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Abstract. This paper presents a novel variational method for image seg- 
mentation that unifies boundary and region-based information sources 
under the Geodesic Active Region framework. A statistical analysis based 
on the Minimum Description Length criterion and the Maximum Likeli- 
hood Principle for the observed density function (image histogram) using 
a mixture of Gaussian elements, indicates the number of the different re- 
gions and their intensity properties. Then, the boundary information 
is determined using a probabilistic edge detector, while the region in- 
formation is estimated using the Gaussian components of the mixture 
model. The defined objective function is minimized using a gradient- 
descent method where a level set approach is used to implement the 
resulting PDE system. According to the motion equations, the set of 
initial curves is propagated toward the segmentation result under the 
influence of boundary and region-based segmentation forces, and being 
constrained by a regularity force. The changes of topology are natu- 
rally handled thanks to the level set implementation, while a coupled 
multi-phase propagation is adopted that increases the robustness and 
the convergence rate by imposing the idea of mutually exclusive prop- 
agating curves. Finally, to reduce the required computational cost and 
the risk of convergence to local minima, a multi-scale approach is also 
considered. The performance of our method is demonstrated on a variety 
of real images. 

1 Introduction 

The segmentation of a given image is one of the most important techniques for 
image analysis, understanding and interpretation. 

Feature-based image segment ation is performed using two basic image pro- 
cessing techniques: the boundary-based segmentation (which is often re- 
ferred as edge-based) relies on the generation of a strength image and the ex- 

D. Vernon (Ed.): ECCV 2000, LNCS 1843, pp. 224−240, 2000.
 Springer-Verlag Berlin Heidelberg 2000



/ Input Image 

Image 

Fig. 1. Multi-phase Coupled Geodesic Active Regions for Image Segmentation: the 
flow chart. 

traction of prominent edges, while the region-based segmentation relies on 
the homogeneity of spatially localized features and properties. 

- Early approaches for boundary-based image segmentation have used lo- 
cal filtering techniques such as edge detection operators. However, such ap- 
proaches have difficulty in establishing the connectivity of edge segments. 
This problem has been confronted by employing Snake/Balloons models [6, 
121 which also require a good initialization step. Recently, the geodesic active 
contour model has been introduced [3,13] which combined with the level set 
theory [14] deals with the above limitation resulting in a very elegant and 
powerful segmentation tool. 

- The region-based methods are more suitable approaches for image segmen- 
tation and can be roughly classified into two categories: The region-growing 
techniques [2] and the Markov Random Fields based approaches [9]. The 
region growing methods are based on split-and-merge procedures using st a- 
tistical homogeneity tests [7,26]. Another powerful region-based tool, which 
has been widely investigated for image segmentation, is the Markov Ran- 
dom Fields (MRF) [lo]. In that case the segmentation problem is viewed as 
a statistical estimation problem where each pixel is statistically dependent 
only on its neighbors so that the complexity of the model is restricted. 

- Finally, there is a significant effort to integrate boundary-based with 
region-based segmentation approaches [4,21,26]. The difficulty lies on 
the fact that even though the two modules yield complementary informa- 
tion, they involve conflicting and incommensurate objectives. The region- 
based methods attempt to capitalize on homogeneity properties, whereas 
boundary-based ones use the non-homogeneity of the same data as a guide. 
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In this paper, a unified approach for image segmentation is presented that is 
based on the propagation of regular curves [4,5,23,24,26] and is exploited from 
the Geodesic Active Region model [19,20]. This approach is as an extension 
of our previous work on supervised texture segmentation [18,20]. 

This approach is depicted in [fig. (l)] and is composed of two stages. The 
first stage refers to a modeling phase where the observed histogram is approx- 
imated using a mixture of Gaussian components. This analysis is based on the 
Minimum Description Length criterion and the Maximum Likelihood Principle, 
denotes the regions number as well as their statistics, since a Gaussian com- 
ponent is associated to each region. Then, the segmentation is performed by 
employing the Geodesic Active Region model. The different region boundaries 
are determined using a probabilistic module that seeks for local discontinuities on 
the statistical space that is associated with the image features. This information 
is combined with the region one, resulting in a geodesic active region-based seg- 
mentation framework. The defined objective function is minimized with respect 
to the different region boundaries (multiple curves) using a gradient descent 
method, where the obtained equations are implemented using the level set the- 
ory that enables the ability of dealing automatically with topological changes. 
Moreover, as in [25,5,23], a coupling force is introduced to the level set func- 
tions that imposes the constraint of a non-overlapping set of curves. Finally, the 
objective function is used within the context of a coarse to fine multi-scale ap- 
proach that increases the convergence rate and decreases the risk of converging 
to a local minimum. 

