N for the 10 cables 

attached. The base excitations for the cable harnessed beam to obtain the FRFs are performed at 

two different sensing locations, 95 mm and 248 mm. Shown in Figure. (5) is the cross-sectional 

area of the n cables bundled together; here n=10. The total cross-sectional area of the n cables can 

be found using Equation. (4). This area is equivalent to that of a circle with √𝑛. 𝑟𝑐 radius as shown 
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in Figure. (5). Using this diagram, it can be easily understood how yc and zc coordinates of the 

point of attachment of the cable to the beam are found. This is the point P where the strain value 

for the cables is evaluated. It is assumed that the cables remain attached to the top surface of the 

beam at all times and, therefore, will have the same strain values as the beam top fiber. It is also 

assumed that the entire bundle of cables experiences the same strain values. This assumption 

includes further corrections to Martin et al. [18] where the strain was previously evaluated at the 

center of the cable using the beam strain distribution function. 𝐴 = 𝑛. 𝜋𝑟𝑐2 = 𝜋(√𝑛. 𝑟𝑐)2                                                     (4) 

       The frequency response functions obtained from the experiments are compared to the 

theoretical results for each of the Euler Bernoulli and Timoshenko coupled models presented in 

this paper as well as the previously decoupled Euler Bernoulli model, [18]. The comparison of the 

theory and experimental results for the two sensing locations are presented in Figures. (6) and (7). 

As clearly demonstrated in these figures, significant improvement is observed for the present 

coupled model in comparison to the previous decoupled model particularly for the higher modes. 

Also, in the frequency range shown, apart from the three significant peaks corresponding to the 

out-of-plane bending dominant modes, there exists a small peak at around 147.1 Hz. This peak 

corresponds to the in-plane bending, whose presence is well-predicted by the coupled modeling 

approach while the decoupled system is only capable of predicting the out-of-plane bending 

modes.  

To better observe the details of the FRFs comparisons, the zoom-in plots around each mode 

are shown in Figures. (8) and (9) for both sensing locations. The reason for overestimating the 

natural frequencies by the previous decoupled model, [18], is due to ignoring the compliance in 

the other coordinates of vibrations as also discussed in [31]. Since in the decoupled model only 

the out-of-plane bending coordinate is considered, this implies that the structure is assumed to be 

rigid in all the other directions of motion preventing it from vibrating in those directions. This 

overestimation of the overall stiffness of the structure results in the frequencies to be overestimated 

as well. Therefore, introducing the other coordinates of vibrations in the model is a more realistic 

assumption that results in a more accurate representation of the system’s overall stiffness and 

natural frequencies compared to their experimental values. Additionally, the coupled model 

accounts for the energy transfer between various coordinates of vibrations that ultimately results 

in lowering of the out-of-plane bending frequency estimations compared to the decoupled system, 

[31]. Also shown in the experimental FRFs for the out-of-plane measurement is a small peak at 

147.1 Hz. This mode pertains to the in-plane bending coordinate which is difficult to observe in 

the out-of-plane direction of measurement. To further investigate this mode, the in-plane bending 

impact hammer tests are also performed for the two sets of actuation and sensing locations shown 

in Figure. (10) and the FRFs are presented in Figures. (11a) and (11b). Subscripts ‘a1, a2’ and ‘s1, 

s2’ denote the actuation and sensing locations in Figure. (10) respectively. An impact hammer 
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model number PicoCoulomB (PCB) 086C01 with a metal tip is used for this test. Both the impact 

excitation and sensing are done in the in-plane direction shown in Figure (10). A total number of 

5 averages are taken for each of the impact tests for which the coherence plots are also presented 

in Figure. (12) for each of the impact test. The very dominant peak shown at about 147 Hz 

frequency for both these FRF plots further indicate that this mode corresponds to an in-plane 

bending mode. Also, shown in these plots (Figure. (11)) are the small peaks at about 22 Hz and 

133 Hz, both corresponding to the out-of-plane bending modes that are not as obvious due to being 

in the other direction. Both experimental and their corresponding theoretical frequency values for 

all the modes are tabulated and shown in Table. (2) for comparison. Also, the sharp peak at around 

178 Hz in the FRFs from the model corresponds to the coupled model estimation for the in-plane 

bending frequency. To further prove this, the theoretical mode shapes are also plotted at this 

frequency and shown in Figure. (13). From the mass normalized amplitude values for each of these 

coordinates’ mode shapes at this frequency, it can be observed that this mode is clearly an in-plane 

dominant mode. The mode shape also indicates the first in-plane bending mode. The error values 

shown in Table. (2) further indicate the improvement made for using the coupled model when 

compared to the previous decoupled model. Also, the Euler-Bernoulli and Timoshenko results line 

up perfectly showing that for the system parameters considered in this case study. However, for 

thicker beam specimen the Timoshenko model assumptions should be used for better accuracy.    

