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Abstract 
We describe our numerical method for three-
dimensional simulations of solid rocket motors in 
which the internal gas dynamics, the combustion of 
the propellant, and the structural response are fully 
coupled.  The combustion zone is treated as a thin 
layer using appropriate jump conditions, and the re-
gression rate is determined using a nonlinear dynamic 
combustion model.  An Arbitrary Lagrangian-
Eulerian formulation is used in the gas dynamics and 
structural mechanics modules to follow the regres-
sion of the propellant.  We demonstrate the parallel 
scalability of our ALE implementation and its ability 
to handle significant burn back of the propellant on a 
model problem with a very high burn rate. 

 
Introduction 

Detailed 3-D simulations are routinely performed by 
aerospace engineers to analyze virtual prototypes of 
aircraft, but the US rocket industry typically employs 
one- or two-dimensional models during the design 
phase, usually treating each component as an isolated 
system.  While a great deal of physics can be in-
cluded in such calculations, the models adopted are 
often based on measurements of simpler, but not nec-
essarily closely related systems, rather than on first 
principles.   
 
The primary goal of the Center for Simulation of Ad-
vanced Rockets is to perform detailed, whole-system 
simulations, making use of science-based models 
rather than empirical relations whenever possible1,2.  
Obtaining accurate numerical solutions to such a 
complex problem requires enormous computational 
resources.  Moreover, the physics modules (gas dy-
namics, structural mechanics, etc.) must all run effi-

ciently in parallel on many processors and operate in 
concert to solve a tightly coupled system.   
 
This paper describes version 2 of the GEN1 rocket 
simulation package developed at CSAR, with an em-
phasis on improvements from version 1.03.   
 
Overview of the Coupled Simulation Package 
 

  
 

 
Figure 1 shows the overall structure of GEN1 version 
2.  The system code consists of the physics modules 
(Rocflo, Rocburn, Rocface), infrastructure modules 
to pass data between the physics modules and to 
dump output (Rocface, Rocpanda), and a main pro-
gram to control the execution of all components 
(Driver).  The system code runs as a single executa-
ble on each processor of a parallel computer.  Prob-
lem setup is performed off-line using separate appli-
cations (Gridgen, Truegrid, Metis).   
In developing our integrated simulation software, we 
adopted a partitioned approach, in which each phys-
ics module solves a problem within a specified region 
of space.  The modules are executed one at a time, 
and updated surface values from one module are 
passed to the others for use as boundary conditions.  
Complete coupling of all modules is enforced by a 

Figure 1.  GEN1 Schematic 
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predictor-corrector solution procedure, in which the 
overall system time step is repeated until changes in 
the solution from one iteration to the next are within 
prescribed tolerances.  This partitioned approach has 
allowed us to couple together pre-existing physics 
applications with a limited amount of modification 
and to continue to develop them independently.   
 
In the next several subsections, we describe the 
individual components of the GEN1 version 2 
package.  
Gas Dynamics Solver: Rocflo 
Rocflo is a Computational Fluid Dynamics applica-
tion designed to simulate solid-rocket motor core 
flows.  A structured multi-block finite-volume ap-
proach with cell-centered data storage is adopted.  
The compressible Navier-Stokes equations are solved 
in Cartesian coordinates using an Arbitrary Lagran-
gian-Eulerian (ALE) formulation to allow for bound-
ary movement due to deformation and burning of the 
propellant.  For deforming meshes, the cell geometric 
properties are computed such that the Geometric 
Conservation Law (GCL)4 is satisfied. 
 
The spatial discretization schemes implemented in 
Rocflo are the central scheme with artificial dissipa-
tion5 and two second-order TVD schemes: Roe’s 
flux-difference splitting scheme6 and Yee’s symmet-
ric TVD scheme7.  Several limiter functions are avail-
able in Rocflo.  The computations shown in this 
paper employed Roe’s upwind scheme with second-
order accuracy and the “minmod” limiter function.  
The viscous fluxes are computed using gradients cal-
culated at face centers.   
 
The discrete equations are integrated in time using an 
explicit multistage Runge-Kutta method.  For un-
steady computations, a two-stage method is com-
monly chosen, where the time step is given by the 
smallest value of the largest stable time step among 
all fluid cells. 
 