The reminder of this paper is organized as follows. In section 2 the Geodesic 
Active Region model which is the basis of the proposed approach is shortly 
presented. The problem of determining the number of regions and their intensity 
properties is considered in section 3. The proposed segmentation framework is 
introduced in section 4, while its implementation issues are addressed in section 
5. Finally, conclusions and discussion appear in section 6. 

2 Geodesic Active Regions 

The Geodesic Active Region [15] model was originally proposed in [16] to deal 
with the problem of supervised texture segmentation and was successfully ex- 
ploited in [19] to deal with the the motion estimation and tracking problem. 

This model will be shortly presented for a simple image segmentation case 
with two hypotheses ( h ~ ,  h g )  (bi-modal). In order to facilitate the notation, let 
us make some definitions: 

- Let I be the input frame. 
- Let P ( R )  = {RA,R~} be a partition of the frame domain into two non- 

- And, let {an} be the boundaries between RA and Rg. 
overlapping regions { R A  n Rg = O}.  

The Geodesic Active Region model assumes that for a given application some 
information regarding the real region boundaries and some knowledge about the 
desired intensity properties of the diflerent regions are available. For example, 
let b~(I(s))] be the boundary density function that measures the probability of 
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a given pixel being at the boundaries between the two regions. Additionally, let 
[ 1 3 ~  ( I (  s)) , pg ( I (  s))] be the conditional intensity density functions with respect 
to the hypothesis h~ and hg .  

Then, the optimization procedure refers to a frame partition problem [de- 
termined by a curve that is attracted by the region boundaries] based on the 
observed data,  the associated hypotheses and their expected properties. This par- 
tition according to the Geodesic Active Region model is given by: 

boundary a t t rac t ion  

B o u n d a r y  T e r m  

R A  f i t t i n g  m e a s u r e m e n t  RB f i t t i n g  m e a s u r e m e n t  

T 

Region  T e r m  

where a R ( c )  : [0,1] + R2 is a parameterization of the region boundaries in a 
planar form, a E [0,1] is a positive constant balancing the contribution of the two 
terms, and g ( )  is a positive monotonically decreasing function (e.g. Gaussian). 

The interpretation of the above objective function is clear, since 

a curve is demanded [an] that: 

aries between the regions RA and Rg [eq. (2):  boundary attraction] : Bound- 
ary Term, 

maximizing the a posteriori segment ation probability [20] : Region Term. 

- is regular [regularity], of minimal length and is attracted by the real bound- 

- and defines a partition of the image that optimizes the segmentation map by 

The minimization of this function is performed using a gradient descent 
method. If u = ( x , y )  is a point of the initial curve, then the curve should 
be deformed at this point using the following equation: 

r 

L region-based f o r c e  

The obtained PDE motion equation has two kind of forces acting on the curve, 
both in the direction of the normal inward normal, 
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- Region force 
This force aims at shrinking or expanding the curve to the direction that 
maximizes the a posteriori segment ation probability according to the obser- 
vation set and the expected intensity properties of the different regions. 

The force aims at shrinking the curve towards the boundaries between the 
different regions being constrained by the curvature effect. 

- Boundary force 

3 Regions and their Statistics 
In order to simplify the notation and to better and easily introduce the proposed 
model, let us make some definitions: 

- Let H ( I )  be the observed density function (histogram) of the input image, 
- Let P ( R )  = {R; : i E [ l ,N]}  be a partition of the image into N non- 

overlapping regions, and let aP(R)  = (372; : i E [l,  N]} be the region 
boundaries, 

- And, let h; be the segmentation hypothesis that is associated with the region 
R; . 

The key hypothesis that is made to perform segmentation relies on the fact 
that the image is composed of homogeneous regions. In other words, we assume 
that the the intensity properties of a given region (local histogram) can be de- 
termined using a Gaussian distribution and hence the global intensity properties 
of the image (image histogram) refer to a mixture of Gaussian elements. 

