
COUPLED MODE THEORY

BASED

MODELING AND ANALYSIS

OF

CIRCULAR OPTICAL MICRORESONATORS

Kirankumar Rajshekhar Hiremath



The research presented in this dissertation was carried out at the Applied Analysis

and Mathematical Physics group, the faculty of Electrical Engineering, Mathemat-

ics and Computer Science, and MESA+ Research Institute, University of Twente,

P. O. Box 217, 7500 AE, Enschede, The Netherlands.

This research was carried out as a part of the European Commission funded project

“Next generation Active Integrated optic Subsystems” (project IST-2000-28018).

Front cover: Field examples for a 2-D microdisk resonator. The plots show ab-

solute value |Ey| of the principal component of the TE fields (top), and snapshots

of the real physical electric field Ey (bottom). From left to right, the field plots

illustrate microresonator in off-resonance state, in TE1 resonance state, and in TE0

resonance state. The color scale levels of the plots in each row are comparable. For

further details refer to Section 4.4.2.

Using just four relevant basis modes (the fundamental mode of a straight wave-

guide, and the first three lower order modes of a bent waveguide), the simulations

are done with the coupled mode theory based approach discussed in this thesis.

Back cover: Whispering gallery modes of a 2-D bent waveguide. The plots show

absolute value |Ey| of the principal component of the TE mode profile (top), and

snapshots of the real physical electric field Ey (bottom). From left to right, it

illustrates TE0, TE1, and TE2 mode. For further details refer to Section 2.4.5.

The results are obtained with the analytic model of bent waveguides presented

in Chapter 2. Having access to the analytic bent modes greatly facilitated an ef-

ficient implementation of the coupled mode theory based model of bent-straight

waveguide couplers, which in turn led to various accomplishments of the present

resonator model.

This thesis was typeset using LATEX 2ε and the softwares Emacs, AUCTEX, RefTEX

under SuSe Linux. Except the use of MATLAB for plotting, all other softwares

used are public domain (and mostly open source) softwares viz. g++, f77, Xdvi,

ghostview, gnuplot, Xfig, and gimp. The cover page was designed in Openoffice.

Copyright c© 2005 by Kirankumar R. Hiremath, Enschede, The Netherlands

ISBN 90-365-2267-6



COUPLED MODE THEORY BASED

MODELING AND ANALYSIS OF

CIRCULAR OPTICAL MICRORESONATORS

DISSERTATION

to obtain

the doctor’s degree at the University of Twente,

on the authority of the rector magnificus,

prof. dr. W. H. M. Zijm,

on account of the decision of the graduation committee,

to be publicly defended

on Friday 14 October 2005 at 16:45

by

Kirankumar Rajshekhar Hiremath

born on 21 August 1976

in Solapur, India



This dissertation is approved by

the promotor

prof. dr. E. van Groesen

the assistant promotor

dr. Manfred Hammer



If I have seen further it is because they taught me to stand.

This work is dedicated to my teachers.





Acknowledgement

On 30 March 2001, I got an email from Brenny van Groesen, in which he wrote

“.....One type of spectacular new devices are microresonators, where constructive

interference of light traveling in a circular disk, may lead to transfer of light from

one waveguide to another. Mathematical challenge is to understand the qualitative

behaviour (with new physical phenomena), and using numerical tools, approximate

actual solutions. ..... My specific question to you: are you interested to accept this

offer and to come to UTwente.....?” What happened after that is in this thesis in

your hands! Brenny, thank you very much for introducing me to fascinating vista

of mathematical aspects of electromagnetics.

While Brenny gave me a canvas to paint my impressions, Manfred Hammer gave

me brushes and colors. I explored the landscape under his supervision. At the start

of Ph. D., Manfred explained me the project, and gave the relevant literature collec-

tion done by him. That helped me to orient myself quickly in the right direction. In

middle of the course, he gave me his 2-D straight waveguides mode solver. On top

of which, I developed 2-D bent waveguides mode solver, bent-straight waveguide

couplers module, and resonators module.

I learned countless things from him. It took me quite some time to get embodied

in his extremely organized and disciplined way of modus operandi. And now, it

became a part of my modus vivendi! His style of comprehensive analysis of a

topic, meticulous writing, spotless presentation, and single-minded hard working

left the ever lasting impressions on me. During the formative phase of the Ph. D.,

his alacritous availability for discussions, his insistence on preciseness helped me

a lot. In retrospect, working with Manfred was the venerable experience.

I also benefited by the experience and insight of Hugo Hoekstra, Remco Stoffer

and Theo Valkering. The discussions with them during group meetings and review

meetings helped me to develop an understanding of the present interdisciplinary

work from the application point of view.

i



I will like to thank my colleagues from Applied Analysis and Mathematical Physics

(AAMP) and Numerical Analysis and Computational Mechanics (NACM) groups.

I have fond memories of my officemates Pearu Peterson (for enjoying all sorts of

“strange” coffees), Fedderik van der Bos (voor Nederlands praten en vertalen),

Arek Kuczaj (for software troubleshooting). It was a great fun to work with Linux

enthusiastic guys like Vijaya Ambati (Ploting=Gnuplot), Christiaan Klaij (Viva

Emacs!), Lars Pesch (The Jack of many GNU softwares), Joris van den Berg (Mr.

Macintosh).....and of course Manfred (For C++ optimization ideas, Xfig).

Scientific discussions with Agus Suryanto, Ardhasena Sopaheluwakan, Jaqueline

Nicolau, Henri Uranus, Didit Yudistira was very useful. I will like to thank Timco

Visser, Hala Elrofai, Helena Margaretha, Hadi Susanto, Natanael Karjanto, Monica

Polner, Janivita Sudirham, Mikhail Tchesnokov, and Davit Harutyunyan. Also

thanks to Debby Lanser, Mike Botchev, Bernard Geurts, and Chris Stolk for sharing

their valuable experiences with me.

I have the unique memories of two very special persons: Marielle Plekenpol and

Diana Dalenoord. They act as binding forces, leaving no stone unturned (well....

that is a quite difficult task in The Netherlands!) to make all of us mingle, come

together for informal gatherings like birthday celebrations, lunch-together, group

outings. They have added many countries to my philatelic collection. I acknowl-

edge Marielle’s support for the administrative and practical matters.

Interaction with Mart Diemeer, Douwe Geuzebroek, Ronald Dekker, and many

other colleagues from Integrated Optical MicroSystems (IOMS) group and MESA+

Research Institute, and also with NAIS project partners, especially with Ladislav

Prkna, was very fruitful.

I thank Enno Oosterhuis and Ewout Bakker from computer helpdesk for their sup-

port for computational infrastructure. With the advent of the computers and wide

spread use of digital format, a need to visit library is becoming less and less. Never-

theless, there is a team of dedicated librarians working quietly in the background.

I thank the library support team for their efficient content provision. Thanks to

Michel ten Bulte for his efficient co-ordination during moving from TWRC to In-

formatica, and from Informatica to Ravelijn. After a day’s work, I used to leave

my table in a bit of mess, but next day it used to be systematically cleaned and

arranged. How can I forget those nameless, unknown hands? Very special thanks

to them.

The presence of Indian friends at the University of Twente was very important for

emotional composure; many thanks from heart to Makarand Pimplapure, Rahul

Dahule, Salim Deshmukh, Sheela Sowariraj, Rajshekhar Kakumani, Ramkrishna

ii



Pasumarthy, Vijaya Ambati, Manish Arora, Amol Thakre, Chandrashekhar Mu-

rade, and Rajeev Roy; also to affectionate families Madhavi and Ravi Tupe, Shashi

and Satyendra Tomar, Vishakha and Pramod Agarwal, Deepa and Viswanath Ta-

lasila, Kavitha and Kiran Thumma. I am recalling so many other names...... I will

always cherish memories of all these gezellige people!

For the last four years, while I was working like a bee in my bonnet, far far away

there are a few people who always used to encourage me without expressing their

griefs. They gave me wings and power to fly. They supported my ideas to explore a

new sky. I am indebted to my parents for giving me a free hand, and supporting me

at the crucial moments. Thanks to my siblings Hemakka, Ashakka and Amit for

taking care of the family, and leaving me free of any worries. I specially remember

passing away of my grandmother, who was my the first mathematics teacher. With-

out the support of my siblings in “those” difficult situations, I don’t know.....how I

would have found my way. Thank you Netra for being with me, and synchronizing

my heartbeats and brain-waves. Thanks to pals Balaji Kasal and Ganesh Bagler.

The experience of these four years will “guide” my journey ahead. Van harte be-

dankt allemaal, en tot straks.

K. R. (Kiran) Hiremath October 2005, Enschede

iii





Abstract

For the full utilization of large bandwidth and high speed features provided by opti-

cal fibers, currently concepts for integrated optical devices for wavelength division

multiplexing/demultiplexing are vigorously investigated. Due to their superior se-

lectivity, compactness, and possibility of dense integration, microresonators with

circular ring or disk cavities are attractive add-drop filter elements for applications

in photonic chips related to optical wavelength-division multiplexing. Modeling of

these devices is the topic of the present work.

In this thesis, we restrict ourself to two dimensional settings. While for specific

configurations one could regard the present two dimensional model as an approx-

imate description of realistic devices in terms of effective indices, in other cases

simulations in three spatial dimensions are certainly necessary, e.g. for vertically

coupled resonators. Therefore our model is formulated such that an extension to

three dimensions is straightforward. We treat the circular microcavities as traveling

wave resonators in the framework of a pure frequency domain description.

The most common resonator model, discussed in Chapter 1, permits a basic under-

standing of the functioning of these devices. The resonators are functionally repre-

sented in terms of two bent-straight waveguide couplers with appropriate connec-

tions using bent and straight waveguides. The abstract scattering matrices of these

couplers, and the propagation constants of the cavity bends allow to compute the

spectral responses of the resonators. Generally, these quantities are treated as free

parameters. One of the objectives of this work is to present a systematic approach

to compute these free parameters for given resonator configurations. Another ob-

jective is to characterize the response of the resonators systematically for various

geometrical parameters (e.g. the radius of the cavity, the widths of the waveguides,

the separation distances) and material parameters (e.g. the refractive indices).

A rigorous classical analytic model of confined optical wave propagation along

2-D bent slab waveguides and curved dielectric interfaces is investigated in Chap-

ter 2. This frequency domain model is based on ansatz of piecewise continuous
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bend mode profiles in terms of Bessel and Hankel functions. This approach pro-

vides a clear picture of the behaviour of bend modes, concerning their decay for

large radial arguments or effects of varying bend radius. For the numerical imple-

mentation of this model, fast and reliable routines are required to evaluate Bessel

functions with large complex orders and large arguments. Using the “uniform

asymptotic expansions” of Bessel/Hankel functions, we found that with present

standard computers it is not a problem to carry out the rigorous analytic evaluation

of the problem. Our implementation enabled detailed studies of bent waveguide

properties, including higher order bend modes and whispering gallery modes, their

interference patterns, and issues related to bend mode normalization and orthog-

onality properties. Also a perturbational expression is derived for the shift in the

propagation constant due to changes in the core refractive index.

Capitalizing on the availability of rigorous analytical modal solutions for 2-D bent

waveguides, Chapter 3 presents a model of bent-straight waveguide couplers us-

ing a frequency domain spatial coupled mode formalism, derived by means of a

variational principle. The formulation is consistent with standard physical notions;

it takes into account that multiple modes in each of the cores may turn out to be

relevant for the functioning of the resonators supplemented with such couplers.

Simulation results for the response of 2-D couplers for monomode and multimode

settings for varying separation distances, radii, and different wavelengths are dis-

cussed. The resulting scattering matrices show reciprocity as expected according

to the symmetry of the coupler structures, which also provides a useful means of

assessing the reliability of the simulations.

Having explained how to compute the required cavity mode propagation constants

and the scattering matrices, Chapter 4 presents simulation results for the entire

resonator devices. We also discuss a few procedures for the faster calculation

of the spectral response. The examples cover the spectral response and field for

microresonators with mono- and multi-modal cavities for TE and TM polariza-

tions. Comparisons with finite difference time domain simulations show very good

overall agreement. A detailed analysis of effect of the separation distances on the

resonator spectral response is carried out, which leads to a useful criterion that

should be satisfied by the numerical simulations. Also, a perturbational approach

for the evaluation of tuning of resonators by slight changes of the cavity core re-

fractive index is presented.

