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Abstract

Automatic face photo-sketch recognition has important

applications for law enforcement. Recent research has fo-

cused on transforming photos and sketches into the same

modality for matching or developing advanced classifica-

tion algorithms to reduce the modality gap between features

extracted from photos and sketches. In this paper, we pro-

pose a new inter-modality face recognition approach by re-

ducing the modality gap at the feature extraction stage. A

new face descriptor based on coupled information-theoretic

encoding is used to capture discriminative local face struc-

tures and to effectively match photos and sketches. Guided

by maximizing the mutual information between photos and

sketches in the quantized feature spaces, the coupled en-

coding is achieved by the proposed coupled information-

theoretic projection tree, which is extended to the random-

ized forest to further boost the performance. We create the

largest face sketch database including sketches of 1, 194
people from the FERET database. Experiments on this large

scale dataset show that our approach significantly outper-

forms the state-of-the-art methods.

1. Introduction

Face photo-sketch recognition is to match a face sketch

drawn by an artist to one of many face photos in the

database. In law enforcement, it is desired to automati-

cally search photos from police mug-shot databases using

a sketch drawing when the photo of a suspect is not avail-

able. This application leads to a number of studies on this

topic [26, 27, 28, 31, 9, 14, 6]. Photo-sketch generation and

recognition are also useful in digital entertainment industry.

The major challenge of face photo-sketch recognition is

to match images in different modalities. Sketches are a con-

cise representation of human faces, often containing shape

exaggeration and having different textures than photos. It

is infeasible to directly apply face photo recognition algo-

rithms. Recently, great progress has been made in two di-

rections. The first family of approaches [27, 18, 31] fo-

Sketch vector space

Photo vector space

CITP tree

Photos

Sketches

Figure 1. A CITP tree with three levels for illustration purpose.

The local structures of photos and sketches are sampled and cou-

pled encoded via the CITP tree. Each leaf node of the CITP tree

corresponds to a cell in the photo vector space and in the sketch

vector space. The sampled vectors in the same cell are assigned the

same code, so that different local structures have different codes

and the same structures in different modalities have the same code.

cused on the preprocessing stage and synthesized a pseudo-

photo from the query sketch or pseudo-sketches from the

gallery photos to transform inter-modality face recognition

into intra-modality face recognition. Face photo/sketch syn-

thesis is actually a harder problem than recognition. Imper-

fect synthesis results significantly degrade the recognition

performance. The second family of approaches [17, 15, 14]

focused on the classification stage and tried to design ad-

vanced classifiers to reduce the modality gap between fea-

tures extracted from photos and sketches. If the inter-

modality difference between the extracted features is large,

the discriminative power of the classifiers will be reduced.

In this paper, we propose a new approach of reducing

the modality gap at the feature extraction stage. A new face

descriptor is designed by the coupled information-theoretic

encoding, which quantizes the local structures of face pho-

tos and sketches into discrete codes. In order to effectively

match photos and sketches, it requires that the extracted
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codes are uniformly distributed across different subjects,

which leads to high discriminative power, and that the codes

of the same subject’s photo and sketch are highly correlated,

which leads to small inter-modality gap. These require-

ments can be well captured under the criterion of maximiz-

ing the mutual information between photos and sketches

in the quantized feature spaces. The coupled encoding is

achieved by the proposed randomized coupled information-

theoretic projection forest, which is learned with the maxi-

mum mutual information (MMI) criterion.

Another contribution of this work is to release CUHK

Face Sketch FERET Database (CUFSF)1, a large scale face

sketch database. It includes the sketches of 1, 194 people

from the FERET database [22]. Wang and Tang [31] pub-

lished the CUFS database with sketches of 606 people. The

sketches in the CUFS database had less shape distortion.

The new database is not only larger in size but also more

challenging because its sketches have more shape exagger-

ation and thus are closer to practical applications. Exper-

iments on this large scale dataset show that our approach

significantly outperforms the state-of-the-art methods.

1.1. Related work

To synthesize pseudo photos (sketches) from sketches

(photos), Tang and Wang [27] proposed to apply the eigen-

transform globally. Another global approach proposed by

Gao et al. [9] was based on the embedded hidden Markov

model and the selective ensemble strategy. Liu et al. [18]

proposed patch-based face sketch reconstruction using lo-

cal linear embedding based mapping. The sketch patches

were synthesized independently ignoring the spatial rela-

tionship. Wang and Tang [31] used a multiscale Markov

random field (MRF) to model the dependency of neighbor-

ing sketch patches. Photos and sketches were matched once

they were transformed to the same modality.

