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COUPLED FLOW, T H E N  AND STRUCTURAL ANALYSIS 
O f  AERODYNMXWLY HEATED PANELS 

Abst rac t  

Ear l  A. Thornton* and Pramote Dechaumphai** 
Old Dominion Un ivers i ty  

Norfolk, V i r g i n i a  

A f i n i t e  element approach f o r  coupling f low, 
thermal and s t ruc tu ra l  analyses of aerodynam- 
i c a l l y  heated panels i s  presented. The Navier- 
Stokes equations f o r  laminar compressible f l o w  
are solved together w i t h  the energy equation and 
quas i -s ta t i c  s t ruc tu ra l  equations o f  the panel. 
I n te rac t i ons  between the flow. panel heat 
t rans fer  and deformations are studied f o r  th in 
s ta in less  steel  panels aerodynamically heated by 
Mach 6.6 flow. 
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In t roduc t i on  

Thermal-structural ana lys is  methods have an 
important r o l e  i n  the design o f  h igh speed f l i g h t  
vehic les t h a t  experience severe aerodynamic 
heating. T r a d i t i o n a l l y  the p red ic t i on  o f  
thermally induced deformations and stresses has 
been accomplished as a sequence o f  analyses. 
F i r s t ,  heating ra tes  are pred ic ted  on aerodynamic 
surfaces using e i t h e r  empir ical  methods o r  
computational ly using f i n i t e  d i f fe rence 
methods. Then, the s t ruc tu ra l  temperatures are  
determined using a network-type thermal ana lys is  
o r  more recent ly  v ia  a f i n i t e  element thermal 
analysis. F ina l l y ,  s t ruc tu ra l  deformations and 
stresses are computed by a f i n i t e  element 
ana lys is  uslng temperatures as i n p u t  data. This 
approach i s  general ly e f fec t i ve  and indeed hes 
been used r o u t i n e l y  i n  the design o f  f l i g h t  
vehic les exposed t o  severe thermal environ- 
ments. However, there are two recognized 
shortcomings o f  the approach: (1) the sequence o f  
analyses i s  r e l a t i v e l y  i n e f f i c i e n t  because the 
incompatible models used i n  the three analyses 
make data t rans fer  d i f f i c u l t ,  and ( 2 )  the 
approach assumes t h a t  the heat t rans fer  between 
the f l u i d  and s t ruc tu re  and thermal ly induced 
deformations have neg l igb le  e f f e c t s  on the 
aerodynamic heating. The e f fec ts  o f  the heat 
t rans fer  and deformations on the heating may be 
considered by an i t e r a t i v e  sequence o f  analyses, 
bu t  the process i s  cumbersome and usual ly i s  n o t  
a ttemped. 

Yet there e x i s t  -.--- ;lll,,urtafit desfgii prsb:ems 
where f l  uid-thermal - s t ruc tu ra l  i n te rac t i ons  are 
important. One example are m e t a l l i c  thermal 
p ro tec t ion  systems tested i n  the Mach 7 8 - foo t  
high temperatures tunnel (HTT) a t  the NASA 
Langley Research Center1. The tes ts  show t h a t  
panels "bowed-up" i n t o  the f low t o  produce 
heating ra tes  t h a t  are up to 1.5 times ra tes  
based on f l a t  p la te  predict ions.  Aerothermal 
loads on spher ical  dome protuberances have been 
studied both computational ly2 and exper i -  
mentally3. The computations and experiments show 
t h a t  heating ra tes  are augmented on windward 
surfaces, and t h a t  the increase i n  heating ra tes  
depend on the protuberance he igh t  compared to the 
boundary l aye r  thickness. The computational and 
experimental determinat ion o f  the augmented 
heating ra tes  were based on assumed surface 
conf igura t ions  and neg lec t  f1  ow-s t ruc  t u r a l  
deformation in te rac t ions .  A second example o f  
important problems where flow, thermal, and 
s t ruc tu ra l  i n te rac t i ons  are important i s  the 
scramjet engine s t ruc tu re  f o r  the nat ional  aero- 
space plane. Figure 1 shows the sidewalls and 
leading edge o f  the engine s t ruc tu re  where 
i n te rac t i ons  may be s i g n i f i c a n t .  The leading 
edge o f  the i n t e r n a l l y  cooled scramjet fue l  
i n j e c t i o n  s t r u t  i s  an espec ia l l y  c r i t i c a l  area. 
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Research i s  underway a t  the NASA Langley 
Research Center to improve the c a p a b i l i t i e s  and 
e f f i c i e n c y  o f  f i n i t e  element h igh  speed 
compressible f low analysis methods and to  develop 
e f f i c i e n t  coupling o f  f i n i t e  element f l u id ,  
thermal and s t ruc tu ra l  analyses. The focus o f  
the research i s  the p red ic t i on  o f  aerothermal 
loads as wel l  as the thermal-structural  response 
o f  complex three dimensional bodies. The 
research combines analysis w i th  experimental 
studies conducted i n  the 8' HTT a t  NASA Langley. 