The present work about coupled mode theory based modeling and analysis of 2-D

circular integrated optical microresonators paved the way for analogous simula-

tions of realistic microresonators in three spatial dimensions.

vi



Contents

1 Introduction 1

1.1 Rise of optical technology . . . . . . . . . . . . . . . . . . . . . 2

1.2 Next generation Active Integrated optic Subsystems . . . . . . . . 4

1.3 Circular optical microresonators . . . . . . . . . . . . . . . . . . 5

1.4 Ring-resonator theory . . . . . . . . . . . . . . . . . . . . . . . . 8

1.4.1 “Standard model” for resonators: Monomode setting . . . 9

1.4.2 Power transfer . . . . . . . . . . . . . . . . . . . . . . . 10

1.4.3 Resonances . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.4.4 Resonance characteristics . . . . . . . . . . . . . . . . . 12

1.4.5 Tuning . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.5 Existing approaches for modeling of circular microresonators . . . 16

1.6 Scope of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.7 Outline of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.8 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2 Analytic approach to dielectric optical bent slab waveguides 21

2.1 Existing approaches for modeling of bent waveguides . . . . . . . 23

2.2 Bent waveguide model . . . . . . . . . . . . . . . . . . . . . . . 24

2.2.1 Bend mode normalization . . . . . . . . . . . . . . . . . 27

2.2.2 Orthogonality of bend modes . . . . . . . . . . . . . . . . 29

vii



2.3 Remarks on the numerical implementation . . . . . . . . . . . . . 32

2.4 Simulation results . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.4.1 Propagation constants . . . . . . . . . . . . . . . . . . . 34

2.4.2 Mode profiles . . . . . . . . . . . . . . . . . . . . . . . . 36

2.4.3 Comparison with FDTD results . . . . . . . . . . . . . . 38

2.4.4 Higher order bend modes . . . . . . . . . . . . . . . . . . 39

2.4.5 Whispering gallery modes . . . . . . . . . . . . . . . . . 42

2.5 Effect of core refractive index perturbation . . . . . . . . . . . . . 44

2.6 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . 47

3 Bent-Straight waveguide couplers 49

3.1 Coupled mode theory . . . . . . . . . . . . . . . . . . . . . . . . 50

3.2 Bent-straight waveguide couplers . . . . . . . . . . . . . . . . . . 51

3.2.1 Coupled mode equations . . . . . . . . . . . . . . . . . . 53

3.2.2 Transfer matrix and scattering matrix . . . . . . . . . . . 55

3.2.3 Remarks on the projection operation . . . . . . . . . . . . 57

3.3 Reciprocity of scattering matrix . . . . . . . . . . . . . . . . . . 58

3.4 Simulation results . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.4.1 Coupler with monomodal bent waveguide . . . . . . . . . 60

3.4.2 Coupler with multimodal bent waveguide . . . . . . . . . 66

3.5 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . 70

4 Microresonators 73

4.1 Abstract microresonator model . . . . . . . . . . . . . . . . . . . 74

4.2 Scattering matrix analysis of the full resonator . . . . . . . . . . . 77

4.3 Spectrum evaluation . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.4 Simulation results . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.4.1 Microring resonator . . . . . . . . . . . . . . . . . . . . 80

4.4.2 Microdisk resonator . . . . . . . . . . . . . . . . . . . . 84

viii



4.4.3 Compact high contrast cavities . . . . . . . . . . . . . . . 89

4.5 Influence of separation distance on the spectral response . . . . . . 93

4.5.1 Changing both separation distances identically . . . . . . 93

4.5.2 Changing only one of the separation distances . . . . . . . 95

4.5.3 Shifting the cavity between fixed bus waveguides . . . . . 98

4.6 Tuning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

4.7 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . 106

5 Conclusions and outlook 109

ix





Chapter 1

Introduction

Communication networks are part and parcel of today’s

knowledge based society. Optical fibers are extensively

used in state-of-the-art communication networks. But

the use of electronic devices in heterogeneous electronic-

optical networks represents a major bottleneck for the

full utilization of large bandwidth and high speed fea-

tures provided by the optical fibers. To circumvent such

network traffic congestion, optics based technologies for

wavelength division multiplexing/demultiplexing are vig-

orously investigated. Microcavity based resonators are

one of the promising concepts for such applications. Mod-

eling of these devices is the topic of the present work. This

introductory chapter presents the general theory of circu-

lar microresonators as wavelength filters. It also outlines

the organization of the present thesis.

Parts of this chapter are adapted from:

M. Hammer, K. R. Hiremath, and R. Stoffer. Analytical approaches to the description of optical

microresonator devices., In M. Bertolotti, A. Driessen, and F. Michelotti, editors, Microresonators

as building blocks for VLSI photonics, volume 709 of AIP conference proceedings, pages 48–71.

American Institute of Physics, Melville, New York, 2004.
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Chapter 1: Introduction

The information and communication technology revolution transformed the world

in a true sense into a global village. It changed the style of communication, trans-

actions, and entertainment. E-mail communication became a standard practice. In-

ternet enabled banking, 24/7 open automatic teller machines, e-commerce changed

the way we used to deal with money. Computer aided design and manufacturing

cut down the production cost of consumer products, and also increased their re-

liability. Voice-over-Internet is about to start a new era of low cost long distance

telephony, and Video-on-Demand is lurking on the horizon. The genesis of this

digital life style can be traced back into 1970s.

In 1970s, mass production by integration of electronic components helped to re-

duce the prices of electronic devices dramatically, and acted as a catalyst for the

information technology revolution in 1990s. Soon computers became ubiquitous.

The utility of computers increased significantly, when they were connected to each

other. At present, the world wide web of computers (aka the Internet) is the most

happening place in the world. As more and more day-to-day activities were getting

information technology enabled, the demand for fast computers and high speed

communication networks was also increasing. Traditionally, microelectronics was

used for the manufacturing of data/signal processing devices, and copper cables

were used as the carrier media for data transfer. But as the demand for high speed

and large capacity data transfer was grown, the copper cable based communication

networks were not able to handle it efficiently. At that time, optical fibers made

their appearance [1], ushering a dawn of new technology.

1.1 Rise of optical technology

In modern-day communication systems, electromagnetic waves play a very impor-

tant role. Communication with microwaves, radio waves are well known exam-

ples [2]. Optical fibers carry electromagnetic signals in the form of light waves.

The wavelengths of these light waves ranges generally from 0.4µm to 1.6µm.

Unlike in the conventional copper wires, where electromagnetic signals are carried

by electrons, in the optical fibers the signals are carried by photons.

This fundamental difference offers several advantages for the use of optical fibers

in place of copper cables [3]. Compared to copper cables, optical fibers have much

lower line loss and smaller dispersion per unit length. Moreover, optical fibers

support a broad bandwidth permitting multiplexing to further increase the trans-

mission capacity. Copper cables are prone to electromagnetic interference causing

high error rates, and also they are sensitive to eavesdropping, whereas optical fibers
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1.1 Rise of optical technology

are immune to these problems. As a result, optical fibers soon became one of the

essential components of communication networks.

As most processing/transmission devices (e.g. computers, routers, amplifiers, etc.)

are at present based on electronics, data to be processed or transmitted is typically

available in the form of electrical signals. To send these signals over optical fiber

networks, these signals first have to be converted from the electrical domain to the

optical domain. At amplifier/receiver units, the data have to be converted back to

electrical signals. This signal conversion from the electrical domain to the opti-

cal domain, and vice versa, involves losses. And also the realization introduces

additional costs [4].

With the use of optical fibers, even though the signal transmission is improved sig-

nificantly, the ultimate performance of combined electronic-optical transmission

systems is determined by the processing speed of the electronic devices. Micro-

electronic devices are also getting faster, but their switching speed is not at par with

the transmission capacity of optical networks [5, 6]. This is inevitable, because the

underlying physical mechanisms for the transfer of electrons and photons are quite

different. Also there are technological limitations for the extreme miniaturization

of the electronic circuits [7]. To accommodate the increasing demand of faster in-

formation processing, there is a need to develop a new technology. The potential

shown by the optical fibers drew attention to optics.

The field of optics has made huge progress from the time of seminal work of Huy-

gens (1629-1695), Newton (1643-1727) and Maxwell (1831-1879). The invention

of lasers in 1958 rejuvenated the interest in optics. The next stepping stone for

optics was the use of optical fibers in telecommunication networks. This growing

interest in optics led to the establishment of new fields like “optronics”, “photon-

ics”1.

A main concern of the field of modern optics is the generation, manipulation, guid-

ance, and detection of light for communication and information processing appli-

cations. Thus the communication networks are evolving from mere cost effective

optical signal transport in networks based on electronic devices to full-fledged op-

tical networks. In an advanced stage, such optical networks will as far as possible

avoid the expensive conversion of electrical signals into optical signals, and vice

versa. Apart from optics based light sources, detectors, and signal carriers (i.e.

1Optronics — opto-electronics — is about using modern optical technology along with conven-

tional microelectronics technology. Many times, the terms “optics” and “photonics” are used inter-

changeably, and the distinction between them is rather vague. Optics is a quite wide field dealing

with light in different contexts, spanning from geometrical optics (dealing with lenses, prisms, free

space transmission, etc.) to quantum optics (dealing with light-matter interaction).
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Chapter 1: Introduction

waveguides), essential building blocks of such networks are optics based ampli-

fiers, modulators, switches, and filters [8]. Successful demonstration and realiza-

tion of these functional components will lead to “all-optical-processing” systems.

1.2 Next generation Active Integrated optic Subsystems

Innovations in the areas of material sciences and lithography, coupled with the

availability of powerful microscopy tools initiated intensified efforts towards “all-

optical-processing” systems. As one of the outcomes of these current develop-

ments, it is now possible to realize compact and high finesse dielectric micro-

cavities. These optical microcavities have shown a great potential for many appli-

cations [9]. For quite some time, microcavity resonators are discussed as promis-

ing building blocks for passive and active components for integrated optical de-

vices [10]. Recent advances opened a range of possibilities of using micro-ring/

disk resonators (a “cavity” coupled to single/dual waveguides) as lasers [11, 12,

13], logic gates [14, 15], optical switches [16, 17, 18], sensors [19, 20, 21], and

add/drop (multiplexing/demultiplexing) wavelength filters [22, 23].

The performance of wavelength division multiplexing/demultiplexing filters plays

a crucial role for the full utilization of the high bandwidth potential of optical fibers.

At present, arrayed waveguide gratings (AWGs) are used for this purpose [24, 25].

But due to their comparably large sizes, AWGs are not suitable for the use in

densely integrated photonic circuits [26, 27]. Alternatively, wavelength division fil-

ters based on photonic crystals are quite promising [28, 29, 30], but the correspond-

ing technological issues are still challenging. On this background, due to their

versatility, compactness and possibility of dense integration, resonators based on

conventional microcavities became attractive candidates for add/drop wavelength

filters. A recent overview of this field can be found in Ref. [31].

Microcavity based resonator filters can be configured in various ways [22]. In

this work we are interested in resonators, in the form of dual waveguide coupled

circular microcavities, as tunable add/drop wavelength filters. A wavelength filter

is a device which, given several input signals of different wavelengths, selects one

of these as the output wavelength. By an add/drop filter one means that not only

one of the inputs can be dropped (i.e. extracted/demultiplexed), but also a new

input can be added (i.e. inserted/multiplexed) to the outgoing signal. Tunability of

a filter implies that one can tune (i.e. change) the output response of the filter to

one of the desired input wavelengths.

The co-ordinated efforts to demonstrate the feasibility of microresonator based
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1.3 Circular optical microresonators

compact integrated optical subsystems resulted in the project “Next generation Ac-

tive Integrated optic Subsystems” (NAIS), funded by the European Commission

within the framework of the Information Society Technologies programme [32].

This project was centered around the realization of microresonator based tunable

add/drop wavelength filters. The work presented in this thesis has been part of that

project.

The project NAIS has covered several aspects like material research, design tools

and techniques, technology/fabrication, testing and packaging, and system require-

ments. Naturally, there were lots of interdependencies among these different re-

search topics. The project involved several disciplines like physics, mathematics,

electrical engineering, material science, etc. The progress of such a time-bound

multidisciplinary engineering project is advanced by a sound understanding of the

dependence of the performance of the devices on material and design aspects. In

this regard, a realistic model of the device and a reliable simulation tool based on

such a model is essential. This is where the present work, as part of the design

workpackage, contributed to the project NAIS.

1.3 Circular optical microresonators

Two typical settings of microresonators are shown in Fig. 1.1. A ring or a disk

shaped dielectric cavity is placed between two parallel dielectric straight wave-

guides. In real life (3-D) devices, the straight waveguides can be positioned either

in the same plane (Fig. 1.1(a): horizontal coupling scheme) or below (Fig. 1.1(b):

vertical coupling scheme) the cavity plane. These two straight waveguides form

four ports for the external connections, the two input ports named “In-port” and

“Add-port”, and the two output ports named “Through-port” and “Drop-port”. To

understand the functioning of the microresonators, for the sake of simplicity, let’s

consider only unidirectional fields (clockwise propagating), where only the In-port

is illuminated, while there is no incoming signal at the Add-port.