In order to reduce the inter-modality gap at the classifi-

cation stage, Lin and Tang [17] mapped features from two

modalities into a common discriminative space. Lei and

Li [15] proposed coupled spectral regression (CSR). CSR

was computationally efficient in learning projections to map

data from two modalities into a common subspace. Klare et

al. [14] proposed local feature-based discriminant analysis

(LFDA). They used multiple projections to extract a dis-

criminative representation from partitioned vectors of SIFT

and LBP features.

There is an extensive literature on descriptor-based face

recognition [1, 32, 36], due to its advantages of computa-

tional efficiency and relative robustness to illumination and

pose variations. They are relevant to our coupled encoding.

However, those handcrafted features, such as LBP [1] and

SIFT [19], were not designed for inter-modality face recog-

nition. The extracted features from photos and sketches

1Available at http://mmlab.ie.cuhk.edu.hk/cufsf/.

may have large inter-modality variations.

Although information-theoretic concepts were explored

in building decision trees and decision forests for vector

quantization [2, 21, 23] in the application of object recogni-

tion, these algorithms were applied in a single space and did

not address the problem of inter-modality matching. With

the supervision of object labels, their tree construction pro-

cesses were much more straightforward than ours.

2. Information-Theoretic Projection Tree

Vector quantization was widely used to create discrete

image representations, such as textons [20] and visual

words [24], for object recognition and face recognition. Im-

age pixels [5, 23], filter-bank responses [20] or invariant de-

scriptors [24, 33] were computed either sparsely or densely

on a training set, and clustered to produce a codebook by

algorithms such as k-means, mean shift [12], random pro-

jection tree [5, 8, 33] and random forest [21, 23]. Then with

the codebook any image could be turned into an encoded

representation.

However, to the best of our knowledge, it has not been

clear how to apply vector quantization to cross-modality ob-

ject matching yet. In this section, we present a new cou-

pled information-theoretic projection (CITP) tree for cou-

pled quantization across modalities. We further extend the

CITP tree to the randomized CITP tree and forest. For clar-

ity of exposition, we present the method in the photo-sketch

recognition scenario.

2.1. Projection Tree

A projection tree [8] partitions a feature space R
D into

cells. It is built in a recursive manner, splitting the data

along one projection direction at a time. The succession

of splits leads to a binary tree, whose leaves are individual

cells in R
D. With a built projection tree, a code is assigned

to each test sample x, according to the cell (i.e. leaf node)

it belongs to. The sample is simply propagated down the

tree, starting from the root node and branching left or right

until a leaf node is reached. Each node is associated with a

learned binary function f(x) = sign(wTx − τ). The node

propagates x to its left child if f(x) = −1 and to its right

child if f(x) = 1.

2.2. Mutual Information Maximization

Since quantization needs to be done in both the photo

space and the sketch space, we extend a projection tree to

a coupled projection tree. In a coupled projection tree, vec-

tors sampled from photos and sketches share the same tree

structure, but are input to different binary functions fp(xp)
and fs(xs) at each node. A vector xp sampled from the

neighborhood of a photo pixel is quantized with fp and a

vector xs sampled from the neighborhood of a sketch pixel

is quantized with fs. Then the sampled photo vectors and
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sketch vectors are mapped to the same codebook, but their

coding functions represented by the tree are different, de-

noted by Cp and Cs, respectively.

To train a coupled projection tree, a set of vector pairs

X = {(xp
i ,x

s
i ), i = 1, ..., N} is prepared, where x

p
i ,x

s
i ∈

R
D. In this paper, x

p
i and xs

i are the normalized vectors

of sampled gradients around the same location2 in a photo

and a sketch of the same subject, respectively. Denote that

Xp = [xp
1
, ...,x

p
N ], Xs = [xs

1
, ...,xs

N ]. Since x
p
i and xs

i are

sampled from the same subject at the same location, it is

expected that they are quantized into the same code by the

coupled projection tree. In the meanwhile, in order to in-

crease the discriminative power, it is expected that the codes

of Xp and Xs are uniformly distributed across different

subjects. To achieve these goals, our coupled information-

theoretic projection (CITP) trees are learned using the max-

imum mutual information (MMI) criterion (see Fig. 2).

