

1

American Institute of Aeronautics and Astronautics

AIAA-2001-3954

COUPLED FLUID-STRUCTURE 3-D SOLID ROCKET MOTOR SIMULATIONS

R. Fiedler*, X. Jiao†, A. Namazifard‡, A. Haselbacher‡, F. Najjar‡, and I. D. Parsons§
Center for Simulation of Advanced Rockets

University of Illinois at Urbana-Champaign, Urbana, IL 61801
http://www.csar.uiuc.edu

* Technical Program Manager
† Visiting Scholar
‡ Research Scientist
§ Associate Professor of Civil and Environmental Engineering, University of Illinois at Urbana
Copyright 2001 by Center for Simulation of Advanced Rockets. Published by the American Institute of
Aeronautics and Astronautics, Inc., with permission.

Abstract
We describe our numerical method for three-
dimensional simulations of solid rocket motors in
which the internal gas dynamics, the combustion of
the propellant, and the structural response are fully
coupled. The combustion zone is treated as a thin
layer using appropriate jump conditions, and the re-
gression rate is determined using a nonlinear dynamic
combustion model. An Arbitrary Lagrangian-
Eulerian formulation is used in the gas dynamics and
structural mechanics modules to follow the regres-
sion of the propellant. We demonstrate the parallel
scalability of our ALE implementation and its ability
to handle significant burn back of the propellant on a
model problem with a very high burn rate.

Introduction

Detailed 3-D simulations are routinely performed by
aerospace engineers to analyze virtual prototypes of
aircraft, but the US rocket industry typically employs
one- or two-dimensional models during the design
phase, usually treating each component as an isolated
system. While a great deal of physics can be in-
cluded in such calculations, the models adopted are
often based on measurements of simpler, but not nec-
essarily closely related systems, rather than on first
principles.

The primary goal of the Center for Simulation of Ad-
vanced Rockets is to perform detailed, whole-system
simulations, making use of science-based models
rather than empirical relations whenever possible1,2.
Obtaining accurate numerical solutions to such a
complex problem requires enormous computational
resources. Moreover, the physics modules (gas dy-
namics, structural mechanics, etc.) must all run effi-

ciently in parallel on many processors and operate in
concert to solve a tightly coupled system.

This paper describes version 2 of the GEN1 rocket
simulation package developed at CSAR, with an em-
phasis on improvements from version 1.03.

Overview of the Coupled Simulation Package

Figure 1 shows the overall structure of GEN1 version
2. The system code consists of the physics modules
(Rocflo, Rocburn, Rocface), infrastructure modules
to pass data between the physics modules and to
dump output (Rocface, Rocpanda), and a main pro-
gram to control the execution of all components
(Driver). The system code runs as a single executa-
ble on each processor of a parallel computer. Prob-
lem setup is performed off-line using separate appli-
cations (Gridgen, Truegrid, Metis).
In developing our integrated simulation software, we
adopted a partitioned approach, in which each phys-
ics module solves a problem within a specified region
of space. The modules are executed one at a time,
and updated surface values from one module are
passed to the others for use as boundary conditions.
Complete coupling of all modules is enforced by a

Figure 1. GEN1 Schematic

2

American Institute of Aeronautics and Astronautics

predictor-corrector solution procedure, in which the
overall system time step is repeated until changes in
the solution from one iteration to the next are within
prescribed tolerances. This partitioned approach has
allowed us to couple together pre-existing physics
applications with a limited amount of modification
and to continue to develop them independently.

In the next several subsections, we describe the
individual components of the GEN1 version 2
package.
Gas Dynamics Solver: Rocflo
Rocflo is a Computational Fluid Dynamics applica-
tion designed to simulate solid-rocket motor core
flows. A structured multi-block finite-volume ap-
proach with cell-centered data storage is adopted.
The compressible Navier-Stokes equations are solved
in Cartesian coordinates using an Arbitrary Lagran-
gian-Eulerian (ALE) formulation to allow for bound-
ary movement due to deformation and burning of the
propellant. For deforming meshes, the cell geometric
properties are computed such that the Geometric
Conservation Law (GCL)4 is satisfied.