Rocflo is implemented in Fortran 90. User-defined 
data types and pointers are employed extensively to 
ensure a clean code structure. As a result, each block 
may be regarded as an object and contains all data 
relevant to that block, including nodal coordinates, 
face vectors, cell volumes, and the state vectors. This 
form of data encapsulation also facilitates the map-
ping and migration of blocks among processors. To 
ensure high FLOP rates, computationally intensive 
parts of the code are written in Fortran 77-style.  

 
The parallel implementation of Rocflo is based on the 
block topology, where each processor may own one 
or more blocks. After each solution update, blocks 
residing on the same processor simply copy boundary 
data while those on different blocks use “persistent 
communication” calls in the MPI message passing li-
brary.  
 
The initial fluids mesh is created using the Gridgen 
mesh generation package8 from Pointwise, Inc.  The 
mesh is subsequently partitioned for parallel compu-
tation using a tool developed at CSAR by Orion Sky 
Lawlor and Mark Brandyberry.  This tool also pro-
duces an input file for Rocflo that describes the block 
connectivity and boundary conditions.   
 
More detailed information on Rocflo, including re-
sults for validation cases and parallel performance 
studies for fixed and scaled problems, is provided 
elsewhere9.  Rocflo has recently been extended to in-
clude aluminum droplets, smoke particles, and vari-
ous chemical species10.  However, the results pre-
sented here involve strictly single-phase flows. 
 
Structural Mechanics Solver: Rocsolid 
In order to compute the structural response of the 
propellant, case, liner, and nozzle, we developed 
Rocsolid, a structural analysis code that employs a fi-
nite element discretization of the solid components 
using unstructured hexahedral meshes.  Dynamic 
problems are solved using the implicit Newmark time 
integrator11.   
 
Rocsolid offers two types of linear system solvers for 
the matrix equations encountered within the Newton 
iterations at each time step.  For problems in which 
no interface moves through the material (e.g., burn 
times so short that the regression of the propellant is 
negligible), the linear system resulting from the equa-
tions of motion is symmetric and can be solved most 
efficiently using a scalable parallel multigrid 
method12.  For problems with significant propellant 
burn-back, the equations of motion are expressed in a 
parametric domain which is mapped to an evolving 
undeformed reference configuration13.  The resulting 
linear system is non-symmetric, and a BiCGSTAB 
method is used.  Although this solver is parallel, it is 
inherently less scalable than multigrid because, 
unlike multigrid, the number of BiCGSTAB itera-
tions required to obtain a solution to within a speci-
fied tolerance increases with the size of the problem 
(i.e., the total number of finite elements).   
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Examination of the multigrid and BiCGSTAB algo-
rithms indicates that all of the operations can be per-
formed independently on domains partitioned for 
parallel execution. In particular, the main compo-
nents of the algorithm are matrix-vector multiplica-
tions that can be efficiently implemented element-by-
element.  Communication between partitions (proces-
sors) is required only during matrix-vector multipli-
cations, scalar products and fine-to-coarse mesh re-
striction.  Matrix-free element computations reduce 
the storage and the time requirements of our imple-
mentation.  Rocsolid is written in Fortran 90, and 
uses MPI to pass messages between processors.   
 
Multigrid methods require a hierarchy of increasingly 
finer meshes. We use TrueGrid14 from XYZ Scien-
tific Applications, Inc. to produce a sequence of 
nested, uniformly refined hexahedral meshes, which 
allows us to model complex parts. Mesh partitioning 
is performed on the coarsest mesh using Metis15.  to 
achieve load balance between the processors. Uni-
form refinement of the coarsest mesh partitions pro-
duces the required partitions on the finer meshes. 
Thus, element load balance is maintained throughout 
the mesh hierarchy, although the resulting communi-
cation pattern may not be optimum.   
 
Burn Rate: Rocburn 
Rocburn (implemented in GEN1 by K. C. Tang) 
computes the unsteady burning rate of solid propel-
lant using a nonlinear dynamic solid propellant com-
bustion model.  The theory of Zeldovich and Novoz-
hilov (ZN) is used in combination with the Flame 
Modeling (FM) approach16,17,18 in the model.  For 
homogeneous solid propellant combustion, WSB 
flame modeling19 is used.  To simulate the combus-
tion of AP composite propellant, an empirical expres-
sion replaces premixed WSB flame modeling20.   
 