Mutual information, which is a symmetric measure to

quantify the statistical information shared between two ran-

dom variables [7], provides a sound indication of the match-

ing quality between coded photo vectors and coded sketch

vectors. Formally, the objective function is as follows.3

I(Cp(X
p); Cs(X

s)) = H(Cp(X
p))−H(Cs(X

p)|Cp(X
s)).
(1)

To increase the discriminative power, the quantization

should maximize the entropy H(Cp(X
p)) so that the sam-

ples are nearly uniformly distributed over the codebook. To

reduce the inter-modality gap, the quantization should min-

imize the conditional entropy H(Cp(X
p)|Cs(X

s)).

2.3. Tree Construction with MMI

Similar to random projection tree [8], the CITP tree is

also built top down recursively. However, it is different in

that the CITP tree is not a balanced binary tree, i.e. the leaf

nodes are at different levels. So the tree building process

consists of searching for both the best tree structure and the

optimal parameters at each node.

Tree structure searching. We adopt a greedy algorithm

to build the tree structure. At each iteration, we search the

node whose splitting can maximize the mutual information

between the codes of sampled photo and sketch vectors.

The mutual information, given in Eqn. (1), can be eas-

ily approximated in a nonparametric way. All the sampled

photo and sketch vectors in the training set are quantized

into codes with the current tree after splitting the candidate

node, and the joint distribution of photo and sketch codes is

2We sample the gradients (i.e. the first-order derivatives in the hori-

zontal and vertical directions) Iu and Iv for an image I . Please refer to

Section 3 for details.
3The mutual information is originally defined between two random

variables Cp(x
p

i
) and Cs(x

s
i ). We use the empirical mutual information

estimated on the training set throughout this paper.

I = 1.51

If we split

Node B,

I = 0.08

If we split

Node A,

A B

C

If we split

Node C,

I = 1.41

Freq.
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0.5
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0
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0.5

0.25

0
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0

Sketch

codes

Photo codesPhoto codes

Sketch

codes

Photo codes

Sketch

codes

-- Non-leaf node

-- Leaf node

Figure 2. An illustration of tree construction with MMI. In each

step, all current leaf nodes are tested and the one with the maxi-

mum mutual information is selected to split. For a leaf node, we

try to split it and obtain a tree to encode photo vectors and sketch

vectors. The selected leaf node should satisfy: (1) the codes are

uniformly distributed; (2) the codes of photo vectors and corre-

sponding sketch vectors are highly correlated. These requirements

can be well captured under the MMI criterion. In this example,

if we split node A, requirement (2) will not be satisfied, and if

we split node C, requirement (1) will not be satisfied. The cor-

responding mutual information I of both are relatively small. So

node B with the maximum mutual information is selected. The

histograms and joint histograms of photo and sketch codes are vi-

sualized. In joint histograms, the colors represent the joint proba-

bility densities.

computed to estimate the mutual information. A toy exam-

ple is shown in Fig. 2.

Node parameter searching. It is critical to search for

optimal parameters of binary functions fp(xp) and fs(xs)
to determine how to split the node. Formally, we aim at

finding projection vectors wp,ws and thresholds τp, τs for

node k4, such that

y
p
i = wT

p x
p
i − τp, ŷ

p
i = sign(ypi ),

ysi = wT
s x

s
i − τs, ŷsi = sign(ysi ).

(2)

Then a binary value ŷ
p
i (or ŷsi ) is assigned to each vector x

p
i

(or xs
i ), to split the training data into two subsets and prop-

agate them to the two child nodes. The node propagates a

training vector pair (xp
i ,x

s
i ) to its children only if the binary

values ŷ
p
i and ŷsi are the same. Otherwise, the vector pair is

treated as an outlier and discarded.

Suppose that the input of a node k is a set of vec-

tor pairs Xk = {(xp

ki
,xs

ki
), 1 ≤ i ≤ Nk}. Denote

that X
p

k = [xp

k1
, ...,x

p

kNk

], Xs
k = [xs

k1
, ...,xs

kNk
], Yp

k =

[ypk1
, ..., y

p

kNk

], Ys
k = [ysk1

, ..., yskNk
], Ŷp

k = [ŷpk1
, ..., ŷ

p

kNk

]

4We omit index k of the parameters, for conciseness.
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and Ŷs
k = [ŷsk1