Conventionally, the functioning of microresonators is described by the interaction

of harmonic optical waves propagating along the straight waveguide and the cav-

ity, and the interferometric resonances of the waves inside the cavity [33]. A single

frequency optical wave is launched at the In-port of the resonator. As this sig-

nal propagates along the upper straight waveguide, that connects the In-port and

Through-port, part of it is evanescently coupled to the cavity. While propagat-

ing along the cavity, part of this signal is coupled to the lower straight waveguide

and appears at the Drop-port. The remaining part of the signal propagates along

the cavity, and interferes with the newly in-coupled signal in the upper interac-
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Chapter 1: Introduction
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Figure 1.1: Scanning electron microscope pictures of horizontally coupled (a)

and vertically coupled (b) real life microresonators. Courtesy: Integrated Optical

Microsystems group, Department of Electrical Engineering, University of Twente.

tion region. Depending upon the specific configuration, these two fields undergo

constructive or destructive interference.

If the cavity field is out of phase with the newly entering field, then destructive in-

terference takes place inside the cavity and as a result, there is only a small amount

of power inside the cavity. Under so-called off resonance conditions, as shown in

Fig. 1.2(a), most of the input power is directly transmitted to the Through-port, and

there is comparably low power at the Drop-port.

On the other hand, if the field inside the cavity is in phase with the newly in-coupled

signal, then due to constructive interference, energy builds up inside the cavity.

This field gets coupled to the Drop-port waveguide. Under so-called resonance

conditions, there is a significant power observed at the Drop-port, while less power

appears at the Through-port. This situation is shown in Fig. 1.2(b).

A typical spectral response of a microresonator device is shown in Fig. 1.3. Reso-

nances appear as dips in the Through-port power curve and peaks in the Drop-port

power curve. In other words, the wavelengths for which a microresonator is on

resonance, will be “dropped” at the Drop-port. Also, for a symmetrical device, if a

new signal that corresponds to a resonance wavelength is launched at the Add-port,

it will get “added” to the off resonance signal launched at the In-port, and appears

at the Through-port. Therefore the arrangement shown in Fig. 1.1 can be used as

an add/drop filter.
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1.3 Circular optical microresonators
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Figure 1.2: Off-resonance state (a) and resonance state (b) of a microresonator.

The figure shows the real physical y component of TE polarized electrical field for

a microresonator as considered in Section 4.4.1 with a cavity radius of 5 µm and

gap widths of 0.3 µm.
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Figure 1.3: Wavelength dependent response of the microresonator as introduced

in Fig. 1.2. Characterizing quantities of this spectral response are the free spectral

range ∆λ = 0.02µm, the full width at half maximum 2δλ = 0.9 nm, the finesse

F = 22, and the quality factor Q = 1158. These quantities are explained in detail

in Section 1.4.4.
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1.4 Ring-resonator theory

For the sake of further understanding, consider the typical abstract setting of a hor-

izontally coupled circular microresonator as sketched in Figure 1.4. Two straight

waveguides are evanescently coupled to the cavity. For “well confined” modes

of the straight waveguide and cavity, one can expect that the interaction between

the cavity modes and the port waveguide modes is localized around the region

of the closest approach. Hence the device is functionally decomposed into two

bent-straight waveguide couplers (I and II), which are connected to each other by

the cavity segments, i.e. by pieces of bent waveguides. External connections are

provided by the straight waveguides.

In
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Figure 1.4: Functional decomposition of a microresonator into bent-straight

waveguide couplers (shown by the dashed rectangles I and II), with the straight

waveguide and the bent waveguide connections.

In this setting, as explained in the following paragraphs, the prediction of the spec-

tral response of the resonator requires a description of the light propagation along

the cavity segments, the analysis of the response of the bent-straight waveguide

couplers, and finally a framework to combine these individual modules to predict

the drop- and through-power. The subsequent discussion in this section is meant

for structures involving monomodal straight waveguides and ring cavity. In Chap-

ter 4, we extend it to the multimodal setting.
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1.4 Ring-resonator theory

1.4.1 “Standard model” for resonators: Monomode setting

The “standard resonator model” [34, 35] describes the frequency domain propa-

gation of light inside the resonator. In this model, the optical field with vacuum

wavelength λ oscillates everywhere in time according to exp (iωt), where ω = kc
is real angular frequency, k = 2π/λ is the vacuum wavenumber, and c is the

vacuum speed of light. The model is based on the following approximations and

assumptions:

• For simplicity, we here assume that all waveguides are monomodal and all

modes are of same polarization.

• The waveguides are made of linear and nonmagnetic materials. The attenua-

tion of the cavity fields is incorporated into the complex valued cavity mode

propagation constant.

• The bent-straight waveguide couplers considered here are “adiabatic”. Thus

backreflections are negligible inside the couplers and the cavity segments.

• Outside the coupler regions, there is negligible “interaction” between the

fields of the straight waveguides and the cavity.

• For further simplification, we assume that the resonator is symmetrical with

respect to the x and z axes (see Figure 1.4).

Thus, the microresonator model under consideration consists of two identical bent-

straight waveguide couplers (coupler I and coupler II) which are connected to each

other by two segments of the cavity waveguide of length L/2. The external ports

are constituted by straight waveguides. Variables A,B, Ã, B̃ (external connec-

tions) and a, b, ã, b̃ (cavity connections) denote the amplitudes of properly normal-

ized guided modes in the respective coupler port planes, which are identified by

corresponding letters.

The response of the couplers is characterized by a scattering matrix S. For the

coupler I and II, the relationship between coupler input and output amplitudes is

given by

(

b
B

)

= S

(

a
A

)

,

(

b̃

B̃

)

= S

(

ã

Ã

)

, with S =

(

Sbb Sbs

Ssb Sss

)

. (1.1)

The entry Sv,w with v,w = b, s represents the “coupling” from the mode of wave-

guide w to the mode of waveguide v. Thus Sbb, Sss are “self coupling coefficients”,
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Chapter 1: Introduction

and Sbs, Ssb are “cross coupling coefficients”. Note that, here the matrix S is not

assumed to be unitary. Losses, e. g.due to power transfer to radiative (non-guided)

parts of the optical field in the coupler region, can thus be incorporated in S.

The (lossy) mode of the cavity waveguide is characterized by a complex valued

cavity mode propagation constant γ = β− iα, where β is the phase constant and α
is the attenuation constant. Then for the propagation of the fields along the cavity

segments, one writes

a = Gb̃, ã = Gb, with G = e−iβL/2 e−αL/2. (1.2)

1.4.2 Power transfer

Due to the linearity and the symmetry of the device, it is sufficient to consider an

excitation in only one of the external ports, say port A. Given input amplitudes

A =
√
PI, Ã = 0, one is interested in the transmitted power PT = |B|2 and the

dropped power PD = |B̃|2. By solving equations (1.1) and (1.2) for amplitudes B
and B̃, one obtains

B̃ =

(

SsbSbsG

1 − S2
bbG

2

)

A, B =

(

Sss +
SsbSbsSbbG

2

1 − S2
bbG

2

)

A. (1.3)

Let Sbb = |Sbb| eiϕ, Sss − SbsSsb/Sbb = ρ eiψ with ϕ, ρ and ψ real. Then the

dropped power is given by

PD = PI

|Ssb|2|Sbs|2e−αL

1 + |Sbb|4e−2αL − 2|Sbb|2e−αL cos (βL− 2ϕ)
, (1.4)

and the through power is given by

PT = PI

|Sss|2(1 + |Sbb|2ρ2e−2αL − 2|Sbb|ρ e−αL cos (βL− ϕ− ψ))

1 + |Sbb|4e−2αL − 2|Sbb|2e−αL cos (βL− 2ϕ)
. (1.5)

Here L is the total length of those parts of the cavity which are not already in-

cluded in the couplers. According to equations (1.4) and (1.5), one can evaluate

the throughput power and the dropped power, if the scattering matrix S and the

cavity propagation constant γ are available.
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1.4 Ring-resonator theory

1.4.3 Resonances

In principle, all quantities that enter expressions (1.3), (1.4), (1.5) are wavelength

dependent. Hence the proper way to compute the resonator spectrum would be to

evaluate all relevant quantities in these expressions for a series of wavelengths.

A little more insight can be obtained if one accepts the approximation that if only

a narrow wavelength interval needs to be considered, then the significant changes

in the drop power and through power originate “exclusively” from the cosine terms

in Equations (1.4), (1.5) that include the phase information.

To take into account the nonnegligible length l of the cavity segments in the coupler

regions, write the phase term as βL − 2ϕ = βLcav − φ, where Lcav = 2πR is the

complete cavity length, and φ = 2βl + 2ϕ (a corresponding procedure is also ap-

plied to the phase term in the numerator of Equation (1.5)). Further consider only

the wavelength dependence of the propagation constant β as it appears explicitly

in the term βLcav − φ. In this way, one incorporates the wavelength dependence

of the phase change βLcav for the entire cavity, but disregards the wavelength de-

pendence of the phase change φ that is introduced by the interaction with the port

waveguides.

With the above approximation, resonances (i.e. maxima of the dropped power) are

now characterized by singularities in the denominators of Equations (1.4), (1.5),

which occur if cos (βLcav − φ) = 1. This leads to the condition

β =
2mπ + φ

Lcav

=: βm, for integer m. (1.6)

For a resonant configuration, the dropped power is given by

PD|β=βm
= PI

|Ssb|2|Sbs|2e−αL

(1 − |Sbb|2e−αL)2
. (1.7)

Note that properly computed values of Ssb, Sbs and Sbb already include the losses

along the parts of the cavity inside the couplers. Therefore L in the Equation (1.7)

(and in those places of Equations (1.4), (1.5) where attenuation is concerned) must

not be replaced by Lcav.

In Chapter 4, we verify the validity of the above outlined approximation. As we

shall see in the subsequent paragraphs, it provides quite useful insight into the

spectral response of microresonators.
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Chapter 1: Introduction

1.4.4 Resonance characteristics

As shown in Figure 1.3, the performance of resonators can be measured in terms

of the free spectral range, the full width at half maximum, the finesse, and the

quality factor. Here we derive (approximate) expressions for these characterizing

quantities.

Free spectral range

The free spectral range (FSR) is defined as the wavelength difference ∆λ between

two successive maxima of the dropped power (or minima of the through power).

The resonant configuration next to a resonance found for βm is approximated as

βm−1 =
2(m− 1)π + φ

Lcav

= βm − 2π

Lcav

≈ βm +
∂β

∂λ

∣

∣

∣

∣

m

∆λ (1.8)

where the right hand side is obtained as a first order Taylor series expansion for the

propagation constant around the m’th resonance wavelength; ∆λ is the difference

between the vacuum wavelengths corresponding to the two resonant configura-

tions.

By virtue of homogeneity arguments [36] for the propagation constants β(λ, qj),
viewed as a function of the wavelength λ and all geometrical parameters qj that

define the cavity waveguide cross section, one finds

∂β

∂λ
= − 1

λ



β +
∑

j

qj
∂β

∂qj



 ≈ −β
λ

(1.9)

for the wavelength dependence of the propagation constants in the cavity loop. The

same (crude) approximation can be obtained if one writes the propagation constant

in terms of vacuum wavenumber and effective mode index as β = 2πneff/λ and

neglects the wavelength dependence of the effective index:

∂β

∂λ
= −β

λ
+ k

∂neff

∂λ
≈ −β

λ
. (1.10)

This leads to the expression

∆λ = − 2π

Lcav

(

∂β

∂λ

∣

∣

∣

∣

m

)

−1

≈ λ2

neffLcav

∣

∣

∣

∣

m

(1.11)
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1.4 Ring-resonator theory

for the free spectral range (FSR) ∆λ of the resonator around the resonance of

order m that is associated with the wavelength λ and the effective mode index

neff = λβm/2π of the cavity waveguide.

A more accurate and still simple expression can be obtained if one does not intro-

duce the approximations (1.9), (1.10), i.e. if the wavelength dependence of β or

neff is explicitly incorporated. Customarily one can write

∂β

∂λ
= −k

λ
neff, g with neff, g = neff − λ

∂neff

∂λ
, (1.12)

where neff, g is the group effective index of the cavity mode [35]. Then the free

spectral range is given by

∆λ =
λ2

neff, gLcav

. (1.13)

Full width at half maximum

The full width at half maximum (FWHM) is a measure of the sharpness of the

resonance. As the name suggests, it is given as the width of the resonance peak

where the power drops to half of the resonance value.

A configuration that drops about half of the maximum power is realized for a propa-

gation constant β+δβ with 1/(1+|Sbb|4e−2αL−2|Sbb|2e−αL cos (βLcav − 2φ))

= 2/(1 + |Sbb|4e−2αL − 2|Sbb|2e−αL cos (βLcav + δβLcav − 2φ)). Using the

second order approximation of the cosine terms around a resonant cavity propaga-

tion constant, one obtains

δβ = ± 1

Lcav

(

1

|Sbb|
eαL/2 − |Sbb|e−αL/2

)

(1.14)

for the shift in the propagation constants that distinguishes configurations with the

maximum and half of the maximum dropped power.