The purpose o f  t h i s  paper i s  to describe 
research i n  the coupling o f  flow, thermal and 
s t ruc tu ra l  analyses by the f i n i t e  element method 
f o r  aerodynamically heated panels. The study o f  
the i n te rac t i ons  f o r  panels i s  a prel iminary, but  
important, step towards the ob jec t ives  o f  
analyzing more r e a l i s t i c  s t ruc tu res  such as 
thermal p ro tec t i on  systems and scramjet engine 
structures.  The paper w i l l  b r i ng  together f o r  
the f i r s t  t ime  the so lu t ion  o f  the Navier-Stokes 
equations f o r  the p red ic t i on  o f  aerodynamic 
heat ing and the so lu t ion  f o r  the associated 
thermal-structural  equations by a s ing le  f i n i t e  
element a lgor i thm i n  one integrated, vectorized 
program. The authors and co-workers have 
developed the methodology to solve the separate 
problems over the l a s t  few years w i t h  t h i s  goal 
i n  mind. I n i t i a l  progress i n  so lv ing  i nv i sc id  
compressible f lows by the f i n i t e  element method 
i s  described i n  recent papers4+. Progress i n  
so lv ing  viscous compressible f lows i s  described 
i n  reference6. The app l i ca t i on  o f  the CFD 
a lgor i thm t o  thermal-structural  problems i s  
described i n  a paper7 presented a t  27th SDM 
conference i n  San Antonio, Texas. 

The problem formulat ion w i l l  be described 
f i r s t ,  then the so lu t i on  approach w i l l  be 
presented. The Taylor-Galerkin a lgor i thm w i l l  be 
highl ighted, and the so lu t i on  sequence f o r  the 
coupled problem i s  presented. F ina l l y ,  numerical 
resr i l  t s  from two coirpied flow-panel in te rac t lons  
are Presented and discussed. 

FlorrTher'mal -Structural Fornulation 

The f l u i d  f low i s  described by the 
conservation o f  mass, momentum and energy 
equations f o r  a laminar f low o f  a pe r fec t  gas 
assuming temperature dependent v i scos i t y  and 
thermal conduct iv i t y .  The thermal behavior o f  
the panel i s  described by the conservation o f  
energy equation, and the s t ruc tu ra l  behavior i s  
described by the quasi-stat ic equations o f  motion 
f o r  a so l id .  Radiat ion heat t rans fer  from the 
panel to space i s  considered assuming the f l u i d  
i s  p e r f e c t l y  transparent. Thermal propert ies 
such as spec i f i c  heat and thermal conduct iv i ty 
are assumed to temperature dependent. Large- 
s t r a i n  displacement r e l a t i o n s  are used f o r  the 
panel t o  permit  la rge  deformations, and 
nonl inear. temperature-dependent s t ress-s t ra in  
r e l a t i o n s  are employed t o  permit  p l a s t i c  
deformation. The equations for the f l u i d  and 
s o l i d  are w r i t t e n  i n  conservation form. 

F1 u i d  - 

where {U}  i s  a vector o f  the conservation 
var iab les  fo r  the f l u i d ,  (EI} and tFI} a re  
i n v i s c i d  f l ux  components, and {E,,) and { F Y I  a re  
viscous f l ux  components. These vectors are given 
by 

t U I T  - [P PU P V  pEt1 

(2 )  

where p i s  the f l u i d  density, u and v a re  
ve loc i t y  components, Et i s  the total energy, 
u u and 7 are viscous stress components, 
and q x ~ y q y  a r e x i e a t  f luxes. I n  the i n v i s c i d  f l u x  
components, the pressure p i s  re la ted  t o  the 
t o t a l  energy f o r  a pe r fec t  gas assuming a 
constant r a t i o  o f  spec i f i c  heats. The s t ress  
components are r e l a y d  to the ve loc i t y  gradients 
assuming the Stokes hypothesis, and the heat 
fl UxeS are re1 ated to the temperature gradients 
by Four ie r ' s  law. The temperature dependent 
v i scos i t y  i s  computed from Sutherland's law, and 
the tnermal conduct iv i t y  i s  cornputea assuming a 
Prandtl  number equal to 0.72. 