, ..., ŷskNk
]. The node is split according to the

MMI criterion, i.e. maximizing

I(Ŷp

k; Ŷ
s
k) = H(Ŷp

k) +H(Ŷs
k)−H(Ŷp

k, Ŷ
s
k). (3)

Instead of solving the above maximization problem di-

rectly, an approximate objective I(Yp

k;Y
s
k) is maximized

first. Through maximizing I(Yp

k;Y
s
k), wp and ws are es-

timated without considering τp and τs. Assume that y
p

ki

and yski
are jointly Gaussian distributed. The entropy of a

jointly Gaussian random vector g is 1

2
ln[det(Σg)] + const

[7], where Σg is the covariance matrix of g. Following this,

the mutual information can be rewritten in a simple form

I(Yp

k;Y
s
k) =

1

2
ln

(
det(Σp

k) det(Σ
s
k)

det(Σk)

)
+ const, (4)

where Σp

k, Σs
k and Σk are the covariance of Y

p

k, Ys
k and

[(Yp

k)
T
, (Ys

k)
T
]T , respectively. According to Eqn (2),

Σp

k = wT
p C

p

kwp, Σ
s
k = wT

s C
s
kws,

Σk =

[
wT

p C
p

kwp wT
p C

p,s

k ws(
wT

p C
p,s

k ws

)T
wT

s C
s
kws

]
,

(5)

where C
p

k and Cs
k are the covariance matrix of X

p

k, Xs
k,

respectively, and C
p,s

k is the covariance matrix between X
p

k

and Xs
k.

Substituting Eqn. (5) into Eqn. (4), we find the equiv-

alence between maximizing (4) and the Canonical Correla-

tion Analysis (CCA) model

max
wp,ws

wT
p C

p,s

k ws√
wT

p C
p

kwpwT
s C

s
kws

. (6)

So the optimal wp and ws are obtained by solving CCA

(details are given later). CCA is found with good trade-off

between the scalability and performance, when the input set

is usually of a large size (about 2.5 million sample pairs in

our experiments).

To estimate the thresholds τp and τs, we use brute-force

search to maximize (3) in the region (τp, τs) ∈ [µ̂p −
σ̂p, µ̂p+ σ̂p]× [µ̂s− σ̂s, µ̂s+ σ̂s], where µ̂p = mediani(y

p
i )

and σ̂p = mediani(|y
p
i − µ̂p|) are the median and median

of absolute deviation of y
p
i , respectively, and µ̂s and σ̂s are

the median and median of absolute deviation of ysi , respec-

tively.

Canonical Correlation Analysis. CCA was introduced

by Hotelling for correlating linear relationships between

two sets of vectors [10]. It was used in some computer vi-

sion applications [34, 13, 25]. However, it has not been ex-

plored as a component of a vector quantization algorithm.

Blaschko and Lampert [4] proposed an algorithm for spec-

tral clustering with paired data based on kernel CCA. How-

ever, this method is not appropriate for quantization, as the

Algorithm 1 Algorithm of building a CITP Tree

1: Input: a set of vector pairs X = {(xp
i ,x

s
i ), i =

1, ..., N}, where x
p
i ,x

s
i ∈ R

D, and the expected num-

ber of codes (i.e. leaf nodes) nL.

2: Create an empty set S , and add the root node to S .

3: repeat

4: for each node k in S and its associated vector set Xk

do

5: Compute the possible node splitting:

(i) Generate projection vectors wp,ws and thresh-

olds τp, τs with Xk;

(ii) For its left child L and right child R,

XL ← {(x
p
i ,x

s
i )|w

T
p x

p
i ≤ τp,w

T
s x

s
i ≤ τs},

XR ← {(x
p
i ,x

s
i )|w

T
p x

p
i > τp,w

T
s x

s
i > τs},

(XL ⊂ Xk,XR ⊂ Xk);
6: end for

7: Select the best node splitting with the maximum mu-

tual information in Eqn. (1);

8: Split the node, remove the node from S and add its

child nodes to S;

9: until the number of leaf nodes is nL.

10: Output: the CITP tree with projection vectors and

thresholds at each node.

kernel trick causes high computational and memory cost

due to the very large size of the training set, and the near-

est centroid assignment may be unstable (there is no hard

constraint to require a pair of vectors in the same cluster).

