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Coupled ice-till dynamics and the seeding of drumlins
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ABSTRACT. The geomorphological effects of ice sliding over till, internal deform-
ation of till and till sliding over bedrock are considered. Two questions are examined: (1)
is the till-sheet flow unstable, 1.e. is a layer of uniform thickness maintained or not, and (2)
does the slip of till over bedrock cause amplification of relief of the bedrock? Such instabil-
ities seem to be necessary to explain such features as drumlins and whaleback forms.

It is found that the answer to (1) and (2) depends on the position of the system in a
parameter space, defined by the till rheology, and applied shear stress, the effective pres-
sure at the ice—till interface, the thickness of ice and till and the wavelength of the instabil-
ity. Two configurations are considered: one where the wavelength of the perturbation is
much less than the the ice-thickness, which is related to the classical Nye—Kamb solution
for flow over bumps; and one where the wavelength is much greater than the ice thickness,
where the mechanics are described by the shallow-ice approximation. In both cases, sub-
stantial areas of parameter space, where till-sheet and bedrock modes are unstable, are
found. The conceptually related Smalley—Unwin bifurcation is re-examined.

The physical mechanisms by which ice and till flows couple are examined. At very
short wavelengths (~10m), the ice is so rigid that it forces till waves to move at the ice
velocity; while at long wavelengths (~1000 m), the flows become essentially uncoupled
and till waves move at the kinematic velocity. At intermediate wavelengths (~100 m), high

growth rates occur ; this is postulated to be the scale of drumlin seeding.

1. INTRODUCTION

The subglacial deforming-till/sliding-till model has been
used to explain many sedimentological features (Boulton,
1996), but has not yet been extensively used in physically
based models to determine whether it can predict typical
subglacial landforms. The idea that drumlin seeding and
shaping 1s a consequence of the viscous-like flow of subglacial
till dates back at least to the mid-1980s (Boulton, 1987; Menzies,
1989; Hart, 1997). Recently, this idea has been formulated in
some physically based models and two significant theoretical
aspects have emerged. Firstly, the subglacial flow of till is
prone to so-called “shock” formation, which means that jumps
in the till thickness emerge spontaneously if relief is already
present. Hindmarsh (1996, 1998a) argues that these “shocks”
manifest themselves as the blunt faces of drumlins. Secondly,
the coupled flow of ice and till is conditionally unstable
(Hindmarsh, 1998b, ¢; Fowler, in press). This means that
under certain conditions small undulations in till thickness
grow, causing relief to appear spontaneously. This is known
to occur at short wavelength (till length less than ice thick-
ness) and at long wavelength (till length much greater than
the ice thickness). Here, wavelength refers to the horizontal
scale of a disturbance in the till thickness or, later on, the bed-
rock profile. This conditional stability shows a complex de-
pendence on parameters describing the subglacial physical
environment and geometry, and the till rheology. The Aydrody-
namic hypothesis subscribed to in this paper is that drumlins are
seeded through this instability mechanism and shaped into
drumlinoid forms through the shock-formation mechanism.
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This idea needs to be validated by non-linear computa-
tion of coupled ice and till flow, but many issues are raised
by the studies already discussed, essentially relating to the
robustness of the hydrodynamic hypothesis. This paper
secks to explore the robustness and explicative power of the
hydrodynamic hypothesis by using and extending the math-
ematical analyses of Hindmarsh (1998b, ¢). There are four
themes: (1) We consider some of the large-scale observational
consequences of predictions that coupled ice—till flow is un-
stable (Hindmarsh, 1998b, ¢) and can generate relief. Such in-
stabilities tend to create relief at a particular wavelength and
presumably produce fields of similar drumlins, a feature that
is commonly observed. Variations (Héttestrand and others,
1999) comprise two populations superimposed upon one an-
other (these authors suggest that the particular drumlins are
“erosional”, but do not present evidence which excludes ero-
sion by deformation). We discuss whether the hydrodynamic
hypothesis can explain drumlin-field phenomena, paying
particular attention to rates of drumlin growth; (2) We
examine the robustness of the hydrodynamic hypothesis to
a further physical process, ice—till slip. Iverson and others
(1994) and Engelhardt and Kamb (1998) have emphasized
that ice—till slip may be more significant than hitherto real-
ized. Sliding at the till-bed interface is discussed and intro-
duced into the models. Stability analyses are carried out with
extra sliding physics incorporated, with basal motion appor-
tioned between TBS (till-bed sliding) (Cuffey and Alley,
1996; Hindmarsh, 1996), TID (till internal deformation)
and ITS (ice—till sliding) (Iverson and others, 1995). The
present paper attempts to answer the question of how much
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slip affects the stability properties of the coupled ice—till—
water system at these interfaces; (3) We examine in detail
how the flow patterns around till bumps can act to cause till
relief to grow; (4) Deforming till acts as an abrasive agent
and can thus modify bedrock shape. We examine whether
the hydrodynamic hypothesis is consistent with observations
of subglacial bedrock erosion.

Amplification of relief in eroding bedrock (through slip at
the till-bed interface) seems to be necessary to explain whale-
backs (sometimes called rock drumlins), which are smooth
forms sometimes tens of metres high and hundreds of metres
long which have been shaped by glacial erosion (Evans, 1996).
When they have shattered lee sides, they are known as roches
moutonnées. The problem of ice abrading bedrock bumps has
been examined previously by Boulton (1974) who, possibly
somewhat inconsistently, used the Nye-Kamb (NK) solution
for perfect slip (Nye, 1969, 1970; Kamb, 1970). We consider cases
where there 1s frictional retardation at the bed.