At each fluid cell face on the burning propellant sur-
face, the one-dimensional (into the propellant) un-
steady energy equation in the condensed phase and 
the unsteady burning rate eigenvalue are solved for a 
prescribed unsteady pressure.  Under rapid pressuri-
zation rates, the unsteady dynamic burning rate can 
be significantly different from the burning rate pre-
dicted by the quasi-steady combustion model due to 
the thermal relaxation effect in the solid20,21.   
 
One important undesirable motor behavior is the ini-
tial "ignition" pressurization spike.  The "ignition" 
spike commonly observed in motors with small L* 
(ratio of free chamber volume to nozzle throat area) 

was usually attributed to erosive burning or igniter 
mass flux22,23.  Using the nonlinear dynamic combus-
tion model, the "ignition" pressure spike has been 
simulated in 0-D for homogeneous propellant com-
bustion by Tang and Brewster21 without including 
erosive burning and igniter mass flux effects.  Simi-
larly, for AP composite propellant, the "ignition" 
pressure spike in the NAWC tactical motor #13 test 
data24 is also well captured by a 0-D calculation by 
Tang and Brewster20.   These results suggest that the 
dynamic burning effect may play a significant role in 
producing the "ignition" pressure spike.  Even in the 
absence of a pressurization spike, these results sug-
gest that nonlinear, pressurization-rate dependent dy-
namic burning may contribute to rapid pressurization 
in some motors21. 
 
Data Transfer Across Interfaces: Rocface 

The interface code is responsible for transferring data 
at the fluid-solid interface, where the two meshes are 
potentially non-matching. To perform the data 
transfer, we must first identify the geometric 
relationship between these non-matching interface 
meshes.  In our current implementation, we use a 
mesh association algorithm to locate the closest solid 
element for each fluid nodal point on the interface25, 
and use this result to transfer motion and loads at the 
interface. The mesh association algorithm traverses 
the fluid nodes and solid elements from neighbor to 
neighbor so that the closest elements are located 
quickly. After mesh association, we transfer 
displacements and velocities from solids to fluids by 
interpolating the values for each fluid nodal point at 
its closest point on the solid interface, and scatter the 
fluid nodal forces to solid nodes. The same set of 
coefficients is used for both load and motion transfer, 
and as a consequence, guarantees global conservation 
of energy26.   

 
With the ALE formulation, it is also necessary to 
transfer the regression rate from fluids to solids, and 
more general interpolation algorithms are required.  
We have developed new data transfer algorithms and 
are incorporating them into our simulation code. 
Before this new code is available, for burning fluid-
solid interfaces, we limit ourselves to matching 
interface meshes.  For this case, the mesh association 
algorithm is used to identify the correspondence of 
the nodes between the fluid and solid interface 
meshes, and regression rate is essentially copied from 
fluid nodes to their corresponding solid nodes.  The 
restriction of matching meshes at burning interfaces 
will be eliminated with the new interface code.   
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In the new version, we construct a common 
subdivision of two non-matching meshes and a 
collection of more accurate and more general data 
transfer algorithms is built on top of the common 
subdivision. A common subdivision of two meshes is 
a finer mesh such that each face or edge of the two 
given meshes is partitioned into a set of faces and 
edges of the finer mesh.  We have developed an 
efficient algorithm for computing common 
subdivision27.  The common subdivision defines, and 
allows efficient query of, a unique nearby 
corresponding point on one surface for every point on 
the other, and enables conservative data transfer 
between meshes. In particular, we have developed a 
set of least-squares data transfer algorithms which are 
not only conservative, but also minimize the overall 
error28.   

 
Since the fluid and solid meshes are distributed 
across multiple processors, the interface code must 
handle distributed meshes. In our current parallel im-
plementation, we first compute the bounding boxes 
of the connected components of the partitions of the 
solid mesh and of the blocks of the fluid mesh. These 
bounding boxes are compared to provide a quick es-
timate of the adjacency between the solid partitions 
and the fluid blocks. Then the solid partitions adja-
cent to a fluid block are shipped to the processor that 
owns the fluid block, and are connected together to 
form a new mesh. The sequential mesh association 
algorithm is then applied on all processors in parallel. 
As a by-product of mesh association, a more efficient 
communication pattern is obtained, which is used to 
exchange field variables between processors.  The 
parallelization of the new Rocface takes an approach 
similar to the one described here. 
 