To solve CCA in (6), let

Sm =

[
0 C

p,s

k

(Cp,s

k )
T

0

]
,Sn =

[
C

p

k C
p,s

k

(Cp,s

k )
T

Cs
k

]
,

and then w = [wT
p ,w

T
s ]

T can be solved as the eigenvec-

tor associated with the largest eigenvalue of the generalized

eigenvalue problem Smw = λ(Sn + εI)w, where ε is a

small positive number for regularization.

The whole algorithm for building a CITP tree is summa-

rized as Algorithm 1.

2.4. Randomized CITP Forest

Randomization is an effective way to create an ensem-

ble of trees to boost the performance of tree structured al-

gorithms [21, 23, 33]. The randomized counterpart of the

CITP tree includes two modifications on node splitting as

follows.

Randomization in sub-vector choice. At each node, we

randomly sample α percent (empirically α = 80) of the el-

ement indices of the sampled vectors, i.e. use a sub-vector

of each sampled vector, to learn the projections. To im-

prove the strength of generated trees, the random choice is

repeated for 10 times empirically at each node, and the one
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Figure 3. The pipeline of extracting CITE descriptors.

with the maximum mutual information in Eqn. (3) is se-

lected. The randomization at each node results in random-

ized trees with different tree structures and utilizing differ-

ent information from the training data. Therefore, the ran-

domized trees are more complementary.

Randomization in parameter selection. The eigenvec-

tors associated with the first d largest eigenvalues in the

CCA model are first selected. Then a set of n vectors are

generated by randomly linearly combining the d selected

eigenvectors.5 According to the MMI criterion in Eqn. (3),

the best one is selected from the set of n random vectors

and used as the projection vectors wp and ws. In our exper-

iments, we choose d = 3 and n = 20.

The creation of a random ensemble of diverse trees can

significantly improve the performance over a single tree,

which is verified by our experiments.

3. Coupled Encoding Based Descriptor

In this section, we introduce our coupled information-

theoretic encoding (CITE) based descriptor. With a CITP

tree, a photo or a sketch can be converted into an image

of discrete codes. The CITE descriptor is a collection of

region-based histograms of the “code” image. The pipeline

of photo-sketch recognition using a single CITP tree is

shown in Fig. 3. The details are given as follows.

Preprocessing. The same geometric rectification and

photometric rectification are applied to all the photos and

sketches. With affine transform, the images are cropped

to 80 × 64, and the two eye centers and the mouth cen-

ter of all the face images are at fixed positions. Then

both the photo and sketch images are processed with a

Difference-of-Gaussians (DoG) filter [11] to remove both

high-frequency and low-frequency illumination variations.

Empirical investigations show that (σ1, σ2) = (1, 2) is the

best in our experiments.

5The eigenvectors are orthogonalized with Gram-Schmidt orthogonal-

ization and normalized with L2-norm.

Sampling and normalization. At each pixel, its neigh-

boring pixels are sampled in a certain pattern to form a vec-

tor. A sampling pattern is a combination of one or several

rings and the pixel itself. On a ring with radius r, 8r pixels

are sampled evenly. Fig. 3 shows the sampling pattern of

r = 2. We denote a CITE descriptor by a sampling pattern

with rings of radius r1, ..., rs as CITEr1,...,rs .

We find that sampling the gradients Iu and Iv results in

a better descriptor than sampling the intensities [5]. The

gradient domain explicitly reflects relationships between

neighboring pixels. Therefore, it has more discriminat-

ing power to discover key facial features than the inten-

sity domain. In addition, the similarity between photos and

sketches are easier to compare in the gradient domain than

intensity domain [35].

After the sampling, each sampled vector is normalized

such that its L2-norm is unit.

Coupled Information-Theoretic Encoding. In the en-

coding step, the sampled vectors are turned into discrete

codes using the proposed CITP tree (Section 2). Then

each pixel has a code and the input image is converted

into a “code” image. The vectors sampled from photos and

sketches for training CITP tree are paired according to the

facial landmarks detected by a state-of-the-art alignment al-

gorithm [16].6 Specifically, a pixel in the sketch image finds

its counterpart in the photo image using a simple warping

based on the landmarks. Note that the pairing is performed

after sampling so that local structures are not deformed by

the warping.

CITE Descriptor. The image is divided into 7 × 5 lo-

cal regions with equal size, and a histogram of the codes

is computed in each region. Then the local histograms are

concatenated to form a histogram representation of the im-

age, i.e. the CITE descriptor.

6According to our observation, a general face alignment algorithm

trained on commonly used face photo data sets is actually also effective

for sketch alignment. We did not separately train a face alignment algo-

rithm for sketches.
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Figure 4. Examples of photos from the CUFSF database and cor-

responding sketches drawn by the artist.