xx' 

( 3 )  

where tu }  i s  a vector o f  the conservation 
var iables f o r  the so l id ;  {E l  and tF} are " f l u x "  
components f o r  the so l id .  These vectors a re  
given by 

t U I T  5 [cu cv pcVTI 

{El' [-ax --cxy q x l  (4 )  

where u and v are displacement components, p i s  
the s o l i d  density, cy  i s  the spec i f i c  heat, and T 
i s  the temperature. The c o e f f i c i e n t  c o f  the 
displacement components i s  a f i c t i t i o u s  damping 
constant t h a t  i s  used t o  f a c i l i t a t e  time marching 
to a steady-state quas i -s ta t i c  solut ion.  The 
s o l i d ' s  s t ress  components ux, -c and u are 
re la ted  to the displacement gradients w i t h i n  the 
e l a s t i c  range using general ized Hooke's law. I n  
the p l a s t i c  range, a modif ied e l a s t i c  s t i f f n e s s  
based upon an e f f e c t i v e  s t r a i n  i s  employed using 

XY Y 
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the ma te r ia l ' s  non-1 inear  un iax ia l  stress-strain 
curve8.  he s o l i d ' s  heat f luxes  qx and qy are 
r e l a t e d  to the temperature gradients by Four ie r ' s  
law. 

The sets of equations ( 1 )  and ( 3 )  are solved 
sub jec t  t o  appropriate boundary, i n te r face  and 
i n i t i a l  cond i t ions  for  the f l u i d  and sol id.  Flow 
boundary cond i t ions  correspond to supersonic flow 
hence a l l  conservation var iables are spec i f ied  on 
in - f low surfaces. On supersonic outf low 
surfaces, the f i n i t e  element formulat ion provides 
appropr iate natural  boundary condit ions. Sol id 
boundary condi t ions include e i t h e r  speci f ied 
displacments or surface tract ions.  A t  the f l u id -  
s o l i d  in te r face ,  f low ve loc i t y  components are 
zero, bu t  the f l u i d  densi ty as wel l  as the f l u id -  
sol  i d  temperature are unknown. Con ti nu l  t y  o f  
temperature a t  the f l u i d  s o l i d  i n te r face  i s  
imposed e x p l i c i t l y  i n  the so lu t ion  algori thm. A 
heat f l u x  energy balance i s  imposed a t  the f l u id -  
s o l i d  i n t e r f a c e  t o  account f o r  the f l u id -so l i d  
conduction heat f luxes  and the emit ted rad ia t i on  
heat f lux .  I n i t i a l l y ,  the f low i s  assumed 
uni form a t  f ree  stream values; the s o l i d  i s  
assumed undeformed and unstressed a t  room 
temperature. 

Solution Approach 

The so lu t i on  approach solves equations (1)  
and ( 3 )  using an e x p l i c i t  t i m e  marching scheme, 
the Taylor-Galerkin algori thm, t h a t  has been 
described i n  previous Herein, the 
essent ia l  features o f  the a lgor i thm are 
h igh l igh ted ,  and the so lu t ion  sequence f o r  the 
coupled problem i s  presented. 

Tayior-Gaierkin A igo r i  thm 

The basic concept o f  the Taylor-Galerkin 
a lgor i thm i s  to use: (1) Taylor ser ies expansions 
i n  time t o  es tab l i sh  recurrence r e l a t i o n s  f o r  
t i m e  marching, and ( 2 )  the method o f  weighted 
res idua ls  w i t h  Galerkin 's c r i t e r i a  to  develop the 
f i n i t e  element mat r ix  equations descr ib ing  the 
spa t ia l  d i s t r i b u t i o n  of the dependent variables. 

For s imp l i c i t y ,  the f i n i t e  element 
fo rmula t ion  w i l l  be given fo r  a s ing le  scalar 
equation. 

where the var iables U, E and F are analogous to 
the corresponding vector quan t i t i es  i n  eqs. (1) 
o r  ( 3 ) .  L e t  t U I n  denote the element nodal values 
o f  the f low var iables U(x,y.t) a t  t ime  tn. The 
time 
i n  the t rans ien t  response. The computation 
proceeds through two time levels.  tn+1,2 and 
tn+l. A t  t i m e  l eve l  tn+1/2, values f o r  U tha t  
are constant w i th in  each element are computed 
e x p l i c i t l y .  A t  time leve l  tn+l , the constant 
element values computed a t  the f i r s t  t i m e  level  
are used t o  compute nodal values f o r  U. I n  the 
time l e v e l  t,,+l computations, element contr ibu- 
t i ons  are assembled to y i e l d  the global equations 
for nodal unknowns. The "mass" mat r ix  f o r  the 

step A t  spans two typ ica l  t i m e  tn and tntl 

resu l  t i n g  equations i s  approximately diagonal ized 
to y i e l d  an e x p l i c i t  a lgor i thm. 