Let p ( . )  be the probability density function with respect to the intensity 
space of the image I (normalized image histogram H ( I ) ) .  If we assume that this 
probability density function is homogeneous, then an intensity value z is derived 
by selecting a component k with a priori probability Pk and then selecting this 
value according to the distribution of this element p k ( ) .  This hypothesis leads 
to a mixture model of Gaussian elements 

This mixture model consists of a vector 0 with 3N - 1 unknown parameters 
0 = {(Pk,,uk, ak) : k E [l,  ..., N]}: (i) The number of components [N], (ii) the 
a priori probability of each component [Pk], (iii) and, the mean [ p k ]  and the 
standard deviation [ak] of each component. 

Hence, there are two key problems to be dealt with: the determination of 
the components number and the estimation of the unknown parameters 0 of 
these components. These problems are solved simultaneously using the Minimum 
Description Length (MDL) criterion [22] and the Maximum Likelihood Principle 
(ML) [8]. Thus, given the data sample and all possible approximations using 
Gaussian Mixture models, the MDL principle is to select the approximation 
which minimizes the length of the mixture model as well as the approximation 
error using this model. In other words with more complex mixture models, the 
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Fig. 2. (a) Input Image, (b) Image Histogram and its approximation: Components 
Number: 4 ,  Mean Approximation Error: 1.04641e-05, Iterations Number: 117, (c) Re- 
gion Intensity Properties [ Component 1: black pants, Component 2: background, Com- 
ponent 3: (hair, t-shirt), Component 4: skin]. 

approximation is better and the error is minimized but at the same time the 
cost induced by the model is significant since more parameters are required for 
its description. Thus, a compromise between the components number and the 
approximation error has to be obtained. 

This is done using the MDL principle, where initially a single node Gaussian 
mixture is assumed. Then, the number of mixture modes is increased and an 
estimation of the mixture parameters is performed. These parameters are used 
to  determine the MDL measurement for the current approximation. If the ob- 
tained measurement is smaller than then one given by the approximation with 
a smaller number components, then the number of components is increased. Fi- 
nally, the approximation the gives the minimum value for the MDL measurement 
is selected. The performance of this criterion is demonstrated in [fig. (2,  6)]. 

4 Image Segmentation 
Given the region number as well their expected intensity properties, we can pro- 
ceed to  the segmentation phase. Two different modules are involved, a boundary 
and a region-based. 

4.1 Determining the Boundary Information 

The first objective is to extract some information regarding the real boundaries of 
each region. This can be done by employing an edge detector, thus by seeking for 
high gradient values on the input image. Given the hypothesis that this image 
is composed of homogeneous regions, this method will provide reliable global 
boundary information. However, this information is blind, since its nature cannot 
be determined. In other words, a pixel with important gradient value (boundary 
pixel) cannot be attributed to  the boundaries of a specific region [an;]. 

Here, an alternative method is proposed to determine the boundary-based 
information [17]. Let s be a pixel of the image, N ( s )  a partition of its local neigh- 
borhood, and the N E ( S )  and N L ( s )  be the regions associated with this partition. 
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Moreover, let p~~ ( I ( N ( s ) ) )  be the boundary probability density function with 
respect to the k hypothesis, b ( I ( N ( s ) ) l B k ) ]  be the conditional boundary prob- 
ability and b ( I (  N (  s ) )  I B k ) ]  be the conditional non-boundary probability. Then, 
using the Bayes rule and making some assumptions regarding the global a priori 
boundary probability [17] it can be easily shown that the probability for a pixel 
s being at the boundaries of k region, given a neighborhood partition N ( s )  is 
given by, 

The conditional boundary/non-boundary probabilities can be estimated di- 
rectly from known quantities (see [17] for details). Thus, 

k Boundary Condition: 
If s is a k boundary pixel, then there is a partition [ N L ( s ) ,  NE(s ) ]  where the 
most probable assignment for the “left” local region is k and for the “right” 
j [ j  # k ] ,  or vice-versa, 

On the other hand, if s is not a k boundary pixel, then for every possible 
neighborhood partition the most probable assignment for the “left” as well 
as for the “right” local region is k, or i and j where { i ,  j }  # k. 

k Non-Boundary Condition: 

As a consequence, the conditional k boundary/non-boundary probability 

NL(S)ERinNR(S)ERj 

where { i ,  j }  can be identical and 

- p k ( I ( N ~ ( s ) ) )  is the probability of “right” local region [NE(s ) ]  being at the 
k region, given the observed intensity values within this region [ 1 ( N ~ ( s ) ) ] ,  

- p j ( I ( N ~ ( s ) ) )  is the probability of “left” local region [NL(s ) ]  being at the j 
region, given the observed intensity values within this region [ I (  NL ( s ) ) ] .  