Classifier. We use a simple PCA+LDA classifier7

[3, 29] to compute the dissimilarity between a photo and a

sketch. By learning a linear projection matrix on the train-

ing set, it projects CITE descriptors into a low-dimensional

space. Note that the descriptors are centered, i.e. the mean

of the training CITE descriptors is subtracted from them.

Then each projected CITE descriptor is normalized to a unit

L2-norm and the Euclidean distance between the normal-

ized low-dimensional representation of a photo and a sketch

is computed as their dissimilarity.

Fusion. We use a linear SVM to fuse dissimilarities by

different CITE descriptors. The different CITE descriptors

can be obtained by running the randomized CITP tree al-

gorithm repeatedly. To train the one-class SVM, we select

all the intrapersonal pairs and the same number of interper-

sonal pairs with smallest dissimilarities.

4. Experiments

In this section, we study the performance of our CITE

descriptors and CITP trees on face photo-sketch recogni-

tion task. We first compare the performance of our CITE

descriptor, with a single sampling pattern and single tree, to

popular facial features, including LBP [1] and SIFT [19].

The classifier is not used in this part to clearly show their

difference. Then we investigate the effect of various free

parameters on the performance of the system. Finally we

show that our method is superior to the state-of-the-art.

Datasets. The CUHK Face Sketch FERET Database

(CUFSF) is used for the experiments. There are 1, 194 peo-

ple with lighting variations in the set. Each person has a

photo and a sketch with shape exaggeration drawn by an

artist. Some examples are shown in Fig. 4. The CUFS

database [31] is also used as a benchmark. This dataset con-

sists of 606 persons, each of which has a photo-sketch pair.

The sketches were drawn without exaggeration by an artist

when viewing the photo.

On the CUFSF database, 500 persons are randomly se-

lected as the training set, and the remaining 694 persons

form the testing set. On the CUFS database, 306 persons

are in the training set and the other 300 persons are in the

testing set.

Evaluation metrics. The performance is reported

as Verification Rates (VR) at 0.1% False Acceptance

7A small regularization parameter is added to the diagonal elements of

the within-class matrix of LDA to avoid singularity.
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Figure 5. Comparison between CITE2 (single CITP tree), LBP and

SIFT. The dissimilarity between a photo and a sketch is computed

as the distance between descriptors extracted on them. The χ
2

distance [1] is used for LBP and CITE2, and Euclidean distance

is used for SIFT. For simplicity, we give the length of a local his-

togram for each descriptor, instead of the length of the whole de-

scriptor, in brackets.

Rate (FAR) and Receiving Operator Characteristic (ROC)

curves.

4.1. Descriptor Comparison

We compare our descriptor with LBP [1] and SIFT [19].

The LBP is computed based on sampling points on a circle.

We explore different numbers of sampling points and dif-

ferent radiuses. We find that the LBP descriptors extracted

from DoG filtered images perform better than from original

images. The 128-dimensional SIFT has 4 × 4 spatial bins

of the same size and 8 orientation bins evenly spaced over

0◦ − 360◦. The vote of a pixel to the histogram is weighted

by its gradient magnitude and a Gaussian window with pa-

rameter σ centered at the center of the region. We explore

different sizes of the region and different σ. For our CITE

descriptor, we use the sampling pattern of a single ring with

r = 2 as shown in Fig. 3. We test on different numbers of

leaf nodes (i.e. different sizes of a local histogram).

The ROC curves are shown in Fig. 5. Even 32-

dimensional CITE2 (please refer to Section 3 for this no-

tation) significantly outperforms the 59-dimensional LBP

and 128-dimensional SIFT. The 256-dimensional CITE2

(68.58%) beats the best results of LBP (41.35%) and SIFT

(44.96%) by 20% on VR at 0.1% FAR.

4.2. Parameter Exploration

We investigate the effect of various free parameters on

the performance of the system, including the number of leaf

nodes, the projected dimension by PCA+LDA, the size of

randomized forest and the effect of using different sampling

patterns. We fix the other factors when investigating one

parameter.
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Figure 6. VR at 0.1% FAR vs. (a) number of leaf nodes; (b)

PCA+LDA dimension; (c) size of randomized forest; (d) compari-

son of ensemble of forests with different sampling patterns and the

forest with a single sampling pattern. In (a)–(c), The descriptor is

CITE2. In (a), the descriptors are compressed to 600 dimensional

using PCA+LDA, and a single CITP tree is used. In (b), we use

256 leaf nodes and a single CITP tree. In (c) and (d), we use 256

leaf nodes and 600 PCA+LDA dimensions.