4. Conclusions 

In this paper, experimental validations for the coupled model to present the vibrations response 

of a cable-harnessed beam structure are performed. The system consisted of a bundle of pre-

tensioned cables attached along the length of the host structure at an offset position. Base 

excitations are provided to the structure in the out-of-plane bending direction to obtain the FRFs. 

The frequency response functions for both the coupled and decoupled analytical models are then 

compared to the experimental values. The results for the coupled model are shown to be in very 

good agreement with the experimental results clearly indicating the need for including the coupling 

effects between various coordinates of vibrations in the model.  
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Figure. 1 Schematic of the cable-harnessed beam and the coordinate axes. 
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(a) 

 

(b) 

 

(c) 

Figure. 2 Base excitation experimental setup for the cantilevered cable harnessed beam,  

(a) beam structure, accelerometer and shaker, (b) laser vibrometer controller, sensor head, power 

amplifier, and LMS data acquisition system, (c) closer view of the cable bundle.    
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Figure. 3 Experimental displacement frequency response functions from shaker tests for host 

beam structure  + tape and no cables and host beam structure  without tape at xs=95 mm sensing 

location. 
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Figure. 4 Comparison between the displacement frequency response function from shaker test of 

host beam structure  + tape and host beam structure  without tape analytical model at xs=95 mm 

sensing location. 
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Figure. 5 Schematic of beam width view and cable offset position. 
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Figure. 6 Comparison of the cable harnessed displacement frequency response functions from 

shaker experiment, decoupled and coupled analytical models for xs=95 mm. 
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Figure. 7 Comparison of the cable harnessed displacement frequency response functions from 

shaker experiment, decoupled and coupled analytical models for xs=248 mm. 
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(a) 

 
(b) 

 
(c) 

 

Figure. 8 Zoom in plots for displacement frequency response functions for shaker experiment, 

coupled and decoupled models of xs=95 mm for a) Mode 1 b) Modes 2 and 3 and c) Mode 4. 
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(a) 

 
(b) 

 
                                                                                    (c) 

Figure. 9 Zoom in plots for displacement frequency response functions for shaker experiment, 

coupled and decoupled models of xs=248 mm for a) Mode 1 b) Modes 2 and 3 and c) Mode 4. 
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Figure. 10 Sensing and actuation locations for the two in-plane impact hammer tests. 
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a) 

 

b) 

 

Figure. 11 Displacement frequency response functions for in-plane impact tests. a) impact test 

for (xa1, xs1) = (55, 95) mm, b) impact test for (xa2, xs2) = (31, 248) mm. 
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a)                                                                      b)  

Figure. 12 Coherence plots for the in-plane impact hammer tests. (xa1, xs1) = (55, 95) mm, (b) 

(xa2, xs2) = (31, 248) mm. 
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Figure. 13 First in-plane bending dominant mode shape from the coupled analytical model. 𝑈, 𝑉, 𝑊, 𝜃 denote the axial, in-plane bending, out-of-plane bending and torsional mode shapes at 

the first in-plane dominant mode respectively. 
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Table. 1 Material and geometrical properties of the cable harnessed beam structure.  

System parameters Value 

Beam length  0.25 m 

Beam width  0.01243 m 

Beam thickness 0.00144 m 

Beam density 2,768 Kg/m3 

Beam modulus of elasticity 68.9 GPa  

Beam Shear modulus 25.7 GPa  

Pre-tension of the cables  17.22 N 

Cable radius (per cable) 0.00021 m 

Cable density 1,400 Kg/m3 

Cable modulus of elasticity 128.04 GPa 

Number of Cables 10 
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Table. 2 Natural frequencies for analytical and experimental models for cabled harnessed beam. 

Mode Decoupled 

Euler-Ber. 