The spatial discretization schemes implemented in
Rocflo are the central scheme with artificial dissipa-
tion5 and two second-order TVD schemes: Roe’s
flux-difference splitting scheme6 and Yee’s symmet-
ric TVD scheme7. Several limiter functions are avail-
able in Rocflo. The computations shown in this
paper employed Roe’s upwind scheme with second-
order accuracy and the “minmod” limiter function.
The viscous fluxes are computed using gradients cal-
culated at face centers.

The discrete equations are integrated in time using an
explicit multistage Runge-Kutta method. For un-
steady computations, a two-stage method is com-
monly chosen, where the time step is given by the
smallest value of the largest stable time step among
all fluid cells.

Rocflo is implemented in Fortran 90. User-defined
data types and pointers are employed extensively to
ensure a clean code structure. As a result, each block
may be regarded as an object and contains all data
relevant to that block, including nodal coordinates,
face vectors, cell volumes, and the state vectors. This
form of data encapsulation also facilitates the map-
ping and migration of blocks among processors. To
ensure high FLOP rates, computationally intensive
parts of the code are written in Fortran 77-style.

The parallel implementation of Rocflo is based on the
block topology, where each processor may own one
or more blocks. After each solution update, blocks
residing on the same processor simply copy boundary
data while those on different blocks use “persistent
communication” calls in the MPI message passing li-
brary.

The initial fluids mesh is created using the Gridgen
mesh generation package8 from Pointwise, Inc. The
mesh is subsequently partitioned for parallel compu-
tation using a tool developed at CSAR by Orion Sky
Lawlor and Mark Brandyberry. This tool also pro-
duces an input file for Rocflo that describes the block
connectivity and boundary conditions.

More detailed information on Rocflo, including re-
sults for validation cases and parallel performance
studies for fixed and scaled problems, is provided
elsewhere9. Rocflo has recently been extended to in-
clude aluminum droplets, smoke particles, and vari-
ous chemical species10. However, the results pre-
sented here involve strictly single-phase flows.

Structural Mechanics Solver: Rocsolid
In order to compute the structural response of the
propellant, case, liner, and nozzle, we developed
Rocsolid, a structural analysis code that employs a fi-
nite element discretization of the solid components
using unstructured hexahedral meshes. Dynamic
problems are solved using the implicit Newmark time
integrator11.

Rocsolid offers two types of linear system solvers for
the matrix equations encountered within the Newton
iterations at each time step. For problems in which
no interface moves through the material (e.g., burn
times so short that the regression of the propellant is
negligible), the linear system resulting from the equa-
tions of motion is symmetric and can be solved most
efficiently using a scalable parallel multigrid
method12. For problems with significant propellant
burn-back, the equations of motion are expressed in a
parametric domain which is mapped to an evolving
undeformed reference configuration13. The resulting
linear system is non-symmetric, and a BiCGSTAB
method is used. Although this solver is parallel, it is
inherently less scalable than multigrid because,
unlike multigrid, the number of BiCGSTAB itera-
tions required to obtain a solution to within a speci-
fied tolerance increases with the size of the problem
(i.e., the total number of finite elements).

3

American Institute of Aeronautics and Astronautics

Examination of the multigrid and BiCGSTAB algo-
rithms indicates that all of the operations can be per-
formed independently on domains partitioned for
parallel execution. In particular, the main compo-
nents of the algorithm are matrix-vector multiplica-
tions that can be efficiently implemented element-by-
element. Communication between partitions (proces-
sors) is required only during matrix-vector multipli-
cations, scalar products and fine-to-coarse mesh re-
striction. Matrix-free element computations reduce
the storage and the time requirements of our imple-
mentation. Rocsolid is written in Fortran 90, and
uses MPI to pass messages between processors.

Multigrid methods require a hierarchy of increasingly
finer meshes. We use TrueGrid14 from XYZ Scien-
tific Applications, Inc. to produce a sequence of
nested, uniformly refined hexahedral meshes, which
allows us to model complex parts. Mesh partitioning
is performed on the coarsest mesh using Metis15. to
achieve load balance between the processors. Uni-
form refinement of the coarsest mesh partitions pro-
duces the required partitions on the finer meshes.
Thus, element load balance is maintained throughout
the mesh hierarchy, although the resulting communi-
cation pattern may not be optimum.

