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for dense wavelength-division multiplexing
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We present a coupled-mode theory of fiber-optic add–drop filters, which involve directional coupling between
two fibers combined with fiber Bragg gratings defined inside the coupling region. The analysis self-
consistently accounts for both the directional and the ref lection coupling, and the propagation constants
and structure of the supermodes of the combined structure are derived. We present a detailed analysis of
a filter design based on identical fibers. The calculated device parameters satisfy the requirements for dense
wavelength-division multiplexing applications.  1997 Optical Society of America
Wavelength-division multiplexing is an attractive
fiber-optic communications technique because it al-
lows one to increase the transmission bandwidths of
existing fiber-optic links by essentially the number of
independent, closely spaced frequency channels. A
challenging problem is the development of efficient
add–drop devices that would enable one to add or drop
optical signals at preselected wavelengths without
substantial insertion loss and interference with other
frequency channels in the link. A number of such
filters based on fiber-grating technology1 have been
proposed and demonstrated.2 – 5

We present a coupled-mode analysis of a class of
fiber-optic add–drop filters that consist of a directional
coupler with a Bragg grating defined in it (Fig. 1). Re-
gions I and III represent conventional directional cou-
plers in which modes in (single-mode) fibers A and B
exchange their energy.6 Wavelength selectivity is pro-
vided by region II, which contains a ref lection Bragg
grating for a specified frequency channel. The optical
waves in the selected wavelength band are ref lected
and coupled into the drop port of the device by use
of the directional coupling provided by regions II and
I. In the presence of both codirectional and contradi-
rectional coupling (region II) the coupled-mode equa-
tions can be written as6
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where A1, A2, B1, and B2 are the corresponding slowly
varying mode amplitudes; k and kab are the coupling
0146-9592/97/100688-03$10.00/0
strengths of the Bragg grating and the directional cou-
pler, respectively.6 The mismatch parameters Dba,
Dbb, and Dbab are defined as

2Dba ; 2ba 2 Kg ­ 2ba 2 2pyLg , (5)

2Dbb ; 2bb 2 Kg ­ 2bb 2 2pyLg , (6)

2Dbab ; ba 2 bb ­ Dba 2 Dbb , (7)

where ba and bb are propagation constants (unper-
turbed) in fibers A and B, respectively, and Lg is
the period of the f iber Bragg grating. In Eqs. (1)–
(4) we neglected the direct coupling between counter-
propagating waves in different waveguides (i.e.,
coupling between A1 and B2 and between A2 and B1)
because this kind of coupling is essentially propor-
tional to the grating coupling strength k times the
mode overlap integral (,kabyb) and thus is substan-
tially weaker than codirectional and contradirectional
coupling. Only in strongly coupled waveguides (with
coupling distance 1ykab of the order of several light
wavelengths) can this mechanism make a substantial
contribution.

Mode amplitudes A1, A2, B1, and B2 are expressed as

A1szd ­ Ã1szdexpsiDbazd , (8)

A2szd ­ Ã2szdexps2iDbazd , (9)

B1szd ­ B̃1szdexpsiDbbzd , (10)

B2szd ­ B̃2szdexps2iDbbzd . (11)

Then the system of coupled-mode equations (1)–(4) in

Fig. 1. Basic schematic of a f iber-optic add–drop f ilter.
 1997 Optical Society of America
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region II takes a form that can be presented in a
matrix format:
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Ã1

Ã2
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(12)
The eigenvalues of the coupling matrix given by
Eq. (12) are the propagation factors of the four eigen-
modes in the Bragg-grating region:

s1,...,4 ­ 6

Ω
jkj2 2

∑
sjkabj2 1 Db

2
abd1/2 6

Dba 1 Dbb

2

∏æ1/2
.

(13)

Depending on Bragg conditions and ref lection cou-
pling strength, these eigenmodes can be propagating or
evanescent. The spatial structure of the eigenmodes
(supermodes of region II) is determined by the eigen-
vectors of the coupling matrix [Eq. (12)]. The eigen-
vectors’ components are the expansion coeff icients for
supermodes in terms of modes in individual f ibers.
Four supermodes are exponentially growing and expo-
nentially decaying (with z) symmetric and antisymmet-
ric eigenmodes of the directional coupler.

The response of an add–drop filter can be calcu-
lated as follows. First, the input waves [A1s0d and
B1s0d, here assumed to be zero, i.e., B1s0d ; 0], are de-
composed in terms of the two forward-propagating su-
permodes of the directional coupler (region I).6 These
two supermodes propagate (with their respective prop-
agation constants) to the boundary with Bragg-grating
region II and are decompose in terms of individual
guide mode amplitudes, yielding A1sL1d and B1sL1d.
These values, combined with the boundary conditions
A2sL1 1 L2d ­ 0 and B2sL1 1 L2d ­ 0 are used to find
the amplitudes of the four supermodes in the Bragg-
grating region. The total f ield of the supermodes is
then decomposed at the boundary z ­ L1 in terms of
mode amplitudes in the individual waveguides, yield-
ing the values of the backpropagating waves A2sL1d
and B2sL1d at the interface with the directional cou-
pler of region I. Then, similarly to the f irst step of
the analysis, one uses these values to f ind the ampli-
tudes of the two backpropagating supermodes in di-
rectional coupling region I and, finally, the amplitudes
B2s0d and A2s0d at the output of the device. B2s0d rep-
resents the useful drop output, and A2s0d is the un-
desirable return loss. The purpose of region III is to
direct the frequency channels outside the selected band
into the output port (out1 in Fig. 1) of the device [i.e.,
jkabjsL1 1 L2 1 L3d ­ pn].