Orchestration: Driver 
The driver or main program orchestrates the execu-
tion of the other modules in the GEN1 code.  At 
startup, it calls intialization routines in the physics 
modules, and then prepares Rocface to exchange data 
across interfaces.   
 
The bulk of the main program is a loop over system 
time steps.  This loop implements our predictor-
corrector temporal coupling scheme29.  On the first 
predictor-corrector iteration, Rocflo estimates the ve-
locity of the solid surface from the previous system 
time level and takes a prescribed number of explicit 
fluids time steps.  It then passes surface forces (and 
the new position of any burning surfaces) at the ad-
vanced time level to Rocsolid through Rocface.  Us-

ing the surface forces as a boundary condition, Roc-
solid takes one implicit time step to catch up with 
Rocflo, and then passes the new surface position and 
velocity to Rocflo through Rocface.  On subsequent 
predictor-corrector iterations, Rocflo uses the surface 
velocity received from Rocsolid in the previous itera-
tion and repeats its explicit time steps.  Next, Rocflo 
passes the values (at the advanced time) of surface 
forces (and burning surface positions) to Rocsolid, 
which then repeats its implicit time step.  At this 
point Rocface performs a convergence test on the 
surface forces, positions, velocities, and regression 
rates.  If the relative difference of any of these quanti-
ties compared to the previous iteration exceeds the 
specified tolerance, another iteration is performed. 
 
For problems without regressing surfaces, we typi-
cally take 10 fluids time steps to one system time 
step, and the predictor-corrector cycle converges after 
2 or 3 iterations.  For problems with regressing sur-
faces, 3 predictor-corrector iterations are frequently 
required.  Because the BiCGSTAB solver is signifi-
cantly more CPU intensive than the multigrid solver, 
we set the ratio of system to fluids time steps to as 
large a value as possible, under the constraints that 
the predictor-corrector cycle should converge in 3 it-
erations or less and the BiCGSTAB solver should 
converge in 50 or fewer iterations.  We find that the 
best value of this ratio is problem dependent, and of-
ten changes as the calculation proceeds.  We are ex-
perimenting with adaptively adjusting this ratio 
within GEN1.   
 
Parallel Output: Rocpanda 
The main program calls output routines in the physics 
modules when the system time step has advanced be-
yond the “nth” evenly spaced time interval, where 
“n” ranges from zero to typically hundreds of output 
dump times.   
 
In a parallel computation, the simplest way to dump 
output is to have each processor write its data to a 
separate file, and use a visualization tool that can 
merge the blocks into a single image.  If the problem 
and the number of processors is very large, a huge 
amount of data is written to disk at once, overwhelm-
ing the I/O system and delaying the calculation for 
many minutes.  Moreover, transferring many Giga-
bytes worth of files to another system for storage or 
post processing can be very time consuming.  To cir-
cumvent these problems, we use Rocpanda30.   
 
Rocpanda is an extension of the PANDA31 library for 
CSAR’s rocket simulation code.  It uses additional 
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processors (I/O nodes) to collect output data from the 
compute processors and write it to disk while the 
compute processors proceed with the calculation.  
This helps because it usually takes significantly less 
time to send the data over the internal network of a 
large parallel machine than it does to write it to hard 
disk.  The amount of memory on the I/O nodes 
should be enough to hold one snapshot if there is to 
be no waiting for writes to disk.  The I/O nodes can 
also combine the data into a more manageable num-
ber of output files.  Another useful feature of the 
PANDA libray that will soon be added to Rocpanda 
is background file transfers, which allows the snap-
shots to be moved to mass storage and/or another sys-
tem for post-processing as soon as the snapshots are 
written, rather than after the calculation has com-
pleted.  Since the computation may take many days 
of wall clock time, all but the final output dump 
could be transferred automatically by the time the 
calculation is completed.   
 
Visualization: Rocketeer 
CSAR has developed a powerful, general purpose 
tool for scientific visualization called Rocketeer32.  
Rocketeer is written in C++ and based on the Visu-
alization Toolkit33,34, which uses OpenGL to exploit 
hardware graphics acceleration.  The user interface 
employs wxWindows35 for portability across plat-
forms.  Rocketeer executables for linux, Sun Solaris 
2.7, and Microsoft Windows can be downloaded 
from the Rocketeer Web page.   
 