Time Level t,.,+l/2 

The constant element value u,., n+1/2 i s  corn- 
puted from 

At CaN] dA (Fin -T A 

where A denotes an element's area, A t  i s  the t i m e  
step and [ N l  i s  a mat r ix  o f  i n t e r p o l a t i p  
functions. Quant i t ies  i n  braces, such as (El , 
represents nodal values a t  t i m e  tn. 

Time Level t,,+l 

The nodal values f o r  a s ing le  element are 
given by 

(7) 

where {R) '+li2 represents known boundary terms. 
The mat r ix  [MI i s  the cons is ten t  mass matr ix;  t o  
produce an e x p l i c i t  algori thm, [MI i s  diagonal- 
ized. Fol lowing usual f i n i t e  element procedures, 
t.he elenent = t r i c e s  Given i n  equatior; ( 7 )  are 
then assembled to form system equations. 

The two t i m e  l eve l  Taylor-Galerkin a lgor i thm 
i s  cond i t i ona l l y  stable, and the t i m e  step f o r  
the f l u i d  flow must s a t i s f y  s t a b i l i t y  require- 
ments based on the CFL cond i t ion  and the Reynolds 
number. A r t i f i c i a l  v iscos i ty ,  the form due t o  
Lapidus, i s  used t4 reduce o s c i l l a t i o n s  i n  the 
f l o w  computations. 

The time evo lu t ion  o f  the f low and the s o l i d  
thermal response i s  computed i n  a "time-accurate" 
fashion using the a lgor i thm as described by time 
marching to steady-state v ia  a viscous re laxa t i on  
procedure based on the Taylor-Galerkin 
a l g ~ r i t h m . ~  To speed convergence o f  the quasi- 
s t a t i c  so lu t ion  to steady-state, the concept o f  
accelerated viscous re laxa t i on  i s  employed.' 

So lu t ion  Sequence 

Experimental and computational r e s u l t s  f o r  
f lows over panels show tha t  the f low i n i t i a l l y  
approaches steady-state i n  a much shorter time 
than required f o r  the panel to  respond thermal ly 
and s t ruc tu ra l l y .  Typ ica l l y ,  heating ra tes  
approach steady-state i n  about a mi l l i -second. A 
panel a t  t h i s  time remains v i r t u a l l y  undeformed 



a t  temperatures only s l i g h t l y  higher than the 
i n i t i a l  temperature. Af ter a few seconds, panel 
temperatures begin t o  r i s e  appreciably and 
s i g n i f i c a n t  deformations occur. During th i s  
time, thermal and deformation coupling ef fects 
a l t e r  the f low f i e l d .  The coupl ing e f fec ts  
continue t o  a l t e r  the f low and panel behavior 
u n t i l  the panel reaches thermal equi l ibr ium. 
Typ ica l l y .  panel thermal equ i l i b r i um i s  
approached a f t e r  5 to 10 minutes o f  aerodynamic 
heating . 

Based on t h i s  sequence o f  events. the 
so lu t i on  sequence shown i n  Figure 2 has been 
adopted. The so lu t i on  sequence a1 ternates 
between coupled f low and thermal analyses of the 
f lu id /pane l  and thermal ana lys is  o f  the panel. 
A t  selected times. temperatures o f  the panel are 
used to compute s t ruc tu ra l  deformations. If 
s ign i f i can t ,  the s t ruc tu ra l  deformations are used 
t o  def ine a new f low boundary. 

Applications 

Two app l ica t ions  are presented to i l l u s t r a t e  
the computational approach and inves t iga te  the 
coupled response o f  aerodynamically heated 
panels. The f i r s t  app l i ca t i on  i s  a " f l a t "  panel 
t h a t  i n  the undeformed s ta te  has zero angle o f  
attack. The second application i s  a panel that  
i n  the undeformed s ta te  i s  o r ien ted  a t  5 degrees 
to  the f low so t h a t  i n i t i a l l y  i t  forms a 
compression corner. 