Burn Rate: Rocburn
Rocburn (implemented in GEN1 by K. C. Tang)
computes the unsteady burning rate of solid propel-
lant using a nonlinear dynamic solid propellant com-
bustion model. The theory of Zeldovich and Novoz-
hilov (ZN) is used in combination with the Flame
Modeling (FM) approach16,17,18 in the model. For
homogeneous solid propellant combustion, WSB
flame modeling19 is used. To simulate the combus-
tion of AP composite propellant, an empirical expres-
sion replaces premixed WSB flame modeling20.

At each fluid cell face on the burning propellant sur-
face, the one-dimensional (into the propellant) un-
steady energy equation in the condensed phase and
the unsteady burning rate eigenvalue are solved for a
prescribed unsteady pressure. Under rapid pressuri-
zation rates, the unsteady dynamic burning rate can
be significantly different from the burning rate pre-
dicted by the quasi-steady combustion model due to
the thermal relaxation effect in the solid20,21.

One important undesirable motor behavior is the ini-
tial "ignition" pressurization spike. The "ignition"
spike commonly observed in motors with small L*
(ratio of free chamber volume to nozzle throat area)

was usually attributed to erosive burning or igniter
mass flux22,23. Using the nonlinear dynamic combus-
tion model, the "ignition" pressure spike has been
simulated in 0-D for homogeneous propellant com-
bustion by Tang and Brewster21 without including
erosive burning and igniter mass flux effects. Simi-
larly, for AP composite propellant, the "ignition"
pressure spike in the NAWC tactical motor #13 test
data24 is also well captured by a 0-D calculation by
Tang and Brewster20. These results suggest that the
dynamic burning effect may play a significant role in
producing the "ignition" pressure spike. Even in the
absence of a pressurization spike, these results sug-
gest that nonlinear, pressurization-rate dependent dy-
namic burning may contribute to rapid pressurization
in some motors21.

Data Transfer Across Interfaces: Rocface

The interface code is responsible for transferring data
at the fluid-solid interface, where the two meshes are
potentially non-matching. To perform the data
transfer, we must first identify the geometric
relationship between these non-matching interface
meshes. In our current implementation, we use a
mesh association algorithm to locate the closest solid
element for each fluid nodal point on the interface25,
and use this result to transfer motion and loads at the
interface. The mesh association algorithm traverses
the fluid nodes and solid elements from neighbor to
neighbor so that the closest elements are located
quickly. After mesh association, we transfer
displacements and velocities from solids to fluids by
interpolating the values for each fluid nodal point at
its closest point on the solid interface, and scatter the
fluid nodal forces to solid nodes. The same set of
coefficients is used for both load and motion transfer,
and as a consequence, guarantees global conservation
of energy26.

With the ALE formulation, it is also necessary to
transfer the regression rate from fluids to solids, and
more general interpolation algorithms are required.
We have developed new data transfer algorithms and
are incorporating them into our simulation code.
Before this new code is available, for burning fluid-
solid interfaces, we limit ourselves to matching
interface meshes. For this case, the mesh association
algorithm is used to identify the correspondence of
the nodes between the fluid and solid interface
meshes, and regression rate is essentially copied from
fluid nodes to their corresponding solid nodes. The
restriction of matching meshes at burning interfaces
will be eliminated with the new interface code.

4

American Institute of Aeronautics and Astronautics

In the new version, we construct a common
subdivision of two non-matching meshes and a
collection of more accurate and more general data
transfer algorithms is built on top of the common
subdivision. A common subdivision of two meshes is
a finer mesh such that each face or edge of the two
given meshes is partitioned into a set of faces and
edges of the finer mesh. We have developed an
efficient algorithm for computing common
subdivision27. The common subdivision defines, and
allows efficient query of, a unique nearby
corresponding point on one surface for every point on
the other, and enables conservative data transfer
between meshes. In particular, we have developed a
set of least-squares data transfer algorithms which are
not only conservative, but also minimize the overall
error28.