Rocketeer is designed to read field data in HDF for-
mat36 defined on structured or unstructured single 
block or multiblock grids.  It also can display data de-
fined on sets of points in space that do not constitute 
a grid.  Rocketeer automatically merges grid blocks 
to produce seamless images from multiblock data 
files.  Unstructured grids handled by Rocketeer may 
consist of tetrahedra, prisms, pyramids, hexahedra, 
etc.  Surface meshes composed of triangles, quadri-
laterals, etc., are also supported.   
 

 
 
 
 
Rocketeer can display field data using a variety of 
techniques, including surface plots in which values of 
a scalar variable determine the color, colored isosur-
faces, and/or slices along the x, y, and/or z axes.  
Both 2-D surface and 3-D interior grids can be 
shown, with several choices available for selecting a 
small portion of a 3-D mesh (see Figure 2).  Clipping 
planes can be used to cut an image along the x, y, 
and/or z axis, and the opacity of all objects can be 
varied to allow the user to see more deeply into a 3-D 
data set.  Multiple windows can be open on the 
screen at the same time, and the camera position can 
be saved and loaded to assist the user in comparing 
similar data sets.   
 
Scalar and vector quantities can be depicted using 
glyphs (usually spheres for scalars and oriented cones 
for vectors).  The sizes of the glyphs can be uniform 
or they can vary with the value of some variable, 
such as the radius of aluminum particles or the mag-
nitude of the velocity vectors (see Figure 3, in which 
the color of the cones indicates the speed).  For more 
details and examples, see the extensive on-line User’s 
Guide.   
 

Figure 2.  Rocketeer Visualization of Bad Mesh 
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An MPI parallel batch mode version of Rocketeer 
called Voyager has recently been developed37.  Each 
CPU processes in parallel a subset of a series of 
snapshots from a simulation.  The camera position 
and list of graphics operations to be performed are 
saved during an interactive session of Rocketeer and 
read in by Voyager.  Voyager has nearly all of the 
features of the interactive version, but saves images 
to files rather than displaying them.  We have ob-
tained parallel speedups over 72/96 when each of 96 
nodes in our linux cluster processes one snapshot on 
its local disk.  When the snapshots reside on a shared 
file system, contention for I/O bandwidth hurts scal-
ability, but if the run is repeated (as might be done 
when the user adjusts the camera position, isosurface 
levels, etc.), much of the data saved automatically by 
the system in disk caches is reused and the runtime is 
nearly is fast as it is when the data resides on local 
disk (see Figure 4).  After Voyager creates the im-
ages, they can be converted, for example, into a GIF 
animation file using ImageMagick38.   
 

 
 
 

 
Simulations 

In this section we present several results obtained us-
ing the latest capabilities in the GEN1 v2.0 package, 
as well as describe some ongoing simulations. 
 
Scalability of the ALE Algorithm 
To measure the parallel scalability of GEN1 v2.0 
with regressing boundaries and dynamic burning, we 
solve a simplified 3-D rocket problem in which the 
geometry has axial symmetry (see Figure 5).  At the 
head end, the solid has no applied load, while the 
fluid sees a flat wall.  At the aft end, the solid again 
has no applied load, while the fluid has an outflow 
boundary condition.  The open-ended cylindrical case 
is taken to be rigid.   
 
The calculation in Figure 5 was done on 8 processors 
and ran to 20 ms with a burn rate enhanced by a fac-
tor of 100 from the real propellant in order to test our 
regression capability in a reasonably short run time.  
As the pressure increases along the inner wall of the 
propellant, it bulges out at the forward and aft ends.  
Despite the deformation and high rate of regression, 
the solids and fluids meshes remain closely matched 
at the interface, as they should.  We have also used 
Rocsolid to perform several calculations with re-
gressing boundaries and verified that the numerical 
results closely match the analytical solution.   
 