[Hz] 

Coupled 

Euler-

Ber. [Hz] 

Coupled 

Timoshenko 

[Hz] 

Experiment 

[Hz] 

Error % 

Decoupled 

Error % 

Coupled 

Euler-

Ber. 

Error % 

Coupled 

Timoshenko 

1 23.88 20.65 20.65 22.35 (OP) 6.84 % -7.60 % -7.60 % 

2 149.70 129.56 129.53 133.2 (OP) 12.38 % -2.73 % -2.75 % 

3 - 179.42 178.99 147.1 (IP) - 21.97 % 21.67 % 

4 419.23 362.85 362.65 345.6 (OP) 21.30 % 4.99 % 4.93 % 

*OP and IP refer to the out-of-plane and in-plane bending modes respectively. 
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Appendix  

Shown below are the equations used for the boundary conditions and the coefficients in the PDE’s 
of the given systems.   

Fixed end 𝑢 = 𝑣 = 𝑤𝑟𝑒𝑙 = 𝜃 = 𝑣′ = 𝑤𝑟𝑒𝑙′= 0|𝑥=0  (A.1) 

Free end. 𝑏1𝑢′ + 𝑏6𝑣′′ + 𝑏7𝑤′′𝑟𝑒𝑙= 0|𝑥=𝑙  𝑏2𝑣′′ + 𝑏5𝑤′′𝑟𝑒𝑙 + 𝑏6𝑢′= 0|𝑥=𝑙  𝑏2𝑣′′′ + 𝑏5𝑤′′′𝑟𝑒𝑙 + 𝑏6𝑢′′ − 𝑏9𝜃′= 0|𝑥=𝑙 𝑏3𝑤′′𝑟𝑒𝑙 + 𝑏5𝑣′′ + 𝑏7𝑢′= 0|𝑥= 𝑙 𝑏3𝑤′′′𝑟𝑒𝑙 + 𝑏5𝑣′′′ + 𝑏7𝑢′′ − 𝑏8𝜃′= 0|𝑥=𝑙 𝑏4𝜃′ + 𝑏8𝑤′𝑟𝑒𝑙 + 𝑏9𝑣′= 0|𝑥=𝑙 

 

 

(A.2) 

    Equations. (A.1) and (A.2) are the boundary conditions for the fixed and free ends for the PDEs 

corresponding to the Euler-Bernoulli cable-harnessed model (Equation. (1)). 𝑏1 = 𝐸𝑏𝐴𝑏 + 𝐸𝑐𝐴𝑐 𝑏8 = 𝑇𝑦𝑐  

 

 

 

 

 

(A.3) 

𝑏2 = 𝐸𝑏𝐼𝑧𝑧 + 𝐸𝑐𝐴𝑐𝑦𝑐2 + 𝑇𝑦𝑐2 − 𝑇𝐼𝑧𝑧𝐴𝑏  
 𝑏9 = −𝑇𝑧𝑐 𝑏3 = 𝐸𝑏𝐼𝑦𝑦 + 𝐸𝑐𝐴𝑐𝑧𝑐2 + 𝑇𝑧𝑐2 − 𝑇𝐼𝑦𝑦𝐴𝑏  
𝑘1 = 𝜌𝑏𝐴𝑏 + 𝜌𝑐𝐴𝑐 

𝑏4 = 𝐺𝑏𝐽 + 𝑇(𝑦𝑐2 + 𝑧𝑐2) − 𝑇𝐽𝐴𝑏 
𝑘2 = 𝜌𝑏𝐴𝑏 + 𝜌𝑐𝐴𝑐 𝑏5 = 𝐸𝑐𝐴𝑐𝑦𝑐𝑧𝑐 + 𝑇𝑦𝑐𝑧𝑐 𝑘3 = 𝜌𝑏𝐴𝑏 + 𝜌𝑐𝐴𝑐 𝑏6 = (𝐸𝑐𝐴𝑐 + 𝑇)(−𝑦𝑐) 𝑘4 = 𝜌𝑏𝐼𝑥𝑥 + 𝜌𝑐𝐴𝑐 (𝑦𝑐2 + 𝑧𝑐2) 𝑏7 = (𝐸𝑐𝐴𝑐 + 𝑇)(−𝑧𝑐)  

 

        Equation. (A.3) represents the coefficients of PDEs Equation. (1) for Euler-Bernoulli model. 