Valley steps have been “created” in models by Oerlemans
(1985) and Mazo (1989), but equivalent features (long wave-
length undulations) are not reported from regions of areal
scour. Oerlemans’ model 1s non-linear, and creates valley
steps through preferred long-term occupation of hollows (a
stable margin position when ablation varies with elevation)
by erosive glacier margins. Mazo’s model is an infinite plane
model, as in this paper, but uses a different basal physics.

Modelling is carried out at two horizontal-length scales;
(I) where the wavelengths are much less than the ice thick-
ness and (2) where the wavelengths are much greater than
the ice thickness. The mathematical details are very similar
to those presented in previous papers; some extensions relat-
ing to ice—till slip and the presence of bedrock undulations
are outlined briefly in the appendices. The opportunity is
also taken to examine whether variation of shear stress with
depth within the till significantly affects the coupled dy-
namics, as it adds a diffusive and presumably stabilizing
term to the model.

2. FORMULATION OF COUPLED ICE-TILL FLOW
MODELS: PHYSICAL DESCRIPTION

The physical situation we are considering is of viscous ice
lying on top of a layer of viscous till, which in turn overlies
some bedrock (Fig. 1). The bedrock cannot deform, but TBS
can cause abrasion of the bedrock. Bumps can exist in either
the till surface or bedrock surface and in both. The ice is in
motion and the ice exerts a tangential force on the till. Two
cases are considered. (1) A generalization of Hindmarsh’s
(1998b) NK solution, which is appropriate for cases where
the wavelength of the bump is very much less than the ice
thickness. A perturbed form of the Stokes equations is
solved by approximating ice as a Newtonian fluid. (2) When
the shallow ice approximation (Hutter, 1983; Morland, 1984;
Fowler, 1992) is appropriate, where the wavelength is greater
than the bump thickness. Both cases utilize solutions where
the flow domain is infinite in the longitudinal extent, and
consists of a sinusoidal bed with wavelength L.

It is reasonable to raise the objection that soil-mechanical
ideas, which date back to Terzaghi in the 1920s, view till as a
plastic material and that viscous models are not justified by
the evidence. In the 1980s, glaciologists began to think that
plastic models were not an adequate description of the
coupled deformation of glaciers overriding till and sug-
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Fig. 1 Illustrating the configuration used in the computations.
The section, one wavelength 27 [k long, is repeated up- and
down-stream, and shear (short wavelength) or body forces
(long wavelength) cause coupled motion of the ice and till.
Variation in the stress fields causes variation in the tll flux,
which can cause till relief to grow. These can also cause vari-
ation in the abrasion rate and bedrock forms to grow. At short
wavelength the ice surface is not included, as it is too distant to
affect the situation.

gested viscous relations, some of which included depen-
dence on the effective pressure (Alley and others, 1987;
Boulton and Hindmarsh, 1987; Clarke, 1987). More recently,
detailed observations in areas away from glacier margins sug-
gest the picture is more complicated and there have been re-
newed suggestions that till behaves plastically (Engelhardt
and others, 1990; Kamb, 1991), or at least in a manner more
complex than viscous (Iverson and others, 1994; Murray and
Clarke, 1995). These observations were on the small-scale and
there have been arguments proposed (Bahr and Rundle,
1996; Hindmarsh, 1997) that the two views are reconcilable;
on the small scale, till behaves plastically, while on the large
scale, till behaves viscously. The argument 1s that if on the
large scale, modelling of till as a viscous fluid produces the
correct glacial geomorphology, it is a possible description at
least on the large scale. Thus, the modelling in this paper
can be regarded as a test of the viscous theory.

Since we are dealing with a linearization, a base case (or
unperturbed solution) must be specified. This is a till layer
of uniform thickness, Dy, shearing under the effect of the
glacially applied shear with a velocity distribution that is in-
dependent of horizontal position. The ice 1s in the half-space
z > 0, where 2z denotes vertical position. Computation of
the velocity distribution within the till then simply involves
an integration over the vertical direction. The bedrock ele-
vation is —Dy.

We then consider the case where the till surface 1s slightly
perturbed, that is its surface is no longer exactly flat but con-
tains small variations with horizontal position. The ice is now
in the half-space z > D + f; — Dy, where D is the till-sheet
thickness, and fi(x,t) — Dy is the bedrock elevation. The
slight perturbation i1s an assumption of the mathematical
technique (the linearization) used. By assessing the stability
of the solutions, one determines whether a small variation
superimposed on a uniform till sheet grows or shrinks. If, for
example, an increased thickness causes the effective pressure
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to increase, then the zone where the sediment is thicker will
move more slowly and sediment will accrete here. If it con-
tinues to accrete locally, the thickness deviation will even-
tually become so large the linear approximation is no longer
valid. At this point, non-linear behaviour determines what
happens next. One near certainty is shock formation, which
in general causes the maximum relief of the till sheet to
decrease (Hindmarsh, 1998a). Mathematically, this is a jump
in the till thickness with the implication that, in the field, one
would observe steep faces (e.g. the blunt end of a drumlin).
What else happens can only be determined by (almost cer-
tainly numerical) solution of the non-linear equations. How-
ever, one can say that in this unstable case, the final outcome
cannot be a flat till sheet, because if the relief decayed, at a
certain point the variations would become sufficiently small
that their behaviour would be adequately described by the
linear approximation, and the linear instability would reas-
sert itself. Thus, where there is instability, we expect there to
be some observable manifestation of the fact that the till-sheet
flow is unstable.