Since the fluid and solid meshes are distributed
across multiple processors, the interface code must
handle distributed meshes. In our current parallel im-
plementation, we first compute the bounding boxes
of the connected components of the partitions of the
solid mesh and of the blocks of the fluid mesh. These
bounding boxes are compared to provide a quick es-
timate of the adjacency between the solid partitions
and the fluid blocks. Then the solid partitions adja-
cent to a fluid block are shipped to the processor that
owns the fluid block, and are connected together to
form a new mesh. The sequential mesh association
algorithm is then applied on all processors in parallel.
As a by-product of mesh association, a more efficient
communication pattern is obtained, which is used to
exchange field variables between processors. The
parallelization of the new Rocface takes an approach
similar to the one described here.

Orchestration: Driver
The driver or main program orchestrates the execu-
tion of the other modules in the GEN1 code. At
startup, it calls intialization routines in the physics
modules, and then prepares Rocface to exchange data
across interfaces.

The bulk of the main program is a loop over system
time steps. This loop implements our predictor-
corrector temporal coupling scheme29. On the first
predictor-corrector iteration, Rocflo estimates the ve-
locity of the solid surface from the previous system
time level and takes a prescribed number of explicit
fluids time steps. It then passes surface forces (and
the new position of any burning surfaces) at the ad-
vanced time level to Rocsolid through Rocface. Us-

ing the surface forces as a boundary condition, Roc-
solid takes one implicit time step to catch up with
Rocflo, and then passes the new surface position and
velocity to Rocflo through Rocface. On subsequent
predictor-corrector iterations, Rocflo uses the surface
velocity received from Rocsolid in the previous itera-
tion and repeats its explicit time steps. Next, Rocflo
passes the values (at the advanced time) of surface
forces (and burning surface positions) to Rocsolid,
which then repeats its implicit time step. At this
point Rocface performs a convergence test on the
surface forces, positions, velocities, and regression
rates. If the relative difference of any of these quanti-
ties compared to the previous iteration exceeds the
specified tolerance, another iteration is performed.

For problems without regressing surfaces, we typi-
cally take 10 fluids time steps to one system time
step, and the predictor-corrector cycle converges after
2 or 3 iterations. For problems with regressing sur-
faces, 3 predictor-corrector iterations are frequently
required. Because the BiCGSTAB solver is signifi-
cantly more CPU intensive than the multigrid solver,
we set the ratio of system to fluids time steps to as
large a value as possible, under the constraints that
the predictor-corrector cycle should converge in 3 it-
erations or less and the BiCGSTAB solver should
converge in 50 or fewer iterations. We find that the
best value of this ratio is problem dependent, and of-
ten changes as the calculation proceeds. We are ex-
perimenting with adaptively adjusting this ratio
within GEN1.

Parallel Output: Rocpanda
The main program calls output routines in the physics
modules when the system time step has advanced be-
yond the “nth” evenly spaced time interval, where
“n” ranges from zero to typically hundreds of output
dump times.

In a parallel computation, the simplest way to dump
output is to have each processor write its data to a
separate file, and use a visualization tool that can
merge the blocks into a single image. If the problem
and the number of processors is very large, a huge
amount of data is written to disk at once, overwhelm-
ing the I/O system and delaying the calculation for
many minutes. Moreover, transferring many Giga-
bytes worth of files to another system for storage or
post processing can be very time consuming. To cir-
cumvent these problems, we use Rocpanda30.

Rocpanda is an extension of the PANDA31 library for
CSAR’s rocket simulation code. It uses additional

5

American Institute of Aeronautics and Astronautics

processors (I/O nodes) to collect output data from the
compute processors and write it to disk while the
compute processors proceed with the calculation.
This helps because it usually takes significantly less
time to send the data over the internal network of a
large parallel machine than it does to write it to hard
disk. The amount of memory on the I/O nodes
should be enough to hold one snapshot if there is to
be no waiting for writes to disk. The I/O nodes can
also combine the data into a more manageable num-
ber of output files. Another useful feature of the
PANDA libray that will soon be added to Rocpanda
is background file transfers, which allows the snap-
shots to be moved to mass storage and/or another sys-
tem for post-processing as soon as the snapshots are
written, rather than after the calculation has com-
pleted. Since the computation may take many days
of wall clock time, all but the final output dump
could be transferred automatically by the time the
calculation is completed.