Figure 4.  Voyager Parallel Performance 

Figure 3.  Rocketeer Velocity Glyphs 
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To measure scalability, we increase the number of 
elements in the problem in proportion to the number 
of processors on which the simulation runs by adding 
additional cylindrical sections between the two ends.  
If scalability were perfect, the wall clock time would 
be the same for any number of processors, since each 
processor does the same amount of computational 
work and communication (expect at the ends, where 
no data needs to be communicated).  Figure 6 shows 
the wall clock run times for one predictor-corrector 
cycle using 1, 8, 16, 32, 64, and 128 processors on 
ASCI White, a new IBM SP computer at Lawrence 
Livermore National Laboratory.  Two data points are 
shown for ASCI Blue Pacific, and older SP.  Because 
the ratio of system to fluids time steps is only 10 and 
the number of solid elements is relatively large in this 
test, the run time is dominated by the BiCGSTAB 
solver in Rocsolid (70 percent of the run time).  For 
the range of problem sizes studied (8700 to over 1 M 
elements in the solid), the number of BiCGSTAB it-
erations is nearly constant, and scalability is very 
good.   
 

 
 
 
Rocburn consumed 22 percent of the run time be-
cause of the relatively large burning surface area in 
this problem.  Rocflo used just 8 percent, and 
Rocface required a very small amount of time for 
mesh association and interpolation.   
 
Tactical Motor 
We are currently simulating Tactical Solid Rocket 
Motor Number 1324 (see Figure 7) using the GEN1 
v2.0 package running on 128 processors on ASCI 
White.  There is an empty cylindrical chamber at the 
head end of this rocket for instrumentation.  At the 
early physical time of Figure 7, hot gas flows both aft 
out the nozzle and forward into the empty chamber 
(see also Figure 3 for a visualization of the velocity 
field and stress in the propellant).  We are using 
Rocburn’s dynamic burn rate to compute the pressure 
overshoot shortly after ignition.  For this problem, we 
are using roughly 400,000 fluid cells and 200,000 
solid elements.  We find that when we take 100 fluids 
time steps for each system time step, Rocflo uses 63 
percent of the wall clock time for a typical predictor-
corrector iteration, Rocsolid uses 35 percent, and 
Rocburn uses only a fraction of a percent.  Thus, the 
more expensive BiCGSTAB solver does not domi-
nate the run time in this calculation as it did in the 
ALE scalability test problem.   
 

Figure 5.  ALE Scalability Test Problem 

Figure 6.  ALE Scalability Performance Data 
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One difficulty that arises in our Motor 13 simulation 
is that the pressure inside the rocket soon exceeds the 
nominal Young’s modulus of the propellant (36 
Mpa).  Since we have assumed for simplicity in this 
preliminary calculation that the propellant is a linear 
elastic material, we encounter far larger deformations 
than would be present in the real motor.  Since the 
real propellant consists of aluminum and ammonium 
perchlorate particles in a much softer binder, it 
should be much stiffer under compression than it is 
under tension.  Unfortunately, the Young’s modulus 
we adopted was determined by studying propellants 
under tension.  Although we are adding large defor-
mation and viscoelastic material property capabilities 
to Rocsolid, we still require better material models of 
the propellant to ensure that the deformation we cal-
culate is close to the deformation in the real rocket. 
 
Our intention is to follow the regression of the pro-
pellant in Motor 13 until our meshes become too dis-
torted to produce an accurate numerical solution.  
Reaching the blow-down phase will require the ad-
vanced remeshing capabilities under development for 
our GEN2 rocket simulation package.  As a test of 
the mesh motion capabilities of both Rocflo and Roc-
solid in GEN1 v2.0, we are running a somewhat arti-
ficial model problem with the same geometry as Mo-
tor 13, but with a power law burn rate that is 
enhanced from its nominal value by a factor of 1000.  
To keep the mass flux, and therefore the pressure his-
tory, roughly the same as the real Motor 13, we also 

reduced the propellant density by a corresponding 
factor.   
 

Conclusions 
CSAR has completed development of GEN1 version 
2.0, a software package for detailed, 3-D, numerical 
simulation of solid propellant rockets.  It solves the 
fully coupled fluid-structure interaction problem at 
solid surfaces, including a careful mass and momen-
tum conserving treatment of regressing combustion 
interfaces.  The application is scalable to large paral-
lel supercomputers.   
 
 GEN1 is being applied to model a variety of rocket 
problems, including tactical motors in which the 
pressure overshoot that occurs shortly after ignition 
may be captured by the dynamic burn rate model in-
cluded in the code.   
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