Given the definition of the probability for a pixel s being a k boundary point, 
the next problem is to define the neighborhood partition. We consider four dif- 
ferent partitions of the neighborhood and the local neighborhood regions are 
considered to be 3 x 3 directional windows. We estimate the boundary probabil- 
ity for all partitions by using the mean values over these windows, and set the 
boundary information [pB,k(s)] for the given pixel s with respect to the k us- 
ing the partition with the maximum boundary probability. The same procedure 
is followed for all regions, given their intensity properties (Gaussian compo- 
nent) resulting on N boundary-based information images [ p ~ , k ( s )  : k E [ l ,  N ] ] .  
A demonstration of the extracted boundary information using this framework 
can be found in [fig. (3 ) ] .  
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4.2 Setting the Energy 

The proposed method has made implicitly the assumption that the image is 
composed of N regions and a given pixel s lies always between two regions 
[R;, R k ; ] .  However, given the initial curves [regions] positions, some image pixels 
might not belong to any region. Moreover, other image pixels might be attributed 
to several regions. 

To deal with this problem, a temporal spending region Ro has to be con- 
sidered. This region (i)  does not correspond to  a real hypothesis (it is 
composed from pixel with different hypotheses origins), (ii) does not have 
a predefined intensity character (it depends from the latest segmentation 
map) and (iii) has to  be empty when convergence is reached. The next 
problem is to define the intensity properties of this region, thus the probability 
density function P O ( ) .  This can be done by seeking the non-attributed image 
pixels and estimating directly from the observed intensity values the probability 
density function P O  (). 

Then, the segmentation task can be considered within the geodesic active 
region framework where the region information is expressed directly from the 
Gaussian elements of the mixture model b;()] estimated in the observed im- 
age bi ( I (  s))] . Thus, the proposed framework consists of minimizing following 
objective function, 

i 
8 - 1  

h ou n. da  r y a t t  r a c t  i on. r egu I a r i t y c o n  s t r a i n t 

where a R ; ( c ; )  is a parameterization of the region R; boundaries into a planar 
form, and g(x, a) is a Gaussian function. 

Within this framework the set of the unknown variables consists of the differ- 
ent region boundaries (curves) [aR;]. The interpretation of the defined objective 
function is the same with the one presented in section 2 for the bi-modal Geodesic 
Active Region framework. 

4.3 Minimizing the Energy 

The defined objective function is minimized using a gradient descent method. 
Thus, the system of the Euler-Lagrange motion equations with respect to the 
different curves (one for each region) is given by: 

T 

L Boundary-based f o r c e  
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Fig. 3. Boundary information with respect to the different regions for the woman image 
[fig. (2.a)]. (a) Region  1 (black p a n t s ) ,  (b) Region  2 (background) ,  (c) R e g i o n  3 (hair ,  
t - sh ir t ) ,  (d) Region  4 (sk in) .  

where IC; (resp. N;) is the Euclidean curvature (resp. normal) with respect to  
the curve 372;. 

Moreover, the assumption that the pixel i?R; lies between the regions 
R; and R k i  was done implicitly to provide the above motion equations and 
the probability p k , ( )  is given by, 

Thus, if the given pixel is not attributed to any region, then the 
spending region distribution P O ( . )  is used to determine the k; hypoth- 
esis. On  the other hand, if this pixel is already attributed to one, or 
more than one regions, then the most probable hypothesis is used. 

These motion equations have the same interpretation with the one presented 
in section 2. Moreover, they refer to  a multi-phase curve propagation since 
several curves are propagated simultaneously. In other words, each region 
is associated with a motion equation and the propagation of a single or multi- 
component initial curve. However, within this system of motion equations there 
is no interaction between the propagations of the different curves. 