where, 𝐼𝑦𝑦 and 𝐼𝑧𝑧 are the area moments of inertia of the beam about the y and z axes respectively. 𝐽 is the torsion constant of the beam. polar inertia 𝐼𝑥𝑥 = 𝐼𝑦𝑦 + 𝐼𝑧𝑧. Other notations are defined in 

the nomenclature table. 
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Fixed end 𝑢 = 𝑣 = 𝑤𝑟𝑒𝑙 = 𝜃 = 𝜑 =  𝜓 = 0|𝑥=0  (A.4) 

Free end 𝑐1𝑢′ + 𝑐8𝜑′ + 𝑐9𝜓′= 0|𝑥=𝑙 𝑐2𝑣′ + 𝑐11𝜑 + 𝑐12𝜃′= 0|𝑥=𝑙 𝑐3𝑤′𝑟𝑒𝑙 + 𝑐4𝜃′ + 𝑐15𝜓= 0|𝑥=𝑙 𝑐4𝜃′ + 𝑐12𝑣′ + 𝑐13𝑤′𝑟𝑒𝑙= 0|𝑥=𝑙 𝑐5𝜑′ + 𝑐8𝑢′ + 𝑐10𝜓′= 0|𝑥=𝑙 𝑐6𝜓′ + 𝑐9𝑢′ + 𝑐10𝜑′= 0|𝑥=𝑙 

 

 

  

(A.5) 

         Equations. (A.4) and (A.5) are the boundary conditions for the fixed and free ends for the 

PDEs corresponding to the Timoshenko cable-harnessed model (Equation. (2)). 

 𝑐1 = 𝐸𝑏𝐴𝑏 + 𝐸𝑐𝐴𝑐 𝑐12 = −𝑧𝑐𝑇  

 

 

 

 

 

(A.6) 

𝑐2 = 𝜅𝐴𝑏𝐺𝑏 𝑐13 = 𝑦𝑐𝑇 𝑐3 = 𝜅𝐴𝑏𝐺𝑏 𝑐14 = 𝜅𝐴𝑏𝐺𝑏 𝑐4 = 𝐺𝑏𝐽 + 𝑇(𝑦𝑐2 + 𝑧𝑐2) − 𝑇𝐽𝐴𝑏 
𝑐15 = 𝜅𝐴𝑏𝐺𝑏 

𝑐5 = 𝐸𝑐𝐴𝑐𝑦𝑐2 + 𝑇𝑦𝑐2 + 𝐸𝑏𝐼𝑧𝑧 − 𝑇𝐼𝑧𝑧𝐴𝑏  
𝑘1 = 𝜌𝑏𝐴𝑏 + 𝜌𝑐𝐴𝑐 

𝑐6 = 𝐸𝑐𝐴𝑐𝑧𝑐2 + 𝑇𝑧𝑐2 + 𝐸𝑏𝐼𝑦𝑦 − 𝑇𝐼𝑦𝑦𝐴𝑏  
𝑘2 = 𝜌𝑏𝐴𝑏 + 𝜌𝑐𝐴𝑐 

𝑐7 = 𝜅𝐴𝑏𝐺𝑏 𝑘3 = 𝜌𝑏𝐴𝑏 + 𝜌𝑐𝐴𝑐 𝑐8 = −𝐸𝑐𝐴𝑐𝑦𝑐 − 𝑇𝑦𝑐 𝑘4 = 𝜌𝑏𝐼𝑥𝑥 + 𝜌𝑐𝐴𝑐 (𝑦𝑐2 + 𝑧𝑐2) 𝑐9 = 𝐸𝑐𝐴𝑐𝑧𝑐 + 𝑇𝑧𝑐 𝑘5 = 𝜌𝑏𝐼𝑧𝑧 + 𝜌𝑐𝐴𝑐 (𝑦𝑐2) 𝑐10 = (𝐸𝑐𝐴𝑐 + 𝑇)(−𝑦𝑐𝑧𝑐) 𝑘6 = 𝜌𝑏𝐼𝑦𝑦 + 𝜌𝑐𝐴𝑐 (𝑧𝑐2) 𝑐11 = −𝜅𝐴𝑏𝐺𝑏  

 

Equation. (A.6) represents the coefficients of partial differential equations Equation. (2) for the 

Timoshenko model. Notations are defined in the nomenclature table and also for the discussion 

related to Equation. (A.3). 