Number of Leaf Nodes. We compare the effect of using

different numbers of leaf nodes in a CITP tree. The num-

ber is extensively studied from 32 (25) to 1024 (210). As

shown in Fig. 6(a), the VR initially increases, and does not

increase when the number is larger than 256. Due to small

performance gain and high computational cost of a large

leaf node number, we choose 256 leaf nodes as our default

setting.

PCA+LDA Dimension. The reduced dimension is an

important parameter of PCA+LDA. The VR has a fairly

large stable region and varies less than 1% from 500 to 950
(see Fig. 6(b)). We choose 600 PCA+LDA dimensions in

our final system.

Size of Randomized Forest. We vary the number of

randomized trees in the CITP forest from 1 to 9. Fig. 6(c)

shows that increasing the number of trees from 1 to 5 in-

creases the VR from 87.90% to 93.95%, with little improve-

ment beyond this. Hence, we fix the number of randomized

trees in a CITP forest to be 5.

Ensemble of Randomized Forests with Different

Sampling Patterns. Although the performance increases

slowly when the number of randomized trees is more than

5, using ensemble of randomized forests with different sam-

pling patterns can further boost the performance. Differ-

ent sampling patterns can capture rich information across

multiple scales. Fig. 6(d) shows that using five sampling

patterns improves the VR at 0.1% FAR from 93.95% to

98.70%.
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Figure 7. Comparison of the state-of-the-art approaches and our

method on the CUFSF database. ROC curves and VR at 0.1%

FAR are shown.

4.3. Experiments on Benchmarks

We compare our algorithm with the following state-of-

the-art approaches on the CUFSF database. The algorithms

are tuned to the best settings according to their paper.

• MRF-based synthesis [31]. Pseudo photos are synthe-

sized from query sketches, and random sampling LDA

(RS-LDA) [30] is used to match them to gallery pho-

tos. In addition, we test LE [5] on matching pseudo

photos and gallery photos.

• Kernel CSR [15]. The CSR model is trained to seek for

a common discriminative subspace, based on intensi-

ties, LBP and SIFT feature vectors separately.

• LFDA [14]. It fuses the LBP features with four dif-

ferent radiuses and the SIFT features with a discrim-

inative model. For each feature, multiple projection

vectors are learnt.

Fig. 7 shows that our method significantly outperforms

the state-of-the-art approaches. MRF-based synthesis re-

quires that there is no significant shape distortion between

photos and sketches in the training set, and also that train-

ing photos are taken under similar lighting conditions. This

method does not work well in this new data set because the

drawing style of the artist involves large shape exaggera-

tion and the photos in the FERET database are taken un-

der different lightings with large variations. Therefore, the

pseudo photos by MRF-based synthesis have artifacts such

as distortions. Such artifacts degrade the performance of

state-of-the-art face photo recognition algorithms including

RS-LDA and LE. The results of Kernel CSR on different
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Table 1. Rank-1 recognition rates on the CUFS database. The

recognition rates are averaged over five random splits of 306 train-

ing persons and 300 testing persons. We test our method with the

same configuration of training and testing splits as [31, 14].

MRF+RS-LDA [31] LFDA [14] Ours

96.30% 99.47% 99.87%

features verify that the inappropriate selection of features

will reduce the discriminative power of the classifier. SIFT

features have better results than LBP on the photo-sketch

recognition task. LFDA achieves a good result by fusing

five different kinds of features with two different spatial par-

titions. However, its error rate (9.22%) is much higher than

ours (1.30%) for 0.1% FAR.

Our method also has superior performance on the CUFS

database, a standard benchmark for face photo-sketch

recognition, as shown in Table 1. Apparently, this dataset

is now an easy one for the state-of-the-art methods.

5. Conclusions

We proposed a coupled information-theoretic encoding

based descriptor for face photo-sketch recognition. We

introduced coupled information-theoretic projection forest

to maximize the mutual information between the encoded

photo and encoded sketch of the same subject. Our system

significantly outperforms the state-of-the-art approaches. In

the future work, we would like to further investigate the sys-

tem with more cross-modality recognition problems.
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