In fact, we can be a bit more specific about the minimum
size of the features that arise as a result of the non-linear in-
stability. Let us suppose that the till sheet has a thickness of
Dy, and let us consider a perturbation of size D;. Then,
standard theory (specifically the Taylor expansion) shows
us that the relative error in the solution for the perturbation
is D1/ Dy. While this number remains small, say less than
20%, the dominant behaviour will be that predicted by lin-
ear theory. We can thus say that if the till-sheet flow is un-
stable, then the resultant variation in thickness will be, at
the very least, around 20% of the till-sheet thickness.

We also consider the abrasive effect of till sliding over
bedrock and consider the abrasive effect of debris-bearing
ice sliding over bedrock with friction. In these studies, we
determine whether bumps in the bedrock will grow or
shrink. The interest here lies in establishing whether the
present model can also produce successful predictions of
bedrock relief growth; the Mazo and Oerlemans models
do not consider till deformation and thus do not address
the issue of drumlin formation.

The mathematical formulation of the models is discussed
in detail by Hindmarsh (1998b, c). The velocities and fluxes
are computed following Alley (1989) and Hindmarsh
(1998a). Till flux can arise either from internal deformation
within the till or from till sliding over the base. When consid-
ering internal deformation, the strain rate in the till is given
by a double power-law rheology (Boulton and Hindmarsh,
1987) where the shear strain-rate d,u depends upon the
applied shear stress 7 and the effective pressure pe(z, 2)

Ou/dz = Aar [pe(2)" (1)

where Aq is a rate factor and a and b are parameters. The
velocity w 1s a function of x and z. By integrating with respect
to z over the interval f; — Dy < 2z < fi + D — Dy, we can
obtain relations for the till velocity u(x,z) and the till flux
g(x). The formulae are given by Hindmarsh (1998b; equa-
tions (15) and (16)). These integrals depend upon g, the accel-
eration due to gravity, pi, oy and ps are the densities of ice,
water and sediment grains, and ¢ is the porosity of the sedi-
ment. We use the values 98lms % 10x10° kg m 5
0917 x10° kgm *, 27 x 10 kgm * and 0.2 respectively in this

paper.
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We now turn our attention to till-bed sliding. We use the
viscous-type sliding law proposed by Hindmarsh (1996)

U(Z:fl _DO) :AST&/pC(Z:fl_DO)dS' (2)
Finally we consider ice—till sliding. Again, a typical viscous-
type sliding law (e.g. Bindschadler, 1983) 1s used

w(z=fi+D—Dy) = A7 /pe(2=f1 + D — Do)d'
(3)
which obviously does not affect the till flux. Here, A, are
rate factors and ¢, g, d, s are indices.
The linearized model (see Hindmarsh, 1998b,c) is
defined by writing
D= Dy+puDy, q=qo+ pq,

where ¢ is the till flux and p 1s a small parameter, and we

u = uy + pug,

construct similar expansions for the shear stress 7 and the
effective pressure peo. The latter refers to an effective pres-
sure determined by a hydraulic theory and is discussed by
Hindmarsh (1998a). The model is constructed in terms of
the quantities

R; = Ou/Ot, Ry = Ou/dp., Rp = Ou/OD,  (4a)
Q¢ = 9q/07, Qu = 0q/dpe, Qp = 9g/0D.  (4b)
Formulae for some of these derivatives are given by Hind-
marsh (1998b, equation (19)). Perturbed velocities are given
by
ul(a?, z=f+D-— D()) = RtT{ + RnTln + RpD1 + Re fy

(5)

and perturbed fluxes by
@ =QiT) + QT + QoDr + Qcfy (6)

where T}, T} are the tangential and normal tractions and f;
is the bedrock elevation. Finally, in order to model the evo-
lution of bedrock relief, we need an abrasion relationship
and we follow numerous authors (e.g. Rabinowicz, 1965) in
suggesting that the rate of erosion be proportional to the
product of sliding velocity and normal stress

- ds—1

e = ouspe(z = fi — Do) = 0As7* [pe(2 = f1 — Do)™
where g is a phenomenological constant. Values of this are
not known, but this does not matter in the present analysis
as we are interested in spatial variations of erosion rates and
not absolute values. The erosion perturbation e; is given by

e1 = BT + E 1]' + Ep Dy, (7)
Cs€ €0

E:_yEn:_dS_l ’

- = ) G 6Dy D)

€0

Ep=—v(ds—1 )

P i ) (Peo — 6D + D)

eo = oug(peo — (v — 6)Dy). (8)

Here, § =(pw — p1)g: v ={(1 = ¢)ps + ¢pw — pi}g. We shall
use these relationships to determine whether abrasion can
cause relief to become amplified. We also have the derivatives
with respect to the bedrock profile (Rf,Qf) = (pw — pi)

9( Ry, Q).