Using an approximation δβ ≈ −(βm/λ)δλ, analogous to Equations (1.9),(1.10),

Equation (1.14) leads to an expression

2δλ =
λ2

πLcavneff

∣

∣

∣

∣

m

(

1

|Sbb|
eαL/2 − |Sbb|e−αL/2

)

(1.15)

which gives the full width at half maximum 2δλ of the resonance of order m.
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Chapter 1: Introduction

Finesse and quality factor

The finesse F of the resonator is defined as the ratio of the free spectral range and

the full width at half maximum of a resonance for a specific resonance wavelength.

With the FSR and the FWHM given by Equations (1.11), (1.15), for the present

model the finesse is given by

F =
∆λ

2δλ
= π

|Sbb|e−αL/2

1 − |Sbb|2e−αL
. (1.16)

The ability of the cavity to confine the field is described by the quality factor Q. It

is a measure of the sharpness of the transmission peak and defined as the ratio of

the resonance wavelength to the full width at half maximum 2:

Q =
λ

2δλ
= π

neffLcav

λ

|Sbb|e−αL/2

1 − |Sbb|2e−αL
=
neffLcav

λ
F. (1.17)

For a circular resonator with radius R and cavity length Lcav = 2πR, one obtains

Q = kRneffF (1.18)

for the relationship between Q and finesse F .

As before, the approximations according to Equations (1.9), (1.10) can be avoided

by substituting the effective cavity mode index neff in Equations (1.15), (1.17) by

the effective group mode index neff, g as defined in Equation (1.12).

1.4.5 Tuning

The realization and actual performance of the resonators are constrained by several

factors, e.g. an accurate definition of the resonance wavelengths requires a high

degree control of the geometrical parameters, temperature dependant changes in

the material parameters detune the spectral response. Active (e.g. electro-optical,

thermo-optical) tuning of the resonators greatly relaxes these constraints. This

is quite essential for stable performance of the devices. See Ref. [38] and the

references quoted there for further details. Here we outline a framework for the

modeling of tuning.

2In a time domain setting, the Q factor is defined as the ratio of the optical power stored in the

cavity to the cycle averaged power radiated out of the cavity [37]. Therefore the larger the Q factor,

the longer the optical field is trapped inside the cavity.
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1.4 Ring-resonator theory

As explained in Section 1.4.3, at resonance the condition β = (2mπ + φ)/Lcav =
βm holds for the cavity mode propagation constant, where the integer m gives the

order of the resonance. Assume that the wavelength dependence of the propagation

constant β = β(λ) is given. Then one can write β(λm) = βm, where λm is

the resonance wavelength associated with the resonant cavity mode propagation

constant βm.

Disregarding its influence on the response of the (short) couplers as a first approxi-

mation, a tuning mechanism is modeled by a parameter p, which affects mainly the

field propagation along the cavity. Thus now, besides the wavelength, the cavity

mode propagation constant also depends on the tuning parameter, i.e. β = β(p, λ),
with p = 0 representing the original state: β(0, λm) = βm.

With the tuning applied, the resonance of order m is shifted towards a new wave-

length λ̃m, such that β(p, λ̃m) = (2mπ+φ)/Lcav
!
= βm is satisfied again. A linear

approximation in the tuning parameter and in the wavelength differences

β(p, λ̃m) ≈ β(0, λm) + p
∂β

∂p

∣

∣

∣

∣

0,λm

+ (λ̃m − λm)
∂β

∂λ

∣

∣

∣

∣

0,λm

!
= βm (1.19)

leads to an expression for the shift in the wavelength ∆pλm = λ̃m − λm that is

affected by the tuning mechanism

∆pλm = − p

(

∂β

∂p

)(

∂β

∂λ

)

−1
∣

∣

∣

∣

∣

0,λm

, (1.20)

which on simplification by using Equation (1.9) leads to

∆pλm = p
∂β

∂p

λm

βm
or ∆pλm = p

∂β

∂p

λ2
m

2πneff,m
, (1.21)

i.e. the wavelength shift compensates the change in the cavity mode propagation

constant due to a nonzero perturbation strength p. Note that the wavelength shift

does not depend on the length of the cavity. If available, the effective group index

neff,g according to Equation (1.12) can replace the effective index neff in Equa-

tion (1.21).

We are specifically interested in tuning effected by the change of the cavity core

permittivity (i.e. refractive index). For further details about this, see Section 2.5

and Section 4.6.
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Chapter 1: Introduction

1.5 Existing approaches for modeling of circular micro-

resonators

From the abstract resonator theory discussed in Section 1.4, it is clear that the spec-

tral response of the microresonators depends on the propagation of electromagnetic

fields along the cavity, and the coupling between the cavity and the straight wave-

guides. In turn, these quantities are influenced by the geometrical parameters like

the size of the cavity, the gap widths between the cavity and the straight wave-

guides, and by material parameters like refractive indices 3. Several analytical,

parametrical, pure numerical, and mixed analytical-numerical models have been

proposed for the analysis of these structures.

Proper understanding of the propagation of electromagnetic fields along the cav-

ity is very important, because the behavior of these fields is mainly responsible

for the resonances in the spectral response. This is systematically explained by a

time domain model of isolated (circular) cavities in terms of integer valued angular

mode number and complex valued eigenfrequencies [39, 40, 41]. But in case of the

present resonators, the cavity is coupled to the external straight waveguides. These

waveguides are usually modeled in terms of given real valued frequency [42, 43].

Thus, to study a cavity coupled to straight waveguides, a complex eigenfrequency

model of (isolated) cavities is not the most suitable choice. Problems for the de-

scription of the coupling arise from the radially growing field solutions of the time

domain cavity modes [39, 40]. Nevertheless, attempts are made to study analyt-

ically the above coupling by combining a complex eigenfrequency model of the

cavities with a real valued frequency model of the straight waveguides [41, 44].

To avoid such juggling of viewpoints, either parametrical or ab initio frequency

domain models are used. While very few studies exist about ab initio models, para-

metrical models, such as discussed in Section 1.4, are quite popular, e.g. see [33,

45, 46, 47]. Treating the (complex valued) cavity mode propagation constants and

the coupler scattering matrices (which parameterize the interaction between the

cavity and the straight waveguide in terms of coupling coefficients) as free pa-

rameters, one can qualitatively analyze the effects of the above parameters on the

spectral response. Under simplifying assumptions of a lossless coupler and uni-

directional monomode wave propagation, universal relations for the coupling of

optical power between a cavity ring and one bus waveguide are derived in [48]. In

Ref. [38] a detailed procedure of fitting these free parameters in the ring-resonator

model to experimental measurements is outlined. But when it comes to the design

3 Other factors like anisotropy, material attenuation, side wall roughness play a role in real de-

vices, but these are out of scope of the present work.
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1.6 Scope of the thesis

of microresonators, one must know how to determine systematically these free pa-

rameters, given the geometrical and material properties of the device.

The coupling between a circular cavity and a straight waveguide has been modeled

with phenomenologically derived expressions for the coupling coefficient [22],

with integral equations based on Green’s functions [49], and with different versions

of coupled mode theory. Coupled mode theory [50, 51, 52] proved to be a quite

useful tool for the analysis of the interaction between straight waveguides. Moti-

vated by this success, in Ref. [44] space dependent coupled mode theory has been

used to model the coupling between a curved waveguide and a straight waveguide.

That approach is based on a complex eigenfrequency model of the cavities. Also

the coupled mode equations are derived phenomenologically. As another variant,

time dependent coupled mode theory was also attempted [22, 53].

Concerning the modeling of three dimensional microresonators, by using the ef-

fective index method certain 3-D settings can be reduced to 2-D, which are then

analyzed by means of phenomenologically derived expressions for the coupling

coefficients [33] or by conformal mapping method [54].

Apart from the above analytical and parametrical methods, pure numerical methods

like Finite Difference Time Domain (FDTD) [55, 56] are also used for the simu-

lation of microresonators. In Ref. [57] a finite difference based Helmholtz solver

is used to compute the spectral response of 2-D microdisk resonators. Even for

the 2-D setting, pure numerical methods turn out to be time consuming, and these

become prohibitively time consuming in case of the 3-D setting. These numerical

models are generally reserved for benchmarking of the results obtained with other

techniques, not for practical design work.

Finally one should emphasize that specific 2-D configurations can be treated in

an accurate and highly efficient analytical way in terms of integral equations [58].

This concerns eigenvalue [59, 60] and scattering problems [61, 62] for micro-ring

and disk cavities with regular deformations, in the vicinity of one straight dielectric

waveguide or half-block. Unfortunately, the extension to 3-D appears to be far from

obvious.

1.6 Scope of the thesis

With the growing importance of microresonators for a variety of applications, it

becomes necessary to devise a model which is directly interpretable in physical

terms, and which is essentially free of any fit parameters. Moreover, the numer-

ical implementation should not be computationally time consuming and resource

17



Chapter 1: Introduction

intensive. These are the desirable features for a microresonator model from the

viewpoint of device design and interpretation of experimental results.

The present work remains in the scope of classical optics, on the basis of the

Maxwell equations. Referring to the classification of resonator types given in [53],

in this thesis we treat the circular microcavities as traveling wave resonators in the

framework of a pure frequency domain description. For modeling purposes, we

adopt the functional decomposition as outlined by the “standard model” in Sec-

tion 1.4. The advantage of such a decomposition is that the analysis of micro-

resonators reduces to the modeling of straight waveguides and bent waveguides,

and the modeling of bent-straight waveguide couplers. Out of this, models for

straight waveguides are quite well established, and sophisticated numerical tools

for their analysis exist already 4.

The decomposition approach of the “standard model” is well known in the liter-

ature [35, 46, 47], where it is typically presented as a parametrical model. For

qualitative study of the spectral response of microresonators, such a parametrical

model is sufficient. But from the design point of view, it is rather inadequate. The

numerical implementation of such model requires the propagation constants of the

cavity segment modes, and the coupling coefficients of the bent-straight waveguide

couplers.

The real valued frequency domain model of the wave propagation along bent wave-

guides or curved interfaces (i.e. cavity segments) is well known [10, 63, 64]. For

recent work on this topic, see Refs. [65, 66, 67, 68]. But due to the difficulties as-

sociated with complex order Bessel functions, this approach is hardly ever pursued

in detail. Important issues like computing bend modes and their propagation con-

stants (especially for very small bent radii), or the mode normalization still require

proper attention.

To some degree, the time domain and the frequency domain viewpoints for propa-

gation of the cavity modes are equivalent, and results obtained with one model can

be interpreted in the framework of the other model [40, 44]. But this switching of

viewpoints is not straightforward, and it leads to a few rather obscure issues like

the nature of cavity fields at infinity, or the issue of “phase matching” for the cou-

pling between the cavity fields and the straight waveguide fields. As commented in

Section 1.5, a model of bent-straight waveguide couplers is lacking, which is con-

sistent in terms of physical notions and based on rigorous mathematical concepts.

A major part of the work presented in this thesis is centered around topics re-

4For the present work, we use 2-D straight waveguide mode solver by Dr. Manfred Hammer. See

www.math.utwente.nl/ hammer/Metric/ for further details.
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lated to the wave propagation along curved interfaces. We establish a model for

bent-straight waveguide couplers with a sound mathematical foundation, that is

consistent with the physical notions. We derive the governing equations from first

principles. Going beyond the mere abstract theoretical model, another objective of

this work is the reliable and efficient numerical implementation of the approach.

We will also address this issue in the present work.

To investigate feasibility and scope of the above approach, in this thesis we restrict

ourself to the modeling of 2-D microresonators. Naturally, we discuss only hori-

zontally coupled devices. The theory, however, has been formulated such that an

extension to the 3-D setting (including the vertically coupled case) can follow the

same line of arguments [69].

1.7 Outline of the thesis

This thesis is based on our contributions to the project NAIS concerning the mod-

eling and simulation of microresonators as tunable wavelength filters. Here we

investigate a frequency domain spatial coupled mode theory based model of 2-D

circular integrated optical microresonators. The formulation requires the propa-

gation constants of the cavity segment (bent waveguide) modes and the scattering

matrices of the bent-straight waveguide couplers. The former quantities charac-

terize the wave propagation along the cavity segments, and the latter quantities

characterize the response of the couplers. We proceed as follows:

• Chapter 2 explores the classical frequency domain model of the wave propa-

gation along curved interfaces. We implemented routines for complex order

Bessel functions, which allow to compute the bend modes and their propa-

gation constants, and also to visualize the bend field propagation.

• Chapter 3 presents a parameter-free spatial coupled mode theory model of

bent-straight waveguide couplers derived from variational principles. With

access to the analytical bent waveguide modes, we could implement the

above model, and investigate it systematically.

• Chapter 4 describes in detail the 2-D model for circular microresonators,

and explains how to evaluate effectively their spectral response. Tunability

of microresonators is an essential feature from the application point of view.

This chapter also describes how the effect of small changes of the cavity

refractive index on the spectral response of the resonators can be estimated

by perturbational expressions.