4.4 Level Set Implementation 
The obtained motion equations are implemented using the pioneering work of 
Osher and Sethian [14], the level set theory where the central idea is to  represent 
the moving front i?R(c,  t )  as the zero-level set {q5(i?R(c,t), t )  = 0} of a function 
4 .  This representation of i?R(c,  t )  is implicit, parameter-free and intrinsic. Ad- 
ditionally, it is topology-free since different topologies of the zero level-set do 
not imply different topologies of 4.  It is easy to show, that if the moving front 
evolves according to [$ i?R(c , t )  = F ( i ? R ( c , t ) )  N ]  for a given function F ,  then 
the embedding function 4 deforms according to  [ $ $ ( p ,  t )  = F ( p )  IV+(p,  t )  I ]  For 
this level-set representation, it is proved that the solution is independent of the 
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embedding function 4 ,  and in most of the cases is initialized as a signed distance 
function. 

Thus, the system of motion equations that drives the multi-phase curve prop- 
agation for segmentation is transformed into a system of multiple surfaces evo- 
lution given by, 

4.5 Coupling the Level Sets 

The use of the level set methods provides a very elegant tool to propagate curves 
where their position is recovered by seeking for the zero level set crossing points. 
Moreover, the state of given pixel with respect to a region hypothesis can be 
easily determined since if it belongs to the region, then the corresponding level 
set value is negative. On the other hand if it does not belong to  i t ,  then the 
corresponding value is positive. Additionally, since we consider signed distance 
functions for the level set implementation, a step further can be done by esti- 
mating the distance of the given pixel from each curve. This information is very 
valuable during the multi-phase curve propagation cases where the overlapping 
between the different curves is prohibited. 

However, the overlapping between the different curves is almost an inevitable 
situation at least during the initialization step. Moreover, the case where an 
image pixel has not been attributed to any hypothesis may occurs. Let us now 
assume that a pixel is attributed initially to two different regions (there are two 
level set functions with negative values at i t) .  Then, as in [25,5,23], a constraint 
that discourages a situation of this nature can be easily introduced, by adding 
an artificial force (always in the normal direction) to the corresponding 
level set motion equations that penalizes pixels with multiple labels (they are 
attributed to multiple regions). Moreover, a similar force can be introduced to  
discourage situations where pixels are not attributed to  any regions. This can 
be done by modifying the level set motion equations as, 

v i E [l ,  N ] ,  

T 

B o u n d a r y  f o r c e  
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where the basis function H,(x )  is shown in [fig. 

In any case, the selection of this function is still 
being we are investigating other forms for it. 

(4)] and is given by: 

, if 1x1 5 a 

an open issue and for the time 

To interpret this force via the new function, a level set function [$;()I and a 
pixel location Is1 are considered. 

1. 

.. 
11. 

5 

If s is already attributed to  another region, then there is an hypothesis j 
for which $ j ( s )  < 0 which will contribute with a positive value (shrinking 
effect) to  the coupling force that is proportional to the distance of this pixel 
from the boundaries of Rj, 
A similar interpretation can be done if this pixel is not attributed to any 
region (expanding effect). However, for this case the coupling force has to  
be normalized because it is not appropriate to penalize with the same way 
the situation of overlapping and the case in which the given pixel is not 
attributed to  one of the regions. At the same time this force is plausible if 

and only if this pixel is not attributed to  any region [n$&+}$k(s) > 01. 

Implementation Issues 

However, analyzing the obtained motion equations, some hidden problems might 
be observed due to the fact that the region forces are estimated using a single 
intensity-based probability value. However, for real image segment ation cases 
there is always an overlap between the Gaussian components that characterize 
the different regions. Furthermore, due to  presence of noise, isolated intensity 
values incoherent with the region properties can be found within it. As a con- 
sequence, it is quite difficult to categorize a pixel, based on its very local data 
(single intensity value). 

To cope with these problems, a circular window approach can be used, as 
proposed in [26]. Hence, a centralized window is defined locally and the region- 
based force is estimated as the mean value of the region-based forces of the 
window pixels [fig. (5, 7,8)]. However, here opposite to [26] where all the window 
pixels were equally considered, the distance between the window pixels and the 
window center is used, and these pixels contribute to the region with weights 
inversely proportional to their distances. 