Visualization: Rocketeer
CSAR has developed a powerful, general purpose
tool for scientific visualization called Rocketeer32.
Rocketeer is written in C++ and based on the Visu-
alization Toolkit33,34, which uses OpenGL to exploit
hardware graphics acceleration. The user interface
employs wxWindows35 for portability across plat-
forms. Rocketeer executables for linux, Sun Solaris
2.7, and Microsoft Windows can be downloaded
from the Rocketeer Web page.

Rocketeer is designed to read field data in HDF for-
mat36 defined on structured or unstructured single
block or multiblock grids. It also can display data de-
fined on sets of points in space that do not constitute
a grid. Rocketeer automatically merges grid blocks
to produce seamless images from multiblock data
files. Unstructured grids handled by Rocketeer may
consist of tetrahedra, prisms, pyramids, hexahedra,
etc. Surface meshes composed of triangles, quadri-
laterals, etc., are also supported.

Rocketeer can display field data using a variety of
techniques, including surface plots in which values of
a scalar variable determine the color, colored isosur-
faces, and/or slices along the x, y, and/or z axes.
Both 2-D surface and 3-D interior grids can be
shown, with several choices available for selecting a
small portion of a 3-D mesh (see Figure 2). Clipping
planes can be used to cut an image along the x, y,
and/or z axis, and the opacity of all objects can be
varied to allow the user to see more deeply into a 3-D
data set. Multiple windows can be open on the
screen at the same time, and the camera position can
be saved and loaded to assist the user in comparing
similar data sets.

Scalar and vector quantities can be depicted using
glyphs (usually spheres for scalars and oriented cones
for vectors). The sizes of the glyphs can be uniform
or they can vary with the value of some variable,
such as the radius of aluminum particles or the mag-
nitude of the velocity vectors (see Figure 3, in which
the color of the cones indicates the speed). For more
details and examples, see the extensive on-line User’s
Guide.

Figure 2. Rocketeer Visualization of Bad Mesh

6

American Institute of Aeronautics and Astronautics

An MPI parallel batch mode version of Rocketeer
called Voyager has recently been developed37. Each
CPU processes in parallel a subset of a series of
snapshots from a simulation. The camera position
and list of graphics operations to be performed are
saved during an interactive session of Rocketeer and
read in by Voyager. Voyager has nearly all of the
features of the interactive version, but saves images
to files rather than displaying them. We have ob-
tained parallel speedups over 72/96 when each of 96
nodes in our linux cluster processes one snapshot on
its local disk. When the snapshots reside on a shared
file system, contention for I/O bandwidth hurts scal-
ability, but if the run is repeated (as might be done
when the user adjusts the camera position, isosurface
levels, etc.), much of the data saved automatically by
the system in disk caches is reused and the runtime is
nearly is fast as it is when the data resides on local
disk (see Figure 4). After Voyager creates the im-
ages, they can be converted, for example, into a GIF
animation file using ImageMagick38.

Simulations

In this section we present several results obtained us-
ing the latest capabilities in the GEN1 v2.0 package,
as well as describe some ongoing simulations.

Scalability of the ALE Algorithm
To measure the parallel scalability of GEN1 v2.0
with regressing boundaries and dynamic burning, we
solve a simplified 3-D rocket problem in which the
geometry has axial symmetry (see Figure 5). At the
head end, the solid has no applied load, while the
fluid sees a flat wall. At the aft end, the solid again
has no applied load, while the fluid has an outflow
boundary condition. The open-ended cylindrical case
is taken to be rigid.

The calculation in Figure 5 was done on 8 processors
and ran to 20 ms with a burn rate enhanced by a fac-
tor of 100 from the real propellant in order to test our
regression capability in a reasonably short run time.
As the pressure increases along the inner wall of the
propellant, it bulges out at the forward and aft ends.
Despite the deformation and high rate of regression,
the solids and fluids meshes remain closely matched
at the interface, as they should. We have also used
Rocsolid to perform several calculations with re-
gressing boundaries and verified that the numerical
results closely match the analytical solution.