The f low condi t ions f o r  the two appl icat ions 
correspond to t e s t  condi t ions i n  the 8 f o o t  HTT 
a t  NASA Langley. A schematic of a proposed 
experiment to Val i da te  the flow-thermal- 
s t ruc tu ra l  i n te rac t i on  ana lys is  i s  shown i n  Fig. 
3; In the proposed experiment, t e s t  panels are 
mounted i n  a panel holder w i th  a sharp leading 
edge. The panel holder i s  o r ien ted  a t  15 degrees 
t o  the tunnel f ree  stream so t h a t  an oblique 
leading edge shock forms producing the desired 
boundary l aye r  on the panel holder. The f igure  
schematical ly shows a panel supported i n  the 
panel holder i n  a i n i t i a l  f l a t  o r i en ta t i on  being 
heated a t  time t=O by the boundary layer  flow. 
A f t e r  some time, the t e s t  panel deforms i n t o  the 
stream a1 te r i ng  the f low s i g n i f i c a n t l y  by 
in t roduc ing  l oca l  shocks, expansion regions and 
s hock-boundary and 1 ayer in te rac t ions .  

F1 a t Panel 

The f i n i t e  element model and boundary condit ions 
f o r  the f l a t  panel are shown i n  Fig. 4. The t e s t  
panel i s  4 inches long, has a thickness o f  0.1 
inch and i s  made from AM-350 s ta in less  steel. 
The f low condi t ions and p r o f i l e s  a t  the l e f t  
boundary o f  the computational domain were 
determined from a boundary layer  so lu t i on  f o r  the 
panel holder shown i n  Fig. 3. The computational 
domain i s  modeled w i t h  a f i n i t e  element mesh o f  
5285 nodes and 5120 q u a d r i l a t e r i a l  elements. 
About 95% o f  the nodes l i e  i n  the f low domain. 
The mesh i s  graduated normal to the panel to 
produce high reso lu t i on  o f  f low var iab les  a t  the 
f low-so l id  interface. The black band next to the 
panel i n  Fig. 4 i nd i ca tes  the high concentration 
o f  elements i n  the boundary layer  near the 
panel. About 10 nodes i n  the v e r t i c a l  d i rec t ion  

l i e  w i t h i n  the boundary layer.  A t  the l e f t  and 
r i g h t  ends o f  the panel, conduction heat t rans fe r  
i s  permit ted to the panel holder. The bottom 
surface o f  the panel i s  assumed p e r f e c t l y  
insulated. 

The two cases o f  panel s t ruc tu ra l  boundary 
condi t ions considered are shown i n  Fig. 4. I n  
the f i r s t  case, the panel i s  supported by 
immovable supports on the bottom corners as 
shown. For these boundary condi t ions,  the panel 
deforms i n t o  a convex shape. I n  the second case, 
the panel i s  supported by immovable supports a t  
the top corners. For these boundary condi t ions,  
the panel deforms i n t o  a concave shape. 

The flow-thermal -s t ruc  t u r a l  i n t e r a c t i o n  f o r  
the f l a t  p l a t e  was analyzed using the so lu t ion  
sequence shown i n  Fig. 5. The f i g u r e  shows t h a t  
panel deformations were computed three times a t  
ten second i n t e r v a l s  f o r  a t e s t  dura t ion  o f  30 
seconds. Ca lcu la t ions  were a1 so performed where 
the panel deformations were computed only once 
a f t e r  a heating i n t e r v a l  equal to the total t e s t  
dura t ion  o f  30 seconds. For convex deformations. 
the r e s u l t s  f o r  the two ana lys is  sequences were 
i n  exce l l en t  agreement. b u t  f o r  the concave 
deformations the r e s u l t s  i nd i ca te  t h a t  a smaller 
i n t e r v a l  f o r  deformation updates i s  required. 
The r e s u l t s  to be presented i n  subsequent f igures  
f o r  the convex and concave deformations o f  the 
f l a t  panel are f o r  the ana lys is  sequence shown i n  
Fig. 5, i.e. three computations o f  panel 
deformations. 

I n  a t yp i ca l  coupled flow-thermal analysis 
(F/T i n  Fig. 51 ,  a t i m e  step o f  l.E-7s was used, 
and 4000 steps were required to approach steddy 
heating ra tes  i n  about 0.4 mi l l i -second. I n  a 
t yp i ca l  thermal analysis ( T  i n  Fig. 5). a time 
step nf  0.01 s was tlsed. and 1000 steps were 
required to heat the panel f o r  ten seconds. A 
t e s t  dura t ion  o f  30s i s  ea r l y  i n  the t rans ien t  
response o f  the panel; r a d i a t i o n  equ i l i b r i um i s  
estimated to occur a f t e r  about 600-900s o f  
heating. 