A more elegant solution can be obtained by considering a multi-scale ap- 
proach. It is well known that the use of multi-scale techniques reduces signifi- 
cantly the required computational cost of the minimization process and performs 
a smooth operation to the objective function that reduces the risk of converging 
to  local minima. The main idea consists in defining a consistent coarse-to-fine 
multi-grid contour propagation by using contours which are constrained to  be 
piecewise constant over smaller and smaller pixel subsets [ll]. The objective 

235Coupled Geodesic Active Regions for Image Segmentation: A Level Set Approach



Fig. 5 .  Segmentation for the woman image [fig. (2.a)]. Multi-phase Curve Propagation. 
A random initialization step is used with a large number of spoiled regions. The initial 
regions are the same for all hypothesis. (1) Region 1 (black pants),  (2)  Region 2 (skin),  
( 3 )  Region 3 (background), (d) Region 4 (hair, t-shirt). 

function which is considered at each level is then automatically derived from the 
original finest scale energy function. Additionally, the finest data space is used at 
each level, and there is no necessity for constructing a multi-resolution pyramid 
of the data. More details about the multi-scale implementation of the proposed 
segmentation framework can be found at [17,15]. 

As for the selection of the model parameters, we have observed that in most 
of the cases the region force is more reliable since it is estimated over blocks. 
On the other hand, the boundary force ensures the regularity of the propagating 
curves. Finally, the coupling force is considered less, with a progressive way since 
it has been introduced artificially and has a complementary role. Taking into ac- 
count these remarks the following settings are used [p M 0.20, y M 0.35, S M 0.451. 
Finally, as it concerns the a parameter of the coupling function it is determined 
using the band size of the Narrow Band algorithm [l] which is used to implement 
the evolution of the level set functions. 

To summarize, the proposed approach, 
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Mixture Components 

Fig. 6. (a) Input Image, (b) Image Histogram and its approximation: Components 
Number: 5, Mean Approximation Error: 2.28393le-06, Iterations Number: 421, (c) 
Region Intensity Properties. 

- Initially, determines the number of regions and their intensity properties, 
- Then, estimates the boundary-probabilities with respect to the different hy- 

potheses, 
- Finally, performs segmentation by the propagation of a “mutually exclu- 

sive” set of regular curves under the influence of boundary and region-based 
segment ation forces. 

6 Discussion, Summary 

In this paper’, a new multi-phase level set approach for un-supervised image 
segmentation has been proposed. Very promising experimental results were ob- 
tained using real images [fig. (5,7,8)] of different nature (outdoor, medical, etc.). 

As far the computational cost of the proposed method is concerned (an 
ULTRA-10 Sun Station with 256 MB Ram and a processor of 299 MHZ was 
used) we can make the following remarks; the modeling phase is very fast al- 
most real time. On the other hand, the segmentation phase is very expensive. 
The extraction of the boundary information takes approximately 3 to 5 seconds 
for a 256 x 256 image with four different regions, while the propagation phase 
is more expensive due to the fact that there are multiple level set evolutions 
in parallel. Thus, for a 256 x 256 image (Coronal image [fig. (8)]) with a ran- 
dom initialization step, the propagation phase takes approximately 20 seconds. 
However, this cost is strongly related with the regions number, the initial curve 
positions and the parameters of the level set evolution. This cost is significantly 
decreased by the use of the multi-scale approach (three to five times). 

Summarizing, in this paper a new variational framework has been proposed 
to  deal with the problem of image segmentation. The main contributions of the 
proposed image segmentation model are the following: 

- An adaptive method that determines automatically the regions number and 
their intensity properties, 

A detailed version of this article can be found at [17], while more experimental results 
(in MPEG format) are available at: 

h ttp://w w w- s op . in ria. f r/ro bo tvis/pe rs on nel/np ara y io/de m 0s 
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Fig. 7. The segmentation of the house image into five regions. Curve propagation: left 
to right. (a) House walls, (2)  Sky, (b) Ground, (4) Windows, (5) Small trees, flowers, 
shadows. 

- A variational image segmentation framework that integrates boundary and 
region-based segmentation modules and connects the optimization procedure 
with the the curve propagation theory, 

- The implementation of this framework within level set techniques resulting 
on a segmentation paradigm that can deal automatically with changes of 
topology and is free from the initial conditions, 

- The interaction between the different curves [regions] propagation using an 
artificial coupling force that imposes the concept of mutually exclusive prop- 
agating curves, increases the convergence rate, and eliminates the risk of 
convergence to  a non-proper solution, 

- And, the consideration of the proposed model in a multi-scale framework, 
which deals with the presence of noise, increases the convergence rate, and 
decreases the risk of convergence to a local minimum. 

As far the future directions of this work, the incorporation to  the model of a 
term that accounts for some prior knowledge with respect to expected segmen- 
tation map is a challenge (constrained geodesic active regions). 
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Fig. 8. Segmentation in five regions of a Coronal Medical image. 
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