Figure 4. Voyager Parallel Performance

Figure 3. Rocketeer Velocity Glyphs

7

American Institute of Aeronautics and Astronautics

To measure scalability, we increase the number of
elements in the problem in proportion to the number
of processors on which the simulation runs by adding
additional cylindrical sections between the two ends.
If scalability were perfect, the wall clock time would
be the same for any number of processors, since each
processor does the same amount of computational
work and communication (expect at the ends, where
no data needs to be communicated). Figure 6 shows
the wall clock run times for one predictor-corrector
cycle using 1, 8, 16, 32, 64, and 128 processors on
ASCI White, a new IBM SP computer at Lawrence
Livermore National Laboratory. Two data points are
shown for ASCI Blue Pacific, and older SP. Because
the ratio of system to fluids time steps is only 10 and
the number of solid elements is relatively large in this
test, the run time is dominated by the BiCGSTAB
solver in Rocsolid (70 percent of the run time). For
the range of problem sizes studied (8700 to over 1 M
elements in the solid), the number of BiCGSTAB it-
erations is nearly constant, and scalability is very
good.

Rocburn consumed 22 percent of the run time be-
cause of the relatively large burning surface area in
this problem. Rocflo used just 8 percent, and
Rocface required a very small amount of time for
mesh association and interpolation.

Tactical Motor
We are currently simulating Tactical Solid Rocket
Motor Number 1324 (see Figure 7) using the GEN1
v2.0 package running on 128 processors on ASCI
White. There is an empty cylindrical chamber at the
head end of this rocket for instrumentation. At the
early physical time of Figure 7, hot gas flows both aft
out the nozzle and forward into the empty chamber
(see also Figure 3 for a visualization of the velocity
field and stress in the propellant). We are using
Rocburn’s dynamic burn rate to compute the pressure
overshoot shortly after ignition. For this problem, we
are using roughly 400,000 fluid cells and 200,000
solid elements. We find that when we take 100 fluids
time steps for each system time step, Rocflo uses 63
percent of the wall clock time for a typical predictor-
corrector iteration, Rocsolid uses 35 percent, and
Rocburn uses only a fraction of a percent. Thus, the
more expensive BiCGSTAB solver does not domi-
nate the run time in this calculation as it did in the
ALE scalability test problem.

Figure 5. ALE Scalability Test Problem

Figure 6. ALE Scalability Performance Data

8

American Institute of Aeronautics and Astronautics

One difficulty that arises in our Motor 13 simulation
is that the pressure inside the rocket soon exceeds the
nominal Young’s modulus of the propellant (36
Mpa). Since we have assumed for simplicity in this
preliminary calculation that the propellant is a linear
elastic material, we encounter far larger deformations
than would be present in the real motor. Since the
real propellant consists of aluminum and ammonium
perchlorate particles in a much softer binder, it
should be much stiffer under compression than it is
under tension. Unfortunately, the Young’s modulus
we adopted was determined by studying propellants
under tension. Although we are adding large defor-
mation and viscoelastic material property capabilities
to Rocsolid, we still require better material models of
the propellant to ensure that the deformation we cal-
culate is close to the deformation in the real rocket.

Our intention is to follow the regression of the pro-
pellant in Motor 13 until our meshes become too dis-
torted to produce an accurate numerical solution.
Reaching the blow-down phase will require the ad-
vanced remeshing capabilities under development for
our GEN2 rocket simulation package. As a test of
the mesh motion capabilities of both Rocflo and Roc-
solid in GEN1 v2.0, we are running a somewhat arti-
ficial model problem with the same geometry as Mo-
tor 13, but with a power law burn rate that is
enhanced from its nominal value by a factor of 1000.
To keep the mass flux, and therefore the pressure his-
tory, roughly the same as the real Motor 13, we also

reduced the propellant density by a corresponding
factor.