The i n t e r a c t i o n  between the panel 
deformation and the f low densi ty d i s t r i b u t i o n  i s  
shown i n  Fig. 6 a t  three times, t = 10.20.30s. 
The f i g u r e  shows the development o f  a shock 
eminating from the l e f t  support on the windward 
side of .  the deformed panel. The f l u i d  densi ty 
increases through the shock, bu t  the densi ty 
decreases as the f low expands across the convex 
center o f  the panel along the leeward side 
towards the r i g h t  support. As the f l o w  i s  turned 
by the panel near the outf low, a recompression 
occurs and the densi ty begins to increase as a 
recompression shock i s  developed. As the panel 
deforms, the boundary layer  thickness i s  a1 tered 
over the panel becoming appreciably th icker  on 
the leeward surface o f  the panel and th icker  on 
the panel holder near the outf low. 

The evo lu t ion  o f  the temperature a t  the 
f lu id-panel  i n te r face  i s  presented i n  Fig. 7 f o r  
the panel w i t h  convex deformation. Due t o  the 
small thickness o f  the panel, there i s  v i r t u a l l y  
no temperature grad ien t  through the panel 
thickness, and the panel temperature var ies only 
w i t h  x as shown. The "rounding" o f  the tempera- 
tu re  d i s t r i b u t i o n s  near the l e f t  and r i g h t  panel 
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supports i s  due to conduction heat t rans fer  to 
the panel holder. 

The heating r a t e  f o r  the panel w i th  convex 
deformation i s  presented i n  Fig: 8. Figure 8a 
shows the evo lu t ion  o f  the heating r a t e  d i s t r i -  
bu t ion  as the panel deforms f o r  t=0,10,20,30s. 
The heat ing r a t e  d i s t r i b u t i o n  displays the 
e f f e c t s  o f  both the f lu id-panel  heat t rans fer  and 
the panel deformation. The ove ra l l  decrease i n  
the the heating r a t e  a t  each t i m e  i s  due to the 
r i s e  o f  the panel temperature. F1 uid 
temperatures (no t  shown) near the panel a t  each 
t i m e  remain roughly the same, and due to the r i se  
o f  the panel temperature there i s  a lower 
temperature gradient a t  the f lu id-panel  in te r face  
t h a t  produces the lower heating rate. The panel 
deformation causes the increase i n  the heating 
r a t e  d i s t r i b u t i o n  on the windward side o f  the 
panel f o r  1<x<2. 

The e f f e c t  o f  the panel temperature on 
heating r a t e  d i s t r i b u t i o n  i s  i l l u s t r a t e d  fu r ther  
i n  Fig. 8b. Th is  f i gu re  compares the heating 
r a t e  o f  a deformed panel assuming a constant 
spec i f i ed  temperature to the heating r a t e  that 
occurs when the panel temperature i s  permit ted to 
r i s e  as i n  Fig. 7. The upper curve f o r  the 
spec i f ied  panel temperature shows the s i g n i f i c a n t  
r i s e  i n  heating r a t e  f o r  1<x<2 c lea r l y  
demonstrating the deformation coup1 ing  e f fec t .  

The evo lu t ion  o f  the thermal stress 
d i s t r i b u t i o n s  on the top and bottom surfaces of 
the panel i s  presented i n  Fig. 9 f o r  the convex 
deformation case. The panel experiences a large 
compression stress because long i tud ina l  expansion 
i s  p roh ib i t ed  by the immovable supports. Because 
the supports are o f f s e t  from the panel neutral 
surface, bending i s  superimposed tha t  produces 
s m a l l  t e n s i l e  stresses on the panel 's top 
surface. The loca l  o s c i l l a t i o n s  i n  the bottom 
surface stresses a t  x= l  and x=5 are un rea l i s t i c  
and ind i ca te  the need f o r  f u r the r  mesh refinement 
f r t  these areas. 