2.1. Nye—-Kamb solution for short wavelengths

The Nye—Kamb solution (Nye, 1969, 1970; Kamb, 1970) con-
siders the case of infinitely deep ice overlying a bump with
an infinity of clones upstream and downstream, and is a
good approximation when the wavelength of the bump is
much less than the ice thickness. The NK solution assumes
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a frictionless bed, but has been extended by Hindmarsh
(1998b) to consider a shearing flow of ice with friction at
the bed and the flow of ice over a deforming bed, under a
shear stress of 79 and a ice basal-velocity of ug. Let us sup-
pose that the till-thickness profile perturbation is given by a
sinusoidal profile (Fig. 1)

Di(x,t) = Di(t) exp(—ika), (9)

where kis a wavenumber and D{(t) is a complex function of
time ¢. Other quantities with superscript ¢ play correspond-
ing roles as Fourier coefficients (77, 7", ¢} ). By adopting a
complex variable formulation, we may follow Hindmarsh
(1998b) and show that the ice and till velocity fields can be
written in terms of complex coefficients C¢, P¢ which are
solutions of the linear equation

1+ Qk’l’} (Rt + iRn) Z.Rn ce
{ 1 =2k (Q +1iQn)  1/2kn —ikQy } [PC]
_ { —(iRp + 2kR,79) Df } (10)
I{?(Z(QD — Ub) + QanTO)ch ’

where 7 1s the Newtonian viscosity of ice and compute the
growth rate of till relief from the formulae

T! = — 2iknC°, T!" = 2kn C“ a1)
+ P° = 2ikryD°, D = ikq;

and Re(D(lf/Dc) tells us whether the sheet flow is unstable
or not. Let us denote the basal (i.e. bedrock) topography
by z = f¢exp(—ikx). It is shown in the Appendix A how
to compute the solution fields in the presence of basal topog-
raphy, and thence the steady till thickness and the corres-
ponding abrasion rate (Appendix B). We shall consider in
more detail the effect of introducing sliding at (1) the base
of the till, 1.e. at the till-bedrock interface; and (2) at the
base of the ice, at the ice—till interface.

Shallow ice approximation for long wavelengths

This case is appropriate for length scales L greater than the
ice thickness Hy. In these experiments, we have an infinite
plane of slope € down which ice is flowing, slipping over the
till, causing the till to deform internally and causing slip to
occur between till and bed. The configuration 1s described
in more detail in Hindmarsh (1998c¢); in particular, the basal
shear stress is given by the usual formula |79| = pigHpe. A
series of related perturbations of the flow of ice down the in-
finite plane are discussed by Paterson (1994). In these experi-
ments, we consider the effect of slip of ice over till on the
proportion of unstable modes and examine the question of re-
lief amplification of bedrock being abraded by sliding till. (A
mode is a concept from linear theory and refers to behaviour
at a given spatial scale which possesses a growth rate A, which
determines the exponential rate of growth of the phenomena,
e.g. the dynamics of a quantity 8 are defined by 8 = A\f). In
these experiments, the interfacial effective pressure is set con-
stant even when bed perturbations are introduced, which is
appropriate for long length scales (Hindmarsh, 1998c¢). This
model can be recast in terms of complex exponentials in a
similar way as Equation (9)

Dy = D5(t) exp(—ikz), 0, Dy = —ikDy,0°Dy = —k*Dy,
Hy = Hi(t) exp(—ikx), 0, H; = —ikH,,0>H, = —k*H,,
fi = f exp(—ika), 0, fi = —ikfy, 2 F: = =k,

where k is a wavenumber, Dy, H and f; are the till-thick-
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ness, ice-thickness and bedrock-surface perturbations. The
mode evolution equation for ice thickness is

Hf =~ (ER - ik<Rm) + Rn% + uo))Hf
— (BEr — ikHyRp) DS — (Er — ikHoRy) f5,
and till thickness is
. [ QiTo Dio
DS =— ( Eq—ik n Hy
! (Q 1<H0+Q6H0 !
— (Eq — ikQp) D§ — (Bq — ikQ) f£,

where
HyRymok? k>
= DUk Gk
S S
pio = pigHo, ¢=e.

Apart from the introduction of ice—till slip and bedrock abra-
sion (Appendix B), Hindmarsh’s (1998c) model is improved
by including the variation of shear stress with depth in the till.
This could have been significant because the stability of the
system 1s marginal in a number of cases. The mathematical
details will be given in a future paper. In the numerical com-
putations carried out here, it was found that the difference
between these results and those discussed by Hindmarsh
(1998c) were relatively small, because while the variation of
shear stress with depth introduced by the weight of the till is
diffusive (and therefore stabilizing), there is also a variation
induced by the force gradient within the ice which can either
be stabilizing or non-stabilizing. Fowler (in press) appears to
reach the conclusion that this essentially diffusive process
stabilizes the system uniformly.

3. PHYSICAL MECHANISMS FOR GENERATING
INSTABILITIES

Here we look in detail at how variations in the field variables
(tractions, velocities, etc.) give rise to the conditionally stable
evolution of variations in till forms. A till bump alters its phys-
ical environment. At short wavelength, its presence sets up

D =10m, U =100m a !
Py= 0.5bar, T, = 0.5bar

=1 1100
2 T
N l m
E 0.8 %0 -
g 0.6 leo 2
= =
E 124
= 0.4 leo 2
E Y o v
B — W _K.ll’.ldematlyc <o .. - 2
2 0.217 vk veloaity o120 F
O . . R :
0 : 3 0
10° 10
Wavelength (m)