Conclusions
CSAR has completed development of GEN1 version
2.0, a software package for detailed, 3-D, numerical
simulation of solid propellant rockets. It solves the
fully coupled fluid-structure interaction problem at
solid surfaces, including a careful mass and momen-
tum conserving treatment of regressing combustion
interfaces. The application is scalable to large paral-
lel supercomputers.

 GEN1 is being applied to model a variety of rocket
problems, including tactical motors in which the
pressure overshoot that occurs shortly after ignition
may be captured by the dynamic burn rate model in-
cluded in the code.

References

1 Dick, W. A., Heath, M. T., and Fiedler, R. A., 2001,
“Integrated 3-D Simulations of Solid Propellant
Rockets,” AIAA Paper 2001-3949.
2 Heath, M. T., Fiedler, R. A., and Dick, W. A., 2000,
“Simulating Solid Propellant Rockets at CSAR,”
AIAA Paper 2000-3455.
3 Parsons, I. D., Alavilli, P., Namazifard, A.,
Acharya, A., Jiao, X., and Fiedler, R., 2000, “Cou-
pled Simulations of Solid Rocket Motors”, AIAA
Paper 2000-3456.
4 Thomas, P. D., and Lombard, C. K., 1979, “Geo-
metric Conservation Law and its Application to Flow
Computations on Moving Grids”. AIAA J., 17, 1030-
1037.
5 Jameson, A., Schmidt, W., and Turkel, E., 1981,
“Numerical Solutions of the Euler Equations by Fi-
nite-Volume Methods Using Runge-Kutta Time-
Stepping Schemes”,. AIAA Paper 81-1259.
6 Roe, P. L., 1981,. “Approximate Riemann Solvers,
Parameter Vectors, and Difference Schemes”, Journal
of Computational Physics, 43, 357-372.
7 Yee, H. C., 1987, “Construction of Explicit and Im-
plicit Symmetric TVD Schemes and Their Applica-
tions” Journal of Computational Physics, 68, 151-
179.
8 Pointwise, Inc., Fort Worth, TX,
http://www.pointwise.com.
9 Alavilli, P., Tafti, D., and Najjar, F. M., 2000, “The
Development of an Advanced Solid-Rocket Flow
Simulation Program ROCFLO”, AIAA Paper 2000-
0824.

Figure 7. Temperature in Tactical Motor # 13

9

American Institute of Aeronautics and Astronautics

10 Ferry J., and Balachandar, S., 2001, “Multiphase
Flow Research and Implementation at CSAR”, AIAA
Paper 2001-3951.
11 Bathe, K. J., 1996. Finite element procedures.
Prentice-Hall.
12 Parsons, I. D., 1997, “Parallel Adaptive Multigrid
Methods for Elasticity, Plasticity and Eigenvalue
Problems”, in Parallel Solution Methods in Computa-
tional Mechanics, M. Papadrakakis, editor, Wiley,
143-180.
13 Namazifard, A., Parsons, I. D., Acharya, A., Taci-
roglu, E. , and Hales, J., 2000, “Parallel Structural
Analysis of Solid Rocket Motors”, AIAA Paper
2000-3456.
14 XYZ Scientific Applications, Inc., Livermore, CA,
http://www.truegrid.com.
15 Metis; http://www-users.cs.umn.edu/~karypis/
metis/metis.html.
16 Novozhilov, B. V., 1973, “Nonstationary Combus-
tion of Solid Propellants”, Nauka, Moscow, (English
translation available from NTIS, AD-767 945.
17 Novozhilov, B. V., 1992, "Theory of Nonsteady
Burning and Combustion Stability of Solid Propel-
lants by the Zeldovich-Novozhilov Method", Non-
steady Burning and Combustion Stability of Solid
Propellants, edited by L. De Luca, E. W. Price, and
M. Summerfield, Vol. 143, Progress in Astronautics
and Aeronautics, AIAA, New York, Chapter 15, pp.
601-641.
18 Son, S. F., and Brewster, M. Q., 1993, "Linear
Burning Rate Dynamics of Solids Subjected to Pres-
sure or External Radiant Flux Oscillations," Journal
of Propulsion and Power, Vol. 9, No. 2, pp. 222-232.
19 Brewster, M. Q., M. J. Ward, and S. F. Son, 2000,
"Simplified Combustion Modeling of Double Base
Propellant: Gas Phase Chain Reaction Vs. Thermal
Decomposition," Combustion Science and Technol-
ogy, 154, 1-30.
20 Tang, K. C. and M. Q. Brewster, 2001, "Dynamic
Combustion of AP Composite Propellants: Ignition
Pressure Spike," AIAA 2001-4502.
21 Tang, K. C. and M. Q. Brewster, 2001, "Nonlinear
Dynamic Combustion in Solid Rockets: L*-Effects,"
AIAA 2000-3572 and Journal of Propulsion and
Power, Vol. 14, No. 4, 2001.
22 Gossant, B., 1993, "Solid Propellant Combustion
and Internal Ballistics of Motors," Solid Rocket Pro-
pulsion Technology, edited by A. Davenas, Perga-
mon Press, New York, Chapter 4.
23 Blomshield, F. S., Crump, J. E., Mathes, H. B.,
Stalnaker, R. A., and Beckstead, M. W., 1997, "Sta-
bility Testing of Full-Scale Tactical Motors," Journal