• Chapter 5 contains the conclusions of the present work and a brief outlook.
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Chapter 2

Analytic approach to dielectric

optical bent slab waveguides

A rigorous classical analytic model of confined optical

wave propagation along 2-D bent slab waveguides and

curved dielectric interfaces is investigated, based on a

piecewise frequency domain ansatz for bend mode pro-

files in terms of Bessel and Hankel functions. This ap-

proach provides a clear picture of the behaviour of bend

modes, concerning their decay for large radial arguments

or effects of varying bend radius. Fast and accurate rou-

tines are required to evaluate Bessel functions with large

complex orders and large arguments. Our implementation

enabled detailed studies of bent waveguide properties, in-

cluding higher oder bend modes and whispering gallery

modes, their interference patterns, and issues related to

bend mode normalization and orthogonality properties.

Also a perturbational expression is derived for the shift

in the propagation constant due to changes in the core re-

fractive index.

Parts of this chapter are adapted from:

K. R. Hiremath, M. Hammer, S. Stoffer, L. Prkna, and J. Čtyroký. Analytic approach to dielectric

optical bent slab waveguides. Optical and Quantum Electronics, 37(1-3):37–61, January 2005.
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Chapter 2: Analytic approach to dielectric optical bent slab waveguides

Bent dielectric waveguides play an important role in photonic integrated circuits.

Accurate evaluation of mode profiles, phase propagation constants, and of optical

losses associated with the leaky wave propagation is the central task for theoretical

modeling of the curved structures. The present work on this – rather old – topic is

motivated by the recent interest in circular optical microresonator devices as build-

ing blocks for large-scale integrated optics [22, 31]. During our participation in a

related European project [32], we experienced that certain notions about the prop-

erties of bend modes deserved clarification. This concerns e.g. the behaviour of the

mode profiles for large radial coordinates, profile integrability, mode orthogonality,

or a clear picture of propagation and interference of the bend modes.1

A sound modal analysis of bent slabs becomes particularly relevant if the mode

profiles are to be employed as basis fields for a description of integrated optical

microresonators with circular, ring- or disk-shaped cavities. In a framework of

coupled mode theory [33, 70, 44], an as far as possible analytic representation

of the basic field profiles on a radially unbounded domain must be regarded as

highly advantageous. This is provided by the approach of this chapter. Preliminary

promising studies on CMT modeling of circular resonators are contained in [34,

71, 72]; further details follow in Chapters 3, 4.

This chapter presents an analytical model of (2-D) bent waveguides. Using the

uniform asymptotic expansions of Bessel/Hankel functions as provided in Ref. [73,

74], we found that with present standard computers it is not a problem to carry out

the rigorous analytic evaluation of the problem. Details on the implementation of

Bessel and Hankel functions are given in Section 2.3. See Refs. [67, 68, 75], for

steps towards a 3-D generalization of the present 2-D model.

In Section 2.1 various methods for modeling of bent waveguides are briefly re-

viewed. Section 2.2 introduces the bend mode ansatz and outlines the analytic

steps towards a solution. Remarks on bend mode normalization, on orthogonality

properties of bend modes are added in Sections 2.2.1, 2.2.2. Section 2.4 summa-

rizes the results of the analytic model for a series of bend configurations including

higher order modes, and modes which are “effectively” guided by just one dielec-

tric interface. Wherever benchmark results are available, the present analytical

results are compared with them. In Section 2.5 a perturbational analysis of the ef-

fect of changes in the core refractive index on the propagation constants is carried

out.

1Partly these notions originate from the use of a ray picture for the description of bent waveguides,

or from approximate models in terms of “equivalent” leaky straight waveguide profiles. We will avoid

these viewpoints in the present work.
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2.1 Existing approaches for modeling of bent waveguides

2.1 Existing approaches for modeling of bent waveguides

Initial frequency domain models of optical bent waveguides can be found in Ref.

[10, 63]. Since then, various different techniques were applied to the task. In

Refs. [76, 77] a method for the calculation of bend mode losses is presented, based

on ray path notions from geometrical optics. By conformal mapping [78, 79], the

bent waveguide problem can be transformed into equations for a (leaky) straight

waveguide. In Ref. [80] conformal mapping with perfectly matched layer (PML)

boundary conditions is used to analyze bent waveguides. In a perturbational ap-

proach [81] the curvature is treated as a perturbation of a straight waveguide, and

the bent waveguide modes are expressed in terms of straight waveguide fields.

Other techniques of a more analytical character (e.g. WKB approximations [82],

a transfer matrix approach [83]), or of a numerical nature (e.g. beam propagation

[84], the method of lines [85], finite difference [86] or finite element discretizations

[87]) are applied as well.

The pure analytic approach for modeling of optical bent slab waveguides is quite

well known [10, 63, 64, 65, 66, 88, 43], though apparently hardly ever evaluated

rigorously, especially for bent waveguides with small radii. When trying to do so,

a major obstacle is encountered in the form of the necessity to compute Bessel

functions of large complex order and large argument; we experienced that efficient

facilities for these function evaluations are not provided by the standard numerical

libraries. To overcome that hindrance, most authors resorted to approximations of

the problem, such that reliable results for bent slab waveguides, e.g. for the purpose

of a bend mode solver benchmark, still seem to be rare.

Alternatively, one can consider time-domain resonances that are supported by full

circular cavities. In that viewpoint, the field solutions are parameterized by an inte-

ger azimuthal index; the frequency takes the role of a complex valued eigenvalue.

Any difficulties with the complex order Bessel functions are avoided in that way,

and the values for frequencies and propagation constants can be largely translated

between the two viewpoints [39]. However, the field solutions obtained in the lat-

ter way are not directly useful for applications, where one is interested in pieces of

bent waveguides only. Also, for a microresonator model that combines modal solu-

tions for bent and straight waveguides by means of coupled mode theory integrals,

the fixed-frequency bend mode profiles as discussed in this chapter are required.

The present discussion is concerned with a frequency domain model, where the

(real valued) frequency or vacuum wavelength is regarded as a given parameter, and

one is interested in solutions of the Maxwell equations for wave propagation along

angular segments of the curved structures, that are characterized by a complex

valued propagation constant.
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Chapter 2: Analytic approach to dielectric optical bent slab waveguides

2.2 Bent waveguide model

Consider a bent slab waveguide with the y-axis as the axis of symmetry as shown

in Figure 2.1. We assume that the material properties and the fields do not vary

in the y-direction. Being specified by the radially dependent refractive index n(r)
(here n is piecewise constant), the waveguide can be seen as a structure that is

homogeneous along the angular coordinate θ. Hence one chooses an ansatz for

the bend modes with pure exponential dependence on the azimuthal angle, where

the angular mode number is commonly written as a product γR with a reasonably

defined bend radius R, such that γ can be interpreted as a propagation constant.
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Figure 2.1: A bent slab waveguide. The core of thickness d and refractive index nf

is embedded between an interior medium (“substrate”) with refractive index ns and

an exterior medium (“cladding”) with refractive index nc. The distance between

the origin and the outer rim of the bend defines the bend radius R.

In the cylindrical coordinate system (r, y, θ), the functional form (in the usual com-

plex notation) of the propagating electric field E and the magnetic field H reads

E(r, θ, t) = (Ẽr, Ẽy, Ẽθ)(r) ei(ωt− γRθ),

H(r, θ, t) = (H̃r, H̃y, H̃θ)(r) ei(ωt− γRθ),
(2.1)

where the ∼ symbol indicates the mode profile, γ is the propagation constant of the

bend mode, and ω is the angular frequency corresponding to vacuum wavelength λ.

Since an electromagnetic field propagating through a bent waveguide loses energy

due to radiation [88], γ is complex valued, denoted as γ = β − iα, where β and α
are the real valued phase propagation and attenuation constants.

Note that the angular behaviour of the field (2.1) is determined by the product
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2.2 Bent waveguide model

γR, where the definition of R is entirely arbitrary. Given a bend mode, the values

assigned to the propagation constant γ change, if the same physical solution is

described by using different definitions of the bend radius R. We will add a few

more comments on this issue in Section 2.4. The definition of the bend radius R as

the radial position of the outer interface of the core layer is still applicable in case

the guiding is effected by a single dielectric interface only, i.e. for the description

of whispering gallery modes (see Section 2.4.5). Hence, for this paper we stick to

the definition of R as introduced in Figure 2.1.

If the ansatz (2.1) is inserted into the Maxwell equations, one obtains the two sep-

arate sets of equations

γR

r
Ẽy = −µ0ωH̃r,

∂Ẽy

∂r
= −iµ0ωH̃θ,

1

r

∂rH̃θ

∂r
+

iγR

r
H̃r = −iǫ0ǫωẼy































TE (2.2)

and
γR

r
H̃y = ǫ0ǫωẼr,

∂H̃y

∂r
= iǫ0ǫωẼθ,

1

r

∂rẼθ

∂r
+

iγR

r
Ẽr = iµ0ωH̃y,































TM (2.3)

with vacuum permittivity ǫ0, vacuum permeability µ0, and the relative permittivity

ǫ = n2.

For transverse electric (TE) waves the only nonzero components are Ẽy , H̃r and

H̃θ, which are expressed in terms of Ẽy , while for transverse magnetic (TM) waves

the only nonzero components are H̃y, Ẽr and Ẽθ, which are given by H̃y. Within

radial intervals with constant refractive index n, the basic electric and magnetic

components are governed by a Bessel equation with complex order γR,

∂2φ

∂r2
+

1

r

∂φ

∂r
+ (n2k2 − γ2R2

r2
)φ = 0 (2.4)

for φ = Ẽy or φ = H̃y, where k = 2π/λ is the (given, real) vacuum wavenumber.

For TE modes, the interface conditions require continuity of Ẽy and of ∂rẼy across

the dielectric interfaces. For TM modes, continuity of H̃y and of ǫ−1∂rH̃y across

the interfaces is required.
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Chapter 2: Analytic approach to dielectric optical bent slab waveguides

Eq. (2.4), together with the interface conditions and suitable boundary conditions

for r → 0 and r → ∞, represents an eigenvalue problem with the bend mode pro-

files φ as eigenfunctions, and the propagation constants γ or angular mode numbers

ν = γR as eigenvalues. The equation is solved piecewise in the regions with con-

stant refractive index. While the procedure is in principle applicable for arbitrary

multilayer bent waveguides, for the sake of brevity we discuss here the three layer

configuration as introduced in Figure 2.1.

The general solution of Eq. (2.4) is a linear combination of the Bessel functions

of the first kind J and of the second kind Y. This representation is applicable

to the core region. Since Y tends to −∞ if r → 0, for the boundedness of the

electric/magnetic field at the origin one selects only the Bessel function of the first

kind J for the interior region. In the outer region, we are looking for a complex

superposition of J and Y that represents outgoing waves. Such a solution can be

given in terms of the Hankel functions of the first kind H(1) or of the second kind

H(2). Using the asymptotic expansions of these functions [73, chap. 9, Eq. (9.2.3),

Eq. (9.2.4)]

H(1)
ν (nkr) ∼

√

2

πnkr
ei(nkr − νπ/2 − π/4),

H(2)
ν (nkr) ∼

√

2

πnkr
e−i(nkr − νπ/2 − π/4),

(2.5)

and taking into account the harmonic time dependence exp(iωt) (with positive fre-

quency), one observes that H(1) represents incoming waves, while outgoing waves

are given by H(2). Thus the piecewise ansatz for the basic components of the elec-

tric/magnetic bent mode profile is

φ(r) =







AsJν(nskr), if 0 ≤ r ≤ R−,
AfJν(nfkr) +BfYν(nfkr), if R− ≤ r ≤ R+,

AcH
(2)
ν (nckr), for r ≥ R+,

(2.6)

where R− = R − d, R+ = R, and where As, Af, Bf and Ac are so far unknown

constants.

The polarization dependent interface conditions lead to a homogeneous system of

linear equations for As, Af, Bf and Ac. The condition for a nontrivial solution can

be given the form

Jν(nfkR
−)

Jν(nskR−)
− qs

J
′

ν(nfkR
−)

J
′

ν(nskR−)

Yν(nfkR
−)

Jν(nskR−)
− qs

Y
′

ν(nfkR
−)

J
′

ν(nskR−)

=

Jν(nfkR
+)

H
(2)
ν (nckR+)

− qc

J
′

ν(nfkR
+)

H
(2)′

ν (nckR+)

Yν(nfkR
+)

H
(2)
ν (nckR+)

− qc

Y
′

ν(nfkR
+)

H
(2)′

ν (nckR+)

(2.7)
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2.2 Bent waveguide model

with qj = nf/nj for TE polarization, and with qj = nj/nf for TM polarized fields,

for j = s, c. Eq. (2.7) is the dispersion equation for the three layer bent slab wave-

guide. For given frequency ω, this equation is to be solved2 for the propagation

constants γ = ν/R.