The above approach allows us to analyze the device
for the general case when the optical waves in wave-
guides A and B have arbitrarily different propa-
gation constants. In what follows, we consider a
substantially simpler (yet important, and realized ex-
perimentally5) case in which waveguides A and B are
essentially identical; i.e., ba ; bb and, therefore,
Dbab ; 0 and Dba ; Dbb ; Db, where Db is the
mismatch parameter (the same for both waveguides).
The propagation factors of the four supermodes in the
Bragg-grating region then become [Eq. (13)]

s1,...,4 ­ 6 fjkj2 2 sjkabj 6 Dbd2g1/2. (14)

Using the above procedure, we find the drop output:
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and the return loss, or backref lection, of the filter:
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A1s0d
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where s1 ­ s1dfjkj2 2 sjkabj 1 Dbd2g1/2 and s2 ­ s1d
fjkj2 2 sjkabj 2 Dbd2g1/2 [these are, in fact, the super-
modes’ propagation factors in region II, Eq. (14)].

The total power ref lectivity R (drop 1 return) does
not depend on L1 and at central frequency sDb ­ 0d is
given by

R ­ tanh2ssL2d
jkj2

jsj2 1 jkabj2 tanh2ssL2d
, (17)

where s is the coupling strength at the central fre-
quency of the Bragg grating: s ­ sjkj2 2 jkabj2d1/2,
reduced because of the directional coupling. Equa-
tion (17) allows us to calculate the grating length L2,
given the required R and values of k and kab.

The length L1 of the first directional coupling region,
I, has to be optimized to minimize the backref lection at
the central frequency of the f ilter; i.e., jA2s0dj2 has to be
equal to 0 for Db ­ 0. Using Eq. (16), we obtain the
following expression for the optimal value of L1:

tans2jkabjLopt
1 d ­

s
jkabjtanhssL2d

. (18)

Fig. 2. Drop output jB2s0dj2yA1s0dj2 of the f ilter versus
deviation from the central wavelength.
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Fig. 3. Return loss jA2s0dj2yjA1s0dj2.

Fig. 4. Total transmission 1 2 fA2s0dj2 1 jB2s0dj2gy
jA1s0dj2.

Fig. 5. Total ref lectivity fjA2s0dj2 1 B2s0dj2gyjA1s0dj2 of the
filter for the case of strong directional coupling jkabj .
jkjsjkabj ­ 15 cm21, hence b .. jkabj; other parameters are
the same as in Figs. 2–4). The two independent peaks
correspond to almost 100% ref lection of each of the two
forward-propagating orthogonal supermodes.

It can be shown that for total ref lectivity R close to
unity and for small deviations of coupler length L1 from
its optimal value Lopt

1 , the normalized return loss at
the central frequency of the filter (i.e., for Db ­ 0) is
ø10 Logs4jkabj2jL1 2 L

opt
1 j2d (in decibels).

We calculate the normalized drop efficiency (Fig. 2),
return loss (Fig. 3), and total transmission (Fig. 4)
of the device for a typical set of parameters: jkj ­
5 cm21 (corresponding to an index change in the f iber
core of 2.5 3 1024), jkabj ­ 1 cm21, L2 ­ 1.175 cm,
and central wavelength l0 ­ 1550 nm. We calculated
the value of L1 ­ 0.685 cm by using Eq. (18) to
achieve zero return loss at central wavelength l0.
The device has ,0.2-nm total bandwidth in the drop
output and exhibits relatively weak interchannel cross
talk s, 220 dB at Dl ­ 61 nm; Fig. 2). The cross
talk can be decreased substantially by appropriate
grating apodization.7 The signal extraction efficiency
i.e., the residual transmission through the device at the
resonant wavelength l0, can be as low as ,240 dB
(for the chosen values of k and L2). The minimum L3
is equal to 1.28 cm to satisfy the condition jkabjsL1 1
L2 1 L3d ­ p.

We also investigate the case when the direc-
tional coupling dominates the contradirectional one,
i.e., jkabj . jkj (Fig. 5). The ref lectivity-versus-
wavelength curve exhibits two maxima, which are off
the central frequency. This can be explained as fol-
lows. The propagation constants of the copropagating
symmetric and antisymmetric supermodes of the direc-
tional coupler differ by 2jkabj (in fact, they are b 6 jkabj
for forward-propagating supermodes6). Therefore,
in the Bragg-grating region the counterpropagating
supermodes (symmetric and asymmetric pair) become
resonant with the grating periodicity at essentially
different frequencies, i.e., when Db ­ 1jkabj (for slow,
antisymmetric supermodes) and Db ­ 2jkabj (for fast,
symmetric supermodes). If the bandwidth of the f iber
grating is narrower than the difference in resonant
frequencies, two separate maxima are observed, as
shown in Fig. 5. The condition for normal operation
(such as is shown in Figs. 2–4) of the add–drop device
is jkj . jkabj; therefore strongly coupled waveguides
are not suitable for this type of application.

In conclusion, we have developed a self-consistent
coupled-mode analysis that accounts for simultane-
ous ref lection and codirectional coupling in the Bragg-
grating region. An all-f iber add–drop multiplexer
based on identical fibers combined with a Bragg grat-
ing was analyzed. Using realistic parameters, we
can envisage the following characteristics of the de-
vice: drop efficiency, .40 dB; return loss, .30 dB; and
interchannel cross talk, ,20 dB at Dl ­ 61 nm, which
can be decreased substantially by grating apodization.
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