Fig. 2. Illustrating the dependence of growth-rate constant
(solid) and wave velocity (dashed) on wavelength.
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Fig. 3. Lllustrating the role of viscous forces in shaping drumlins at a wavelength of 300 m (upper diagrams) and 3000 m (lower
diagrams ). The left-hand figures show thickness (D1 ), thickness evolution (0D /0t), viscous tangential (T1) and normal
(Tln) tractions, while the right-hand figures show normalized flux contributions from variations wn the tangential traction

(. ), normal traction (q?) and till thickness (qlD), as well as
dimensionally equivalent variables.

new stresses within the ice, in particular longitudinal stresses,
which cause the tangential and normal traction (forces per
unit area) exerted by the flowing ice on the till to change. In-
creased normal traction increases the effective pressure,
which increases intergranular friction within the sediment
and makes it stiffer. Increased shear stress causes increased
flow. An increased till thickness causes an increased inter-
facial effective pressure owing to the density difference
between ice and water (Hindmarsh, 1996; 1998a), affecting
the normal force on the till. All these effects combine to alter
the till-flux distribution and thus the till-profile evolution,
which is reflected in the till-amplitude growth rate and wave
velocity of the till (Fig. 2). This shows that, for the prescribed
model constants, there is a maximum growth rate at about
300 m; it is suspected that drumlins become dragged out to
create the lineations with long axes much greater than
300 m. This maximum can be readily altered by modifying
the parameters. At shorter wavelengths, growth rates
become smaller with till waves moving at the ice velocity;
while at long wavelengths, till waves move at the kinematic
wave velocity. One can distinguish between: flow which is
coupled, where the presence of the ice significantly modu-
lates the flow of the till; and uncoupled cases, where the pres-
ence of the ice does not affect the flow of the till and its
evolution is restricted to the translation of a neutrally stable
kinematic wave.

Two cases are illustrated in Figure 3, an unstable one, L =
300 m and a marginally stable one with L = 3000 m. The
most significant feature is manifested in the three graphs
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the total contribution (qv). Units are arbitrary, but consistent for

comprising the right-hand column of the figures. They show
the contribution to the velocity and the flux arising from vari-
ations in the tangential traction, the normal traction and
hydrostatic effects (stemming from till-thickness changes) on
the interfacial effective pressure. For the unstable case, the
contributions from the viscous tractions are larger than the
contributions from the hydrostatic variations in the inter-
facial effective pressure. These are of opposite sign, and the
total flux is therefore somewhat less in magnitude than the
contributing parts. For the stable (long-wavelength) case,
the viscous tractions are weak. The main contribution comes
from hydrostatic variations in the effective pressure; the ice
and till flows are almost uncoupled. Comparison of the stable
and unstable cases shows markedly different traction phas-
ings. Classical NK theory explains why the viscous tractions
decrease with wavelength between 300m and 3000 m; as
wavelength decreases, the ice is “seen” as more viscous by the
till and the coupling becomes tighter. Note that drumlin
growth-rate constants are very high, often around 1a ', which
means that they form very fast indeed (Fig. 2).

At long wavelength, the presence of the bump affects the
stress distribution within the ice, but in rather different ways
from the processes occurring at short wavelength. Under
the hydraulic assumptions used here (see Hindmarsh,
1998c for a detailed discussion), interfacial effective pressure
is taken to be constant. Additional stresses arise from the
fact that the presence of the bump disturbs the ice-surface
geometry, which in turns affects the basal shear stress and
thus the flow of the till. We anticipate from the marginal sta-
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bility that static effects are stronger than shear-stress effects
and a detailed examination of the stress distributions (not
shown in this paper) shows this to be true. In other words,
at these long wavelengths coupling is weak and the till
waves behave very much as the uncoupled, neutrally stable,
kinematic waves described above.

4. SEARCHES OVER PARAMETER SPACE

Previous studies and the present study show that whether
stability occurs or not depends on many parameters, some
of which are unknown but likely to remain fixed during the
evolution of an ice stream (e.g. the rheological indices a, b)
and others which are likely to be highly dynamic. Hence, it is
important to explore the question of stability over all the
parameters, sampling at a sufficiently high density to obtain
the broad patterns. In this section, we report the results of
searches over parameter space for the short- and long-wave-
length cases. Parameter space is a multi-dimensional space
whose axes are the parameters under consideration. In both
cases of the wavelength, the parameter space is described
and the proportion of cases where modes are unstable (i.e.
relief1s growing) are discussed.“Mode” 1s a concept from lin-
ear theory, which finds that an evolving field, when consid-
ered at a particular wavelength, has a growth/decay time
constant and a wave velocity. The short-wavelength solution
has one mode for a given wavelength which corresponds to
the tll growth rate and travelling-wave velocity, while the
long-wavelength solution has two modes which are each
combinations of ice and till relief, corresponding to different
growth rates and wave velocities. It is known (Hindmarsh,
1998¢) that one of these two modes is very strongly diffusive
and corresponds very closely to the ice-surface diffusion
mode discussed by Nye (1959). The other mode is the one that
1s potentially unstable (Hindmarsh, 1998¢; Fowler, in press);
this mode has expressions in both ice and till surface relief.

We also consider bed-erosion modes. It is assumed in this
paper that changes in bedrock shape resulting from abrasion
occur much slower than do changes in the till or ice thickness.
In order to compute abrasion, we first compute steady ice/till
configuration and check its stability. If it is stable, the till dis-
tribution can persist, meaning that the abrasion distribution
can also persist and thus we can address the issue of whether
bedrock relief grows. If the till distribution is unstable, we
cannot predict the ultimate till-thickness distribution with
the present model, so the sample point is discarded.