For the numerical implementation, Eq. (2.7) is rearranged as

T1 · T2 = T3 · T4, (2.8)

where

T1 = Jν(nfkR
−) J

′

ν(nskR
−) − qs Jν(nskR

−) J
′

ν(nfkR
−),

T2 = Yν(nfkR
+) H(2)

′

ν (nckR
+) − qc H(2)

ν (nckR
+) Y

′

ν(nfkR
+),

T3 = Yν(nfkR
−) J

′

ν(nskR
−) − qs Jν(nskR

−) Y
′

ν(nfkR
−),

T4 = Jν(nfkR
+) H(2)

′

ν (nckR
+) − qc H(2)

ν (nckR
+) J

′

ν(nfkR
+).

In contrast to common notions about leaky modes, the fields obtained by the ansatz

(2.6) do not diverge for large radial coordinate r. The asymptotic expansion (2.5)

predicts a decay ∼ 1/
√
r. No difficulties related to ‘large’ terms are to be expected

for the numerical evaluation of Eq. (2.8). Moreover, as shown below, with the

squared mode profile being accompanied by a factor r−1 in the relevant expression,

the bend modes can even be normalized with respect to the azimuthal mode power.

2.2.1 Bend mode normalization

The power flow density associated with a bend mode is given by the time averaged

Poynting vector Sav = 1
2ℜ(E × H

∗). The axial component Sav,y vanishes in the

2-D setting; for TE waves the radial and azimuthal components evaluate to

Sav,r =
−1

2µ0ω
ℜ
[

iẼy

∂Ẽ∗

y

∂r

]

e−2αRθ,

Sav,θ =
β

2µ0ω

R

r
|Ẽy|2e−2αRθ,

(2.9)

2In an alternative approach, where one looks at time domain resonances of circular cavities, a

similar procedure as outlined here [44, 39] leads to precisely the same equation (cf. the remarks in

the introduction). In that case, Eq. (2.7) is to be solved for complex valued resonance frequencies ω,

for given integer azimuthal mode numbers ν.
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Chapter 2: Analytic approach to dielectric optical bent slab waveguides

and for TM polarization one obtains

Sav,r =
1

2ǫ0ǫω
ℜ
[

H̃∗

y

∂H̃y

∂r

]

e−2αRθ,

Sav,θ =
β

2ǫ0ǫω

R

r
|H̃y|2e−2αRθ.

(2.10)

The total optical power transported by the mode in the angular direction is given by

Pθ(θ) =
∫

∞

0 Sav,θ dr. Somewhat surprisingly, this expression can be considerably

simplified by using the following formula [89, Section 11.2, Eq. 5],

∫

Cµ(kx)Dν(kx)
dx

x
=

kx

µ2 − ν2
{Cµ(kx)Dν+1(kx) − Cµ+1(kx)Dν(kx)}

+
Cµ(kx)Dν(kx)

µ+ ν
(2.11)

where Cµ, Dν are any cylindrical functions (i.e. functions which are linear com-

binations of Jµ and Yµ, or of Jν and Yν , respectively). Observing that for a valid

mode profile the pieces of the ansatz (2.6) satisfy the polarization dependent conti-

nuity conditions at the dielectric interfaces, application of Eq. (2.11) and of several

standard identities for Bessel functions leads to exact cancellation of the boundary

terms that arise in the piecewise integration, with the exception of the limit term

for r → ∞. In that regime the mode profile is represented by the asymptotic form

(2.5) of the relevant Hankel functions, such that one arrives at the two expressions

Pθ(θ) =
|Ac|2

2µ0ωαRπ
eαR(π − 2θ) (TE),

Pθ(θ) =
|Ac|2

2ǫ0n2
cωαRπ

eαR(π − 2θ) (TM),

(2.12)

for the modal power of TE and TM polarized modes, respectively. For certain

well guided modes with extremely low losses, i.e. α ≈ 0, Eqs. (2.12) are not

suitable for direct use. In this case, we compute the modal power by numerical

integration of Pθ(θ) =
∫

∞

0 Sav,θ dr over a suitably chosen radial interval. All

mode profiles shown in Section 2.4 are power normalized with respect to these

expressions (evaluated at θ = 0).

Alternatively, Eqs. (2.12) can be derived in a way quite analogous to what follows

in Section 2.2.2: Upon integrating the vanishing divergence of the Poynting vector

∇ · (E × H
∗ + E

∗ × H) = 0 for a modal solution (E,H) over a differential

angular segment in the domain of polar coordinates, by means of Gauss’ theorem
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2.2 Bent waveguide model

one relates the angular decay of modal power to the outflow of optical power in the

radial direction. The limit of that flow for large radial coordinates exists and can

be evaluated by again using the asymptotic form (2.5) of the mode profile, leading

to expressions (2.12) for the modal power.

By considering the above expressions for large bend radii, one might wonder

whether these may lead to a scheme for the normalization of nonguided modal so-

lutions associated with straight waveguides e.g. as given in [90] in terms of plane

wave superpositions. Examination of Eq. (2.12) with the help of Eq. (2.25), how-

ever shows that the expression (2.12) for the modal power is not applicable in the

limit R → ∞. Hence in this respect, there is no direct correspondence between

the present bend modes supported by structures with low curvature and radiative

modes of similar straight waveguides.

2.2.2 Orthogonality of bend modes

If the bend mode profiles are employed as basis elements for an expansion of a

general optical field in the bend structure, the orthogonality properties of these

modes become relevant: Projecting on the basis modes allows to relate the modal

amplitudes to the given arbitrary field. As a consequence of the leaky nature of the

complex bend modes, the orthogonality relations involve nonconjugate versions of

the field profiles.3

Let (Ep,Hp) and (Eq,Hq) be the electromagnetic fields (2.1) of bend modes

with propagation constants γp and γq, respectively, that are supported by the same

bent waveguide. We start with the identity

∇ · (Ep × Hq − Eq × Hp) = 0, (2.13)

which is a straightforward consequence of the Maxwell equations.

Consider the integral of Eq. (2.13) over an angular segment Ω = [0, r̃]× [θ, θ+∆θ]
in the waveguide plane, specified by intervals of the polar coordinates:
∫

Ω
∇ · A dS = 0, with A = (Ar, Ay, Aθ) = Ep × Hq − Eq × Hp. (2.14)

After simplification of Eq. (2.14) by means of the Gauss theorem and a Taylor

series expansion around θ, for small, nonzero ∆θ one obtains

i(γp + γq)R

∫ r̃

0
Aθ(r, θ) dr = r̃Ar(r̃, θ). (2.15)

3An approximate orthogonality relation involving complex conjugates of one of the mode profiles

is derived in Ref. [91], valid in the limit of large bend radius (i.e. for almost straight waveguides).
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Chapter 2: Analytic approach to dielectric optical bent slab waveguides

In order to evaluate the limit r̃ → ∞ of the right hand side, rAr is expressed in

terms of the basic mode profile components Ey and Hy, with the help of Eqs. (2.2,

2.3):

rAr =
i

µ0ω
r (Ep,y∂rEq,y − Eq,y∂rEp,y) +

i

ǫ0ǫcω
r (Hp,y∂rHq,y −Hq,y∂rHp,y) .

(2.16)

Here ǫc = n2
c is the permittivity in the exterior region of the bend (constant for

large radii). In this region, the basic components φp = Ẽp,y or φp = H̃p,y of

modal solutions (2.6) are given by Hankel functions of second kind i.e. φp(r) =

Ac,p H
(2)
γpR(nckr), which, for large radial coordinate, assume the asymptotic forms

φp(r) ∼ Ac,p

√

2

πnckr
e−i(nckr − γpRπ/2 − π/4),

∂rφp(r) ∼
(

− 1

2r
− inck

)

φp(r).

(2.17)

By using these expressions, the limits r → ∞ of the individual parts of Eq. (2.16)

can be shown to vanish

lim
r→∞

[r(φp∂rφq − φq∂rφp)] = 0. (2.18)

This leads to the identity

(γp + γq)

∫

∞

0
aθ · (Ep × Hq − Eq × Hp) dr = 0, (2.19)

where aθ is the unit vector in the azimuthal (θ-) direction.

After inspecting Eqs. (2.2), (2.3), one readily sees that the fields (E p̃,H p̃) and the

propagation constant γp̃ with

γp̃ = −γp,

Ep̃,r = Ep,r, Ep̃,y = Ep,y, Ep̃,θ = −Ep,θ,

Hp̃,r = −Hp,r,Hp̃,y = −Hp,y,Hp̃,θ = Hp,θ

(2.20)

describe a valid modal solution of the bend problem. By writing out the expression

(2.19) for the quantities with indices p̃ and q, by applying the transformation (2.20),

and by observing that aθ · (E p̃ ×Hq −Eq ×H p̃) = aθ · (Ep ×Hq +Eq ×Hp),
Eq. (2.19) can be given the form

(γp − γq)

∫

∞

0
aθ · (Ep × Hq + Eq × Hp) dr = 0. (2.21)
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2.2 Bent waveguide model

Motivated by the result (2.21), we define the following symmetric, complex valued

product4 of two (integrable) electromagnetic fields (E1,H1) and (E2,H2), given

in the polar coordinate system of the bend structure:

(E1,H1;E2,H2) =

∫

∞

0
aθ · (E1 × H2 + E2 × H1) dr

=

∫

∞

0
(E1,rH2,y−E1,yH2,r+E2,rH1,y−E2,yH1,r) dr. (2.22)

Obviously, the integrand vanishes if fields of different (2-D) polarizations are in-

serted, i.e. TE and TM bend modes are orthogonal with respect to (2.22). One

easily checks that the product is also zero, if the forward and backward versions

(two fields with their components related by the transformation (2.20)) of a bend

mode are inserted. Finally, according to Eq. (2.21), two nondegenerate bend modes

with propagation constants γp 6= γq that are supported by the same bend structure

are orthogonal with respect to the product (2.22). These formal statements hold

for pairs of the fields (2.1) with the full space and time dependence, for the expres-

sions excluding the time dependence, as well as for pairs of pure mode profiles that

depend on the radial coordinate only.

Assuming that for a given bend configuration a discrete, indexed set of nondegen-

erate modal fields (Ep,Hp) with (pairwise different) propagation constants γp is

considered, the orthogonality properties can be stated in the more compact form

(Ep,Hp;Eq,Hq) = δp,qNp, (2.23)

with

Np = 2

∫

∞

0
aθ · (Ep × Hp) dr = 2

∫

∞

0
(Ep,rHp,y − Ep,yHp,r) dr,

and δp,q = 0 for p 6= q, δp,p = 1. For mode sets of uniform polarization and

uniform direction of propagation, it can be convenient to write the orthogonality

properties in terms of the basic mode profile components φ = Ẽy (TE) or φ = H̃y

(TM). This leads to the relations

∫

∞

0
ζ
φpφq

r
dr = δp,qPp, with Pp =

∫

∞

0
ζ
φ2

p

r
dr, (2.24)

ζ = 1 for TE, and ζ = 1/ǫ(r) for TM polarization, which differ from the cor-

responding familiar expressions for straight dielectric slab waveguides by the ap-

pearance of the inverse radial coordinate r only. According to Eq. (2.17), Pp is

4Cf. the standard variants of orthogonality relations for straight dielectric waveguides made of

attenuating materials, as introduced e.g. in Ref. [43]
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Chapter 2: Analytic approach to dielectric optical bent slab waveguides

obviously bounded. Note, however, that here Np and Pp are complex valued quan-

tities.

An alternative derivation of Eq. (2.24) starts with the eigenvalue equation (2.4),

written out for two different modal solutions. Each equation is multiplied by the

other mode profile, one subtracts the results, and integrates over the radial axis.

This leads to an equation with the difference of the squared propagation constants

times the integral of Eq. (2.24) on one side, and with a limit as in Eq. (2.16) on the

other. Then the reasoning of Eqs. (2.17, 2.18) can be applied to obtain the desired

result. All sets of bend mode profiles shown in the following sections satisfy the

relations (2.23) or (2.24), respectively, up to the accuracy that can be expected from

the computational procedures.

2.3 Remarks on the numerical implementation

The solution of Eq. (2.7) requires the evaluation of Bessel and Hankel functions of

complex order, where typically values of ν = γR in intervals ℜ(ν) ∈ [101, 104]
and ℑ(ν) ∈ [−10−1,−10−12] and arguments nkr up to 105 are encountered. The

relevant Bessel functions are well behaved for the above values of order and argu-

ment; in particular, no terms with numerically harmful growth appear. We found

that subroutines for complex order Bessel functions are not included in standard

numerical libraries. MATLAB includes routines for these functions with complex

argument with real order. MAPLE has built in procedures for complex argument

and complex order, but they turn out to be prohibitively slow for large orders.

Therefore we had to resort to own implementations.