The second case considered the supports a t  
the top corners o f  the panel producing concave 
deformation. The f low densi ty d i s t r i b u t i o n  a t  
t=30s f o r  the panel w i t h  convex and concave 
deformations are compared i n  Fig. 10. The 
d i f f e r e n t  deformations a1 t e r  the f l o w  
s i g n i f i c a n t l y .  I n  the concave case, an expansion 
occurs as the f low encounters the l e f t  support. 
The f l u i d  densi ty decreases through the expansion 
b u t  it begins to increase s i g n i f i c a n t l y  as the 
f l ow  tu rns  through the bottom o f  the concave 
panel. Recompression occurs and a shock eminates 
from the r i g h t  support. The boundary layer  i s  
a l t e r e d  d i f f e r e n t l y  f o r  the two cases as well. 
For concave deformation. the boundary layer 
thickens a f t e r  the f low encounters the l e f t  
support, and then i t  th ins  as the f l o w  approaches 
the r i g h t  support. These di f ferences i n  the f l o w  
are i l l u s t r a t e d  c l e a r l y  by the heating rate 
d i s t r i b u t i o n s  which are compared i n  Fig. 11 a t  
t=30s. For the concave case, as w i th  the convex 
case, there i s  an ove ra l l  drop i n  heating rate 
due to the r i s e  i n  p la te  temperature. However, 
due t o  the strong recompression a t  the r i g h t  
support f o r  the concave case, there i s  a sharp 
r i s e  i n  the heating r a t e  above the f l a t  p late 
value near x=5. 

This example i l l u s t r a t e s  t h a t  flow-thermal- 
s t ruc tu ra l  coupl ing can s i g n i f i c a n t l y  a l t e r  
aerodynamic heating rates. Only very modest 
deformations occurred, b u t  f low features were 
a l t e r e d  s i g n i f i c a n t l y .  The loca t i on  o f  the panel 
supports and the associated cases o f  convex and 
concave deformations caused the f low f i e l d s  to 
d i  f f e r  considerably . Heating r a t e  d i  s tr i bu ti ons 
changed markedly. I n  both cases, the simple 
i n i t i a l  boundary l aye r  f low was a l t e r e d  t o  
produce much more complex f lows tha t  can only be 
predicated by so lv ing  the f u l l  Navier-Stokes 
equations. 

5' Panel 

The f i n i t e  element model and boundary cond i t ions  
f o r  the 5' panel are shown i n  Fig. 12. The 
model, boundary cond i t ions  and so lu t ion  procedure 
are i d e n t i c a l  to the f l a t  panel app l i ca t ion .  The 
d i f fe rence i s  t h a t  i n  the undeformed state, the 
5' panel presents a compression corner to the 
flow w i t h  a more complex i n i t i a l  flow, a more 
complex i n i t i a l  heating ra te  d i s t r i b u t i o n  and 
higher l o c a l  heating rates.  The s t ruc tu ra l  
boundary condi t ions f o r  the panel are located a t  
the lower corners causing convex deformation i n t o  
the f low- f ie ld .  

The e f f e c t  o f  the panel deformation on the 
f low densi ty d i s t r i b u t i o n  i s  shown i n  f i g .  13. 
Density d i s t r i b u t i o n s  are compared f o r  the 
undeformed panel and the deformed panel a t  
t-30s. For the undeformed panel a strong shock 
eminates from the compression corner a t  the l e f t  
support, and the panel deformation makes the 
shock stronger. For the undeformed pan$l, an 
expansion occurs as the f low turns the sharp" 
corner a t  the r i g h t  support. However. the panel 
deformation makes the corner more rounded. and 
the expansion region moves upstream near the 
middle o f  the bowed panel. More s i g n i f i c a n t l y ,  
f o r  the undeformed panel there i s  a small 
r e c i r c u l a t i o n  a t  the l e f t  support t h a t  becomes 
much l a r g e r  as the panel deforms g i v ing  a 
"stronger" compression corner. The r e c i r c u l a t i o n  
region has a major e f f e c t  upon surface quan t i t i es  
such as sk in  f r i c t i o n  and heating rate.  

The heating r a t e  d i s t r i b u t i o n  f o r  the 
undeformed and deformed panel are compared i n  
Fig. 14. The i n i t i a l  drop i n  heating ra tes  a t  
x = l  i s  associated w i t h  the boundary l aye r  
th ickening and the onset o f  the f low separation 
as the f low approaches the corner. As the panel 
deforms, the f low separates f a r t h e r  upstream 
g iv ing  a l a r g e r  r e c i r c u l a t i o n  region as ind ica ted  
by the drop i n  heating r a t e  a t  x-0.4 in. f o r  the 
deformed plate.  As w i th  the f l a t  p l a t e  there i s  
an ove ra l l  drop i n  the heating ra te  d i s t r i b u t i o n  
due to the r i s e  i n  p la te  temperature. The panel 
deformation, as before, s i g n i f i c a n t l y  a1 te rs  the 
heat ing r a t e  d i s t r i bu t i on .  