Previous studies have shown that whether instability
occurs or not depends in a complex way on the location of
the sample point in a parameter space defined by subglacial
physical quantities such as the stress, the effective pressure,
etc. Since we do not understand ice-sheet glaciology well
enough to predict these quantities, and, moreover, we suspect
that the physical environment is highly variable, we need to
explore the parameter space in order to determine whether a
reasonable proportion of sample points is unstable. If it were
not, we would have to conclude that our mechanism was un-
likely to be the sole cause, or that the system operated so as to
restrict itself to areas in parameter space which were unstable.
It turns out that substantial areas of parameter space are un-
stable, a desirable result.

For the short-wavelength case (Nye—Kamb solution), the
parameter-space sample points are the direct product of the
sets comprising the direct product of the following seven
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Fig. 4. Nye—Kamb configuration ( short wavelength ): Propor-
tion of positive (unstable) growth rates of till-sheet modes
binned against each parameter. Horizontal axis is the param-
eter, vertical axis is the proportion. Cases are: (a) all tll
wnternal deformation; (b) ice basal-velocity, due half to
internal deformation and half to wce—till slip; and (c¢) ice
basal-velocity due equally to till—bed slip, till internal deform-
ation and ice—tll slip. Also shown are proportions of cases with
growth rates greater than la ' (dash—dot) and 10a '
(dotted). The parameters are: Ty, shear stress; Deo, ¢ffective
pressure; Dy, till thickness; L, tll-bedrock perturbation
wavelength; Uy, ice basal-velocity; a, shear-stress index in
Slow/sliding laws; and b, negative of effective pressure index
in flow/sliding laws.

dimensional parameter space:

Dy € {0.1,0.2,0.5,1,2,5,10,20,50,100} m,

Uy € {1,2,5,10,50,100, 200, 500, 1000} ma ',

the wavelength 27/k € {10, 20, 50, 100, 200, 500, 1000} m,
peo € {2 x 10%,5 x 10%,10%,2 x 10*,5 x 10*,10°} Pa,

T € {2 x10%,5 x 10*,10%,2 x 10°} Pa,

(a,c) € {1,2,5,10} and

(b,d) € {1.02,2.03,5,10}.
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Iig. 5. Nye—EKamb configuration ( short wavelength ): Propor-
tion of bedrock modes growing under abrasion binned against
each parameter. Horizontal axis is the parameter, vertical axis
is the proportion. Cases are: (a) all till=bed slip; and (b) ice
basal-velocity due equally to till—bed slip, till internal deform-
ation and ice—tll slip. Also shown are proportions with growth
rate of 1 (dash-dot). See caption for Figure 4 for meaning of
symbols.

Thus, at each of these points, stability was assessed and the
growth rate computed. These computations were carried out
for various distributions of the velocity between till-bed slid-
ing, till internal deformation, and ice—till sliding. Four cases
were considered with the velocity apportioned respectively as
follows (a) (0,1,0), (b) (0,0.5,0.5), (c) (1,0,0) and (d)
(0.333,0.333,0.333). In addition, a case with no till present
was computed to determine the abrasion characteristics
under these conditions. Note how the wavelength is a param-
eter; this means that we are considering sinusoidal beds of the
corresponding wavelength.

Results are presented in Figure 4 (proportion of sample
points with unstable till-sheet flow) and in Figure 5 (pro-
portion of sample points with glacial abrasion causing
accentuation of relief). For each parameter, results are
binned across all the remaining parameters. For example,
for Uy, = 100 m afl, the results for

Dy € {0.1,0.2,0.5,1,2,5,10,20,50, 100} m,

2r/k € {10, 20, 50, 100, 200, 500, 1000} m,

peo € {2 x10%,5 x 10°,10%,2 x 10*,5 x 10*,10°} Pa,
7o € {2 x10%,5 x 10*,10%,2 x 10°} Pa,

(a,c) € {1,2,5,10} and

(b,d) € {1.02,2.03,5,10}

are considered as a set, and the proportion with unstable till-
sheet flow or growing bedrock relief is computed. This is
plotted in Figures 4 and 5. Where motion was by till-bed slip
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alone, all cases were stable. Figure 4 shows that ice—till slip
affects the proportion of unstable modes but still leaves a sub-
stantial number of unstable modes. These diagrams show that
the dependence of the stability system on its position in par-
ameter space is very complicated; one reason for this must be
the interplay between viscous and static forces discussed in
the last section. Also plotted in Equation (4) are proportions
greater than growth rates of 1a 'and 10 a "', indicating that a
good proportion of drumlins can grow very fast indeed.

Figure 5 shows the proportion of bedrock modes that
leads, by abrasion, to amplification of these modes. (How
erosion is incorporated is discussed in the Appendix). A
sine-wave perturbation is introduced into the bedrock and
the steady till profile computed. If this steady till profile is
stable, the profiles are used to compute the abrasion rate of
the sine wave in the bedrock, and in particular, whether it is
shrinking or growing. (If the till profile is unstable, then the
till cover will evolve and we cannot, with the linear theory,
compute the abrasion rate) The surprising result of this is
that the proportion of bedrock modes that become amplified
1s greater when there is contribution to the ice basal motion
from internal deformation and ice—till slip. However, since
velocities at the till-bed interface are lower when there is a
contribution from other basal mechanisms, we do not expect
the rate of erosion rate to be as great. Also plotted in Equa-
tion 4 are proportions greater than growth rates of Imm ;
in other words those forms that for a metre bump grow at the
rate of > 1mm ', eroded by the background (zeroth-order)
process. This is clearly not a physically conceivable situation
(as it implies negative abrasion) and has in fact violated the
linearity condition, but it does indicate that whalebacks can
induce the severe variations in abrasion needed to shape
whalebacks. A smaller bump would reduce the growth rate
and the linearity condition would not be violated.