The implemented procedures are based on “uniform asymptotic expansions” of

Bessel functions and their derivatives in terms of Airy functions [73, 74]. More

specifically, Eqs. (9.3.35), (9.3.36), (9.3.43), (9.3.44) from Ref. [73] were encoded,

restricted to the first two terms of the summations, which we observed to be suffi-

cient for the present examples. Hankel functions are computed as linear combina-

tion of Bessel functions. These expansions are not applicable in a regime where the

order is close to the argument of the cylindrical functions. Fortunately we are inter-

ested here in configurations that involve complex orders (γR) with negative imagi-

nary parts (−α), and real arguments (nkr). While cases with approximate equality

of order and argument could in principle occur for bend modes with extremely low

loss (see e.g. bent waveguide configurations in Section 4.4.3.), by assigning a neg-

ligible small value to imaginary part of the argument, we circumvent any numerical
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2.4 Simulation results

problems associated with this transition region. Otherwise, supplementary routines

(see e.g. [74]) would have to be incorporated that cover that region of parameters.

Routines for Airy functions with complex arguments according to Ref. [92] were

adopted. The procedures concerning the bent modes, as well as all parts of res-

onators model discussed in Chapters 3, 4, were encoded with C++ programming

language. Since the Airy function routines were available in FORTRAN 77, this

choice lead to using FORTRAN 77 code within the C++ code. By comparison

with the numerical values obtained with MAPLE, and also by validating the rela-

tions that held for the Wronskians of these functions (see Ref. [73], Eqs. (9.1.15),

(9.1.16), (9.1.17)), the performance of the implemented routines for the desired

range of orders and arguments is assessed.

Two techniques were implemented to find the roots ν of Eq. (2.7) in the complex

plane. As a heuristic search procedure, a suitably selected region of the complex

plane is divided into a number of rectangles, the lower left and upper right corner

points of which are then supplied as initial guesses to a root finding routine based

on the secant method. Repeated roots are rejected, the remaining unique roots are

sorted in descending order of their imaginary part −α. By refining the subdivision

into rectangles, it can be ascertained with reasonable robustness that all the roots

in the given region are captured.

Alternatively, a root tracking procedure can be implemented to solve the dispersion

equation. Starting with the propagation constants of straight waveguides with a

refractive index profile cross section equal to that of the given bent waveguide, a

series of bends with decreasing radius are considered, with the roots found for each

configuration used as initial guesses for the subsequent one. In this way, the bend

propagation constants are followed in the complex plane.

2.4 Simulation results

As solutions of the eigenvalue problem (2.7), the bend mode solver yields com-

plex propagation constants and mode profiles in terms of Eq. (2.6). Examples for

different bend structures are discussed in this section.

Modes of different orders are indexed by counting the local minima in the abso-

lute value of the principal electric (TE) or magnetic (TM) component of the mode

profile.
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Chapter 2: Analytic approach to dielectric optical bent slab waveguides

2.4.1 Propagation constants

For purposes of validating our implementation we start with a comparison of phase

propagation constants and attenuation levels. Tables 2.1 and 2.2 list values for

angular mode numbers obtained with the present mode solver for two bend con-

figurations adopted from Ref. [43], together with reference data from that source.

We found an excellent overall agreement, for both the configurations with higher

(Table 2.1) and lower refractive index contrast (Table 2.2).

R [µm] ν = γ′R′, Ref. [43] ν = γR, present

50.5 4.0189 · 102 − i 7.9990 · 10−2 4.0189 · 102 − i 7.9973 · 10−2

100.5 8.0278 · 102 − (i 1.2856 · 10−2) 8.0278 · 102 − i 9.6032 · 10−4

150.5 1.2039 · 103 − i 7.3948 · 10−6 1.2039 · 103 − i 7.3914 · 10−6

200.5 1.6051 · 103 − i 4.9106 · 10−8 1.6051 · 103 − i 4.8976 · 10−8

Table 2.1: TE0 angular mode numbers ν for bent waveguides of different bend

radius R according to Figure 2.1, with (ns, nf, nc) = (1.6, 1.7, 1.6), d = 1µm, for

a vacuum wavelength λ = 1.3µm. Second column: Results from Ref. [43].

R [µm] ν = γ′R′, Ref. [43] ν = γR, present

200.5 3.1364 · 103 − i 6.2059 · 10−1 3.1364 · 103 − i 6.2135 · 10−1

400.5 6.2700 · 103 − i 4.9106 · 10−2 6.2700 · 103 − i 4.9159 · 10−2

600.5 9.4041 · 103 − i 2.5635 · 10−3 9.4041 · 103 − i 2.5636 · 10−3

800.5 1.2538 · 104 − i 1.1174 · 10−4 1.2538 · 104 − i 1.1177 · 10−4

1000.5 1.5673 · 104 − i 4.4804 · 10−6 1.5673 · 104 − i 7.1806 · 10−5

Table 2.2: TE0 angular mode numbers ν for low contrast bends according

to Figure 2.1, with different bend radius R and parameters (ns, nf, nc) =
(3.22, 3.26106, 3.22), d = 1µm, for a vacuum wavelength λ = 1.3µm. Second

column: Results from Ref. [43].

The discussion of bent waveguides in Ref. [43] applies an alternative definition of

the bend radius R′ as the distance from the origin to the center of the core layer,

which is related to the radius R as introduced in Figure 2.1 by R′ = R − d/2
(hence the unusual values of bend radii in Tables 2.1, 2.2). Both definitions are

meant as descriptions of the same physical configuration, i.e. both lead to the same

angular field dependence (2.1), given in terms of the azimuthal mode numbers ν as

determined by the dispersion equation (2.7). Via the relation ν = γR = γ ′R′, the

different choices of the bend radius result in different values γ and γ ′ = γR/(R−
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2.4 Simulation results

d/2) for the propagation constant, and consequently in different values β, β ′ and

α, α′ for the phase and attenuation constants.

Still, for many applications one is interested in the variation of the phase constant

and the attenuation with the curvature of the bend, expressed by the bend radius.

Figure 2.2 shows corresponding plots for the configuration of Table 2.1, including

values for the two different bend radius definitions. While on the scale of the

figure the differences are not visible for the attenuation constants, the levels of the

phase propagation constants differ indeed substantially for smaller bend radii. As

expected, for low curvature the values of both β/k and β ′/k tend to the effective

indices of straight slab waveguides with equivalent refractive index profile. For

the present low contrast configuration, only minor differences between TE and TM

polarization occur.
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Figure 2.2: Phase constants β, β ′ and attenuation constants α, α′ versus the bend

radius R, for bends according to Table 2.1. The dashed quantities β ′ = βR/R′

and α′ = αR/R′ correspond to a description of the bend in terms of an alternative

bend radius R′ = R−d/2. The dotted lines in the first two plots indicate the levels

of the effective indices of a straight waveguide with the cross section and refractive

index profile of the bent slabs.

Certainly no physical reasoning should rely on the entirely arbitrary definition of

the bend radius. This concerns e.g. statements about the growth or decay of phase

propagation constants with R (according to Figure 2.2 the sign of the slope can

indeed differ), or discussions about the “phase matching” of bent waveguides and

straight channels in coupler or microresonator configurations. Care must be taken

that values for β and α or effective quantities like β/k are used with the proper

definition of R taken into account.

With the present (semi) analytic solutions at hand, we have now a possibility to

validate “classical” expressions for the variation of the bend attenuation with the

bend radius. Beyond the high curvature region, Figure 2.2 shows a strict exponen-

tial decay of α with respect to R, as predicted by an approximate loss formula for
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Chapter 2: Analytic approach to dielectric optical bent slab waveguides

symmetric bent slabs given in [93, Eq. 9.6-24]:

α =
R− w

R

g2

2βs(1 + gw)

h2

(n2
f − n2

s )k
2

e2gw e−2(βs tanh
−1

(g/βs)−g)(R−w). (2.25)

Here βs is the propagation constant corresponding to the straight waveguide with

the width d = 2w and refractive index profile (ns, nf, ns) of the bent waveguide

under investigation. Derived quantities are g2 = β2
s − n2

sk
2 and h2 = (n2

f −
n2

s )k
2−g2. Figure 2.3 reveals a very good agreement with the attenuation constants

calculated by our procedures for bends with low curvature.

0 50 100 150 200 250
−12

−10

−8

−6

−4

−2

0

R [µm]

lo
g

1
0
(α

/k
)

TE
0

0 50 100 150 200 250
−12

−10

−8

−6

−4

−2

0

R [µm]

lo
g

1
0
(α

/k
)

TM
0

Figure 2.3: Attenuation constants of the principal TE and TM modes for symmet-

ric bent waveguides with nf = 1.7, ns = nc = 1.6, d = 1µm, λ = 1.3µm, for

varying bend radius R. The dashed lines show the exponential decay according to

Eq. (2.25); the solid curves are the present analytic mode solver results.

2.4.2 Mode profiles

Beyond the values of the propagation constants, the present analytical mode solver

permits to evaluate modal fields for the full range of radial coordinates. Figure 2.4

illustrates normalized profiles for a few fundamental TE bend modes of the config-

urations considered in Table 2.1.

One observes the expected effects [93, 43]: Bends with large radiiR support modes

with almost the familiar symmetric, well confined plane profiles of straight sym-

metric slab waveguides. With decreasing bend radius, the phase profiles of the

bend modes become more and more curved. Along with the increasing attenua-

tion, the maximum in the absolute value of the basic electric field shifts towards

the outer rim of the bend, and the relative field levels in the exterior region grow.

The mode profiles are essentially complex, with oscillatory behaviour of the real-

and imaginary parts of the field profiles in the exterior region. The effects of “bend-

ing” and the lossy nature of the bend modes are illustrated best by the snapshots of

the physical fields in the second row of Figure 2.4.
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Figure 2.4: TE0 mode profiles for bends according to the setting of Table 2.1, with

different bend radii R = 200, 50, 10µm. First row: radial dependence of the abso-

lute value (solid line), the real- and imaginary part (dashed and dash-dotted lines),

and the phase of the basic electric field component Ẽy . The profiles are normal-

ized according to Eq. (2.12), with the global phase adjusted such that Ẽy(R) is real

and positive. Second row: snapshots of the propagating bend modes according to

Eq. (2.1). The gray scales correspond to the levels of the real, physical field Ey .
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Figure 2.5: Fundamental TE (left) and TM mode profiles (right) for symmetric

bent slabs with R = 50µm, λ = 1.55µm, d = 1µm, ns = nc = 1.45, and

different core refractive indices. As nf is changed from 1.5 to 1.55 to 1.64, the ef-

fective propagation constants γ/k change from 1.4580−i 9.2077·10−3 to 1.4893−
i 1.1624 ·10−3 to 1.5598− i 2.1364 ·10−7 (TE0), and from 1.4573− i 1.0088 ·10−2

to 1.4862 − i 1.6013 · 10−3 to 1.5504 − i 9.4104 · 10−7 (TM0), respectively.

Just as for straight waveguides, the confinement of the bend modes depends criti-

cally upon the refractive index contrast. As exemplified by Figure 2.5, one observes

quite similar effects when the core refractive index of the bend is varied, as found
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Chapter 2: Analytic approach to dielectric optical bent slab waveguides

for the change in bend radius: With loosened confinement and growing attenua-

tion for decreasing nf, the mode profile maximum shifts towards the outer rim, and

the relative field levels in the exterior region increase. Note that all (normalizable)

mode profiles decay for large radial coordinates according to Eqs. (2.6) and (2.17),

despite their appearance in Figs. 2.4 and 2.5 (See the insets in Figs. 2.4, 2.7, 2.9).

2.4.3 Comparison with FDTD results

As an attempt for a further validation of our results on bend modes we have con-

sidered the following numerical experiment. Embedded in a common background,

the core of a straight slab waveguide is placed in the vicinity of a ring shaped

core of the same width. If a guided wave is launched into the straight channel,

by evanescent coupling it excites optical waves that travel around the ring. If, for

given polarization, the bent ring waveguide supports only a single low-loss bend

mode, one can expect that a field with the corresponding profile establishes itself

after a suitable propagation distance. The experiment is carried out in the time do-

main, with a ramped-up, subsequently time-harmonic excitation, that is advanced

over a limited time interval, such that resonance effects can be excluded. Allowing

the “wave front” to propagate once around the ring, a radial field cross section e.g.

at an angular position of 90◦ after the in-coupling region can be expected to give

an approximation to the bend mode profile. By observing the exponential decay of

the “stationary” field for an angular segment after that region, one can estimate the

attenuation of the bend mode.

We have applied a standard Finite Difference Time Domain (FDTD) scheme [94,

95], where a computational window of 80 × 58µm2 is discretized uniformly by a

mesh with step sizes of 0.05µm. Perfectly matched layer (PML) boundary con-

ditions enclose the computational domain, with a width of 8 points, a quadratic

envelope, and a strength such that the theoretical reflectivity of a wave propagat-

ing through the background material at normal incidence is 10−6. The interior

of the computational window contains the ring with parameters as given for Fig-

ure 2.6 and the straight waveguide with the same refractive index profile, with a

gap of 0.5µm in between. A modal field is launched into the straight core using

the total field /scattered field approach [55]. Its amplitude is raised according to a

half-Gaussian curve with a waist of 5 fs, with the maximum being reached at 40 fs.