I f  the analysis continued f o r  longer times, 
the panel deformation increases, and the 
r e c i r c u l a t i o n  region grows i n  s ize  u n t i l  i t  
reaches the i n f l ow  boundary o f  the f i n i t e  element 
model. Then the analysis becomes inva l i d .  Thus, 
t h i s  problem demonstrates tha t  the e f f e c t  o f  the 
deformation on the f low f i e l d  must be given 
careful considerat ion i n  planning the 
computational domain. 
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Concl udf ng Remarks 

A f i n i t e  element approach f o r  the coupling 
o f  flow. thermal and s t ruc tu ra l  analyses o f  
aerodynamically heating panels i s  described. The 
paper b r ings  together for  the f i r s t  time the 
so lu t i on  o f  the Navier-Stokes equation f o r  high 
speed compressible flow' and the so lu t i on  f o r  the 
associated. thermal-structural  equations by a 
s ing le  f i n i t e  element a lgor i thm i n  one 
integrated. vec tor i  zed program. 

The approach i s  used to study flow, thermal 
and s t ruc tu ra l  i n te rac t i ons  o f  two t h i n  meta l l i c  
panels .proposed f o r  an experimental study i n  the 
NASA Langley 8 f o o t  high temperature tunnel. 
Numerical r e s u l t s  are presented t h a t  demonstrate 
the e f f e c t  o f  the panel deformation and 
temperature on the f low f i e l d  and aerodynamic 
heating. For Mach 6.6 tunnel f low conditions. 
panel deformations a1 t e r  the f low s i g n i f i -  
can t ly .  The panel deformations introduce shocks, 
expansions and r e c i r c u l a t i o n  regions i n  the 
flow. Heating r a t e  d i s t r i b u t i o n s  are a l te red  
s i g n i f i c a n t l y .  For the t e s t  durat ions studied 
(up to 30 seconds) the e f f e c t  o f  the r i s i n g  panel 
temperature i s  to lower overa l l  heating rates. 
The e f f e c t  o f  the panel deformations are to 
increase loca l  heating ra tes  on windward 
surfaces. 

The coupling o f  the flow. thermal. 
s t r u c t u r a l  analyses has provided i n s i g h t  i n t o  
some o f  the fundamental features o f  i n te rac t i on  
o f  supersonic f low w i th  heated panels. Future 
analyses w i l l  study i n te rac t i ons  on more 
r e a l  i s t i c  s t ruc tu res  o f  cur ren t  design i n t e r e s t  
such as the leading edge o f  the scramjet fuel 
i n j e c t i o n  s t ru t .  
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Fig. 1 - Potent ia l  areas f o r  f lu id- thermal-  
s t ruc tu ra l  i n te rac t i ons  on aerospace 
plane scramjet engine structure.  
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Fig. 4 - Coupled f low-thermal-structural  f i n i t e  
element model and boundary cond i t ions  
f o r  f low over f l a t  p late.  
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tl t 2  t 3  Fig. 5 - So lu t ion  sequence f o r  coupled flow- e -- @- . .... thermal-structural  ana lys is  o f  f low 

t - 0  

over f l a t  p late.  

Fig. 2 - Solut ion sequence f o r  coupled f low- 
thermal-structural  analysis. 
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Fig. 3 - Schematic diagram o f  experiment t o  
Val ida te  flow- thermal -s  t r uc  t u r a l  
analysis. 
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Fig. 6 - Flow densi ty d i s t r i b u t i o n s  for panel 
w i th  convex deformation. 
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Fig. 7 - Temperature d i s t r i b u t i o n s  a t  f l u i d -  
panel i n te r face  f o r  panel w i t h  convex 
de forma ti on. 
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d i  s t r f  bu t ion  
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Fig. 8 - Heating r a t e  d i s t r i b u t i o n s  f o r  panel 
w i t h  convex deformation. 
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Fig. 9 - Thermal stress d i s t r i b u t i o n s  f o r  panel 
w i t h  convex deformation. 
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Fig. 10 - Flow density d i s t r i b u t i o n s  f o r  panel 
w i t h  convex and concave deformations 
a t  30 seconds. 
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Fig. 11 - Heating ra te  d i s t r i b u t i o n s  f o r  panel 
w i t h  convex and concave deformations 
a t  30 seconds. 
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Fig .  12 - Coupled f low-thermal-structural f i n i t e  
element model and boundary conditions 
f o r  flow over 5' panel. 
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