We now consider long wavelength perturbations, where
mechanics are described by the shallow ice approximation.
Parameter space for the coupled ice—till system has been ex-
plored by sampling at approximately 60 000 points. The set
of sample points comprised the direct product of the sets

Dy/m € {1,2,5,10,20,50},

Hy/m € {100,200, 500, 1000, 2000},

L/m € {200,500, 1000, 2000, 5000, 10 000, 20 000},
Peo/10°Pa € {0.05,0.1,0.2,0.5, 1},

70/10°Pa € {0.2,0.5,1,2},

b € {1.02,2.03,5,10},

a€{1,2,5,10},

where L = 27/k. Excluded are the points in parameter
space where L < Hj, as the shallow ice approximation is
not valid here. The basal velocity was set at 00 ma ', by ad-
justing the rate factor: in this case it can be deduced from the
equations that the basal velocity does not affect the propor-
tion of modes that are unstable (Hindmarsh, 1998c¢). This
study was carried out for the same combinations of TBS,
TID and ITS as for the NK configuration. Where there is
TBS, only a very small proportion (<1%) of unstable cases
was found. For the cases where there was no TBS, Figure 6
shows the proportion of cases with positive growth rate of
till-sheet modes, binning along each parameter in turn.
These cases show very strong dependencies on the thickness
and the effective pressure index b. The system is most un-
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Fig. 6. Flow down an infinite plane, long-wavelength features,
proportion of positive (unstable) growth rates of till-sheet
modes binned against each parameter. Horizontal axis is the
parameler, vertical axis is the proportion. Cases are: (a) all tll
internal deformation; and (b) ice basal-velocity, due half to
internal deformation and half to ice—till slip. Also shown are
proportions with growth rates > 0.0la " (dash—dot ) and pro-
portion with growth rates >0.1a " ( dotted lines ). See caption
Jor Figure 4 for meaning of symbols.

stable for rather thin tills, which are least likely to develop
into a surface of large till relief. Also shown is the proportion
with growth rates higher than 0.0l a 'and 0.1a . There are a
few cases with growth rates large enough to be of practical
significance, so some long-wavelength drumlins may form
through long-wavelength coupling. Including ice—till slip re-
duces the proportion of unstable modes by a relatively small
amount. The proportion of bedrock relief modes that is un-
stable under abrasion is nearly zero (not shown). This lends
support to Oerlemans’ (1985) non-linear long-wavelength
mechanism, rather than Mazo’s (1989) infinite-plane model.

5. DRUMLIN AND WHALEBACK SEEDING AS A
FLUID-DYNAMICAL INSTABILITY

The idea that drumlin seeding might be a fluid-dynamical in-
stability dates back in its modern form to Smalley and Unwin
(1968), who introduced the idea of a stability parameter which
varied in space, represented by a in Figure 7a. This stability
parameter would be a descriptor of the subglacial physical
environment, for example the effective pressure. Where it
exceeded a critical value, drumlins might, for example,
form; where the stability parameter was less than the crit-
ical parameter, drumlins would not form. This is quite a
fundamental dynamical concept, and any analysis that
yields conditional stability of drumlins will likely yield a
Smalley—Unwin bifurcation pattern, i.e. one where stability
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Fig. 7 Lllustrating generalization of the Smalley—Unwin bi-
Jurcation. In the upper figure, the bifurcation parameter is v,
and drumlins form where this exceeds a critical value. In the

lower figure, the drumlin formation condition is for both
parameters to exceed a critical value; drumlin size is affected
by the second parameter varying in space. The two axes thus
represent horizontal and vertical co-ordinates.

varies in space. However, models of till as a viscous fluid
where till mass-conservation plays a fundamental role
(Boulton, 1987) are, from a point of view of physical mechan-
isms, somewhat different from the mechanisms proposed by
Smalley and Unwin.

Smalley and Unwin did not explicitly address the ques-
tion of the size or the spacing of the drumlins. The theory
outlined in this paper has only one horizontal dimension,
and the horizontal length scale in this linearized theory
has to represent both the drumlin size and the spacing. A
true non-linear calculation will address these related, but
nonetheless distinct, issues. Moreover, numerical experi-
ments with pre-existent relief show that the action of ice—till
coupling is to extend drumlins in the direction of flow,
which is widely believed to happen (Clark, 1993). It is thus
not clear whether the longitudinal dimension of a drumlin
represents the initiation length-scale. Nor is it clear whether
the plan—aspect ratio of the drumlin, when it originally
formed, was around unity or not.