After this time, the incident field amplitude is kept constant. The simulation runs

for a time of 1.1 ps with a time step of 0.1 fs, after which the ramp of the wave has

gone around the ring approximately once.

Figure 2.6 shows an excellent agreement of the approximation for the bend mode
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Figure 2.6: Bend mode profiles as determined by a FDTD simulation (contin-

uous line) and by the analytical model (dashed curve), for a configuration with

(ns, nf, nc) = (1.6, 1.7, 1.6), d = 1µm, R = 25µm, λ = 1.3µm. Here the mode

profiles are normalized to a unit maximum.

profile obtained in this way with the result of the analytical bend mode solver. We

also found a very good agreement of the attenuation constant α = 0.01949µm−1

estimated by the FDTD simulation with the analytic result α = 0.01978µm−1.

Hence comparisons of this kind can confirm the expectation that the bend modes

as introduced in Eq. (2.1) are indeed suitable basis fields for a (2-D) description of

cylindrical microresonator configurations.

2.4.4 Higher order bend modes

For cylindrical cavities with relatively high radial refractive index contrast, also

higher order bend modes can be relevant for an adequate representation of resonant

field patterns [96, 97, 98]. Table 2.3 summarizes results for propagation constants

of fundamental and first order modes of both polarizations for a nonsymmetric slab

with decreasing bend radius. In a straight configuration, the refractive index profile

supports two guided modes per polarization orientation.

Just as for the fundamental fields, the attenuation of the first order modes grows

with decreasing bend radius. Figure 2.7 shows that the significantly higher loss

levels of the first order modes are accompanied by larger field amplitudes in the

exterior region and by a wider radial extent of the mode profiles.

Figure 2.8 illustrates the spatial evolution of the TE0 and TE1 modes for a small

configuration with R = 20µm. Major differences between the plots for the single

fundamental and first order fields are the faster decay of the TE1 mode and the

minimum in the radial distribution of that field.
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TE0 TE1

R [µm] β/k α/k β/k α/k

∞ 1.6775 − 1.6164 −
150 1.6663 ≈ 0 1.6037 1.2117 · 10−7

100 1.6611 1.0984 · 10−12 1.5979 1.7606 · 10−5

50 1.6473 9.6704 · 10−7 1.5818 1.5113 · 10−3

20 1.6185 1.8299 · 10−3 1.5283 1.4205 · 10−2

10 1.5890 1.6025 · 10−2 1.4381 3.4287 · 10−2

TM0 TM1

R [µm] β/k α/k β/k α/k

∞ 1.6758 − 1.6134 −
150 1.6645 ≈ 0 1.6004 3.5259 · 10−7

100 1.6593 1.8446 · 10−12 1.5946 3.4692 · 10−5

50 1.6451 1.2668 · 10−6 1.5791 2.0368 · 10−3

20 1.6156 2.1391 · 10−3 1.5273 1.7868 · 10−2

10 1.5855 1.8702 · 10−2 1.4391 4.6089 · 10−2

Table 2.3: Propagation constants γ = β − iα of fundamental and first order

modes for bends with (ns, nf, nc) = (1.6, 1.7, 1.55), d = 2µm, λ = 1.55µm, for

different bend radii R. The value R = ∞ indicates the corresponding (bimodal)

straight waveguide.
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Figure 2.7: Fundamental and first order TE modes for the bends of Table 2.3,

absolute values of the basic profile component Ẽy of structures with radiiR = 100,

50, and 20µm.

The last column of Figure 2.8 gives an example for an interference pattern that is

generated by a superposition of both modes. Normalized profiles with unit am-
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Figure 2.8: Spatial evolution and interference of the fundamental and first order

TE modes, for a configuration of Table 2.3 with R = 20µm. The propagation

of the TE0 mode (left), of the TE1 mode (center), and of a superposition of these

(right) is evaluated. The plots show the absolute value |Ey| (top) and snapshots of

the time harmonic physical field Ey (bottom).

plitudes and real, positive Ẽy(R) are initialized at θ = 0, or z = 0, respectively

(cf. Figure 2.1). In the core region one observes the familiar beating process, here

in the angular direction, with intensity maxima shifting periodically between the

center and the outer rim of the ring. In the exterior region, the mode interference

results in a ray-like pattern, where rapidly diverging bundles of waves propagate in

directions tangential to the ring, originating from regions around the intensity max-

ima at the outer ring interface. These phenomena are obscured by the fast decay of

the first order mode.

Apart from the fundamental and first order fields, further higher order modes can

be found for the bent slabs of Table 2.3. While the TE0 and TE1 modes considered

so far can be viewed as being related to the guided modes supported by a straight

slab with the same refractive index profile and thickness, the profiles shown in

Figure 2.9 are not related to guided modes of that straight waveguide.

For these modes, the classification by the number of minima in the absolute value

of the mode profile can still be applied; also the systematics of larger attenuation

and higher exterior field levels for growing mode order remains valid.

In contrast to the two lowest order fields, these higher order modes exhibit pro-

nounced intensity maxima in the interior region. Apparently, for the present non-

symmetric bend, this indicates the transition to the regime of whispering gallery

modes, which is discussed below.
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Figure 2.9: Higher order TE modes for a bend as considered for Table 2.3 with

R = 100µm. The corresponding propagation constants γ/k are 1.5347−i 2.8974·
10−3 (TE2), 1.5094 − i 5.7969 · 10−3 (TE3), and 1.4891 − i 6.1955 · 10−3 (TE4),

respectively. The insets clearly show the decay of the mode profiles for r → ∞
after an initial growth of the field in the cover region.

2.4.5 Whispering gallery modes

If the core width of a bent waveguide is increased, then as in the case of straight

waveguides, the mode profile changes, and eventually the bent waveguide becomes

multimodal. But at the same time another interesting phenomenon occurs, which

can not happen with straight waveguides. If the core width of a bent waveguide

is increased beyond a certain limit, a regime is reached where the bend modes are

guided by just the outer dielectric interface and the precise location of the inner

dielectric interface becomes irrelevant. These modes are known as “whispering

gallery modes” (WGMs).

The model of Section 2.2 covers those configurations with the formal choice ns =
nf in Figure 2.1, where d becomes irrelevant. The above mentioned transition of

a bend mode towards a WGM is shown in Figure 2.10. For illustration purposes,

we adopt a set of parameters from Ref. [57], that specifies a high-contrast curved

interface with a rather small radius, i.e. a parameter regime that differs considerably

from the previous bent slabs. For the present configuration, the field profiles of the

TE0 mode for d = 1.5µm, 2.0µm, and 4µm are almost identical.

In fact, plots of the propagation constants for these modes in Figure 2.11 show that

for core widths larger than 1.0µm, neff becomes almost independent from the core

width. For increasing core width, a larger part of the mode profile is trapped inside

the core. This results in the increase of the phase constant β and the decrease of

the attenuation constant α.

A comparison of the present analytical simulation results for the propagation con-

stants of the four lowest order WGMs with FDTD results from Ref. [57] is shown

in Table 2.4. Again we find a very good agreement.

42



2.4 Simulation results

−4 −2 0 2 4
0

9

18

27

36

(r−R)  [µm]

|E
y
|

d=1.1 µm

−4 −2 0 2 4
0

9

18

27

36

(r−R)  [µm]

|E
y
|

d=0.9 µm

−4 −2 0 2 4
0

9

18

27

36

(r−R)  [µm]

|E
y
|

d=0.5 µm

−4 −2 0 2 4
0

9

18

27

36

(r−R)  [µm]

|E
y
|

d=4.0 µm

−4 −2 0 2 4
0

9

18

27

36

(r−R)  [µm]

|E
y
|

d=2.0 µm

−4 −2 0 2 4
0

9

18

27

36

(r−R)  [µm]

|E
y
|

d=1.5 µm

~
~

Figure 2.10: Transition of a bend mode towards a whispering gallery mode. The

core width d of a bent waveguide with the parameters nf = 1.5, nc = 1.0, R =
4.0µm, and λ = 1.0µm is increased, until the whispering gallery mode regime is

reached.
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Figure 2.11: Effect of increasing the core width on the TE0 bent mode propagation

constant (given in terms of effective refractive index neff = γ/k). The waveguide

configuration is as for Figure 2.10.

As shown in Figure 2.12, for growing mode order, qualitatively one finds the in-

crease of the attenuation, the outwards shift of the outermost profile intensity max-

ima, the raise of the exterior field levels, and the wider radial extent of the profiles,

just as for the modes of the bent cores in Figs. 2.7 and 2.9. In contrast to the im-

pression given e.g. in Refs. [96, 98], the complex mode profiles exhibit minima in

the absolute value of the principal field component, not nodal points.

Despite the substantial differences in the attenuation levels of these modes, the

higher order fields may well play a role for the representation of resonances of the
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γ/k, present γ/k, Ref. [57]

TE0 1.3106 − i 1.1294 · 10−5 1.310 − i 1.133 · 10−5

TE1 1.1348 − i 1.8862 · 10−3 1.134 − i 1.888 · 10−3

TE2 0.9902 − i 1.1676 · 10−2 −
TE3 0.8558 − i 1.8832 · 10−2 −

Table 2.4: Propagation constants γ for the whispering gallery modes of a curved

dielectric interface with the parameters nf = 1.5, nc = 1.0, R = 4.0µm, and

λ = 1.0µm. Third column: Results from Ref. [57].

z [µm]

x
 [

µ
m

]

TE
2

−5 0 5
0

2

4

6

z [µm]

x
 [

µ
m

]

TE
1

−5 0 5
0

2

4

6

z [µm]

x
 [

µ
m

]

TE
0

−5 0 5
0

2

4

6

−4 −2 0 2 4

0

5

10

15

20

(r−R)  [µm]
|E

y0
| 
[a

.u
.]

TE
2

−4 −2 0 2 4

0

5

10

15

20

25

(r−R)  [µm]

|E
y0
| 
[a

.u
.]

TE
1

−4 −2 0 2 4

0

10

20

30

(r−R)  [µm]

|E
y
| 
[a

.u
.]

TE
0

~

Figure 2.12: Profiles (top) and physical field evolution (bottom) of the three lowest

order whispering gallery modes according to the specification of Table 2.4.

corresponding disc-shaped microresonator cavity, due to the rather short circum-

ference. Therefore we conclude this section with two examples of interferences of

whispering gallery modes in Figure 2.13. As for the bend slabs in Figure 2.8 one

observes an interior beating pattern and ray-like bundles of waves in the exterior,

here on much shorter ranges in terms of the local wavelength.

2.5 Effect of core refractive index perturbation

As motivated in Section 1.4.5, we are interested in the tuning of resonators by

changes of the cavity core refractive index. In order to estimate this effect, one must

know the dependence of the propagation constants on the core refractive index.

Here we derive a perturbational expression for the change in the cavity propagation

constants due to changes in the core refractive index.
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Figure 2.13: Interference patterns of the modes of Figure 2.12 and Table 2.4;

the plots show the absolute value |Ey| (left) and snapshots of the time harmonic

physical field Ey (right). Superpositions of the two (top) and three (bottom) low-

est order fields are considered, initialized with unit amplitudes of the normalized

profiles (with positive Ẽy(R)) at z = 0.

Derivation of perturbational expression

For a bent waveguide with the refractive index distribution n(r) =
√

ǫ(r), let

(E,H) be the full electric and magnetic field (2.1) for a given mode. Suppose that

the core refractive index is slightly perturbed, and the perturbed refractive index

distribution is given by np(r) =
√

ǫp(r). For this perturbation, assuming that the

mode profile remains unchanged, the corresponding perturbed mode (Ep,Hp) is

approximated as
(

Ep

Hp

)

= P (θ)

(

E

H

)

, (2.26)

where P (θ) is an unknown function of the angular coordinate θ.

By using Lorentz’s reciprocity theorem [43] in polar coordinates to (Ep,Hp, ǫp)
and (E,H , ǫ), one obtains
∫

∞

0
∇ · (Ep × H

∗ + E
∗ × Hp) r dr = −iωǫ0

∫

∞

0
(ǫp − ǫ)Ep · E∗ r dr,

which upon inserting the ansatz given by Eq. (2.26) and after simplifying reduces

to

dP

dθ

∫

∞

0
aθ ·(E×H

∗+E
∗×H) dr = −iωǫ0P

∫

∞

0
(ǫp−ǫ)E ·E∗ r dr, (2.27)

45



Chapter 2: Analytic approach to dielectric optical bent slab waveguides

where aθ is the unit vector in the angular direction.

Inserting the bent waveguide field ansatz given by Eq. (2.1) and solving for P (θ)
leads to

P (θ) = P0 exp

(

−iωǫ0

∫

∞

0 (ǫp − ǫ)Ẽ · Ẽ∗

r dr
∫

∞

0 aθ · (Ẽ × H̃
∗

+ Ẽ
∗ × H̃) dr

θ

)

, (2.28)

where P0 is a constant, the superscript ∼ represents the