of Propulsion and Power, Vol. 13, No. 3, May-June,
pp. 349-355.
24 Blomshield, F. S., Crump, J. E., Mathes, H. B., and
Beckstead, M. W., 1996, "Stability Testing and Puls-
ing of Full-Scale Tactical Motors", NAWCWPNS
Technical Publication 8060.
25 X. Jiao, M. T. Heath, and H. Edelsbrunner, 1999,
“Mesh Association: Formulation and Algorithms,”
Proceedings of the 8th International Meshing Round-
table, Tech. Report 99-2288, Sandia National Labs,
Albuquerque, NM, pp. 75-82.
26 Farhat, C., Lesoinne, M. and LeTallec, P., 1998.
“Load and motion transfer algorithms for
fluid/structure interaction problems with non-
mathcing discrete interfaces”. Computer Methods in
Applied Mechanics and Engineering, 157, 95-114.
27 Jiao, X. and Heath, M. T., 2001, “Efficient and ro-
bust algorithm for computing common subdivision
for nonmatching surface meshes”, Submitted.
28 Jiao, X., 2001, “Efficient algorithms for moving in-
terfaces in multicomponent simulations”, PhD thesis,
University of Illinois at Urbana-Champaign. In
preparation.
29 Parsons, I. D. Alavilli, P., Namazifard, A., Jiao, X.,
Acharya, A., 2000, “Fluid-structure interaction
through a non-material interface: simulations of solid
rocket motors”. CDROM Proceedings of the 14th
ASCE Engineering Mechanics Conference
(EM2000), Austin Texas, May 2000.
30 Rocpanda: http://cdr.cs.uiuc.edu/panda/rocpanda
31 Lee, J., Winslett, M., Ma, X., &. Yu, S., 2001,
“Tuning High-Performance Scientific Codes: The
Use of Performance Models to Control Resource Us-
age During Data Migration and I/O”, To appear in
Proceedings of the 15th ACM International Confer-
ence on Supercomputing, June 2001.
32 Fiedler, R. A. and Norris, J. C., 2001, “Rocketeer
User’s Guide”:
http://www.csar.uiuc.edu/F_software/rocketeer
33 Kitware, Inc.: http://www.kitware.com
34 Schroeder, W. J, Martin, K. M., Avila, L. S. &
Law, C. C., 2000, The VTK User’s Guide, Kitware,
Inc.
35 wxWindows: http://www.wxwindows.org/
36 NCSA HDF version 4:
http://hdf.ncsa.uiuc.edu/hdf4.html
37 R. Fiedler and J. Norris, 2001, “Massively Parallel
Visualization on Linux Clusters with Rocketeer Voy-
ager”, Presented at Linux Clusters: the HPC Revolu-
tion, Urbana, IL, June 2001.
http://www.csar.uiuc.edu/F_software/rocketeer/
voyager
38 ImageMagick: http://www.imagemagick.org

	COUPLED FLUID-STRUCTURE 3-D SOLID ROCKET MOTOR SIMULATIONS
	
	Simulations