Nevertheless, we can generalize the Smalley—Unwin ideas
by using the concept that drumlin size/spacing will be in-
itiated at the fastest-growing wavelength. The results pre-
sented in this study show that the fastest-growing
wavelength is a function of the physical environment at the
base of the glacier, so our first generalization is in Figure 7b,
which shows a slow variation in drumlin size across the
drumlin fields. This is ascribed to a slow change in a second
parameter, which causes the dominant wavelength to change
and drumlin size to change. There is nothing in the theory to
suggest that, as the separatrix between stable and unstable is
reached, drumlin wavelength becomes infinitely small (and
thus invisible) or infinitely large (and thus no longer a drum-
lin); what actually happens is that as the stability parameter
1s passed, the range of wavelengths for which instability
occurs increases, and the growth rate of relief also increases.

Similar ideas relate to the formation of whalebacks,
which are convex forms in bedrock of glaciogenic origin
(Evans, 1996). In this work, they are assumed to be caused
by an instability; the coupling between the bedrock form
and the ice flow modifies the abrasion pattern so as to cause
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the relief to grow. Again, areas where this instability oper-
ates depend on the subglacial physical environment and,
again, we can expect there to be preferred wavelengths.
However, the rate of growth depends upon the rate of ero-
sion by the glacier; typical erosion rates of 1 mm a ' mean
that several thousand years would be needed to abrade even
a small whaleback form.

6. CONCLUDING REMARKS

These studies show that the physically based model of till
flow developed in the 1980s by Alley (1989), Boulton and
Hindmarsh (1987) and Clarke (1987) has the potential to ex-
plain drumlin formation under more general conditions
than those considered by Hindmarsh (1998b, ¢), as well as,
in common with some other models, the ability to explain
the development of bedrock relief. This paper has extended
the studies of Hindmarsh (1998b,c) by considering the
effect of interfacial slip on the dynamics of coupled flows of
ice and till. In most of the cases, the proportion of unstable
modes is not so high as to suggest that drumlins should be
ubiquitous (which they are not); any model should be able
to explain their absence as well. The model may overpredict
whaleback formation, but they require a substantial amount
of erosion to form and may thus only be created where sig-
nificant erosion has occurred.

We thus postulate the following model of drumlin-field
development. Since growth rates are high when velocities
are high, drumlins can form in very short time periods, cen-
turies or even decades, reflecting flow directions over short
time periods. Changes in physical conditions will alter the
most unstable wavelength and this will result in the phenom-
enon of two different superimposed drumlin populations,
which is a transient phase.
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APPENDIX A. NYE-KAMB SOLUTION AND BED-
ROCK PERTURBATION

In this appendix we show how Hindmarsh’s (1998b) extended
Nye—Kamb solution can be expanded to include bedrock top-
ography. The linearized ice basal-velocity relationship (cf.
Equation (5)) is now

iy = RT| + R,T}' + RaD1 + R fy

while the kinematic condition incorporates the fact that
bedrock topography adds to the ice—till interface topog-
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raphy. This is the main difference between this case and the
case with flat bedrock. Thus,

w; = — QtaLT{ - Qna’vT{l + (Ub - Qd)a’le
+ (U — Q1)0: f1.

We get the same lefthand side as in Equation (4), but with
the righthand side given by

—i(Ra DS + Reff) — 2kRy70 (D + f7)
ik((Qa — Up) DS + (Qf — Un) £5) + 2kQuro (D5 + £) |
(12)
The interfacial tractions are now given by
T! = —2iknC*, T = 2knC*® + P° — 2ikro (D" + f€)
(13)

(cf. Equation (11)) and the till thickness evolution equation
is now
P — p[21QC +i(2knCe + P = 2ikro(D° + £9))
! Qn + ZQde + ifof
(14)

A steady-state is obtained when the till thickness, repre-
sented by D¢, solves

1+2[€77(Rt+7;Rn) iR, (iRd-i-?kRnTo)
1- 2k2n(Qt +ier) 1/219‘777”‘7@11 - k(Z(Qd - Ub) +2an7_())

2knQ; +2iknQ,  iQx iQa
ce — (iR¢ + 2kRym)) ff
P = | k(i(Qr — Uy) + 2kQuTo) ff
Df - ifof

This has been obtained by combining Equations (4), (12)
and (14) and applying the condition D{ = 0.
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APPENDIX B. ABRASION

The postulated abrasion law is of the form
aA TS
(peo — 8D +4D)* !

where e is the erosion rate (positive for a lowering of the sur-
face) and a is a phenomenological constant. The erosion

€ = QUsPe =

perturbation is given by

e = EtTlt + EnTln + EDDl + EFfl (15)
Cy (ds - 1)
E =e —‘,EIl = —€ )
T " (peo — 6Dy +vDy)
(ds - 1)
FErn = —~e, ,E = 6En.
b e (peo — 6 Do + vDy) !

In the Nye—Kamb solution, the basal-boundary condi-
tions require computation of the interfacial tractions. Sub-
stitution of Equation (13) into the Fourier transform of
Equation (15) yields an equation for e, the Fourier coeffi-
cient of e;. Here a positive value indicates erosion (damp-
ing) of the mode, 1.e. ff = —ef.

We now consider abrasion under the shallow-ice approx-
imation. The fields are given by

He¢ H¢ D¢ c
1 :T()(Fl“rikil + 1+f1> exp(—ikx),
0 S

Del = f—iHOOHf exp(—ikx),
whence from Equation (7)
HC HC DC C
e = By <_1+ Zkﬁ—ﬁfl)
Hy S

TPio
E, 2N [ge 4 EpDS + Epf-.
+ SH() 1 + DL/ + F.fl


https://doi.org/10.3189/172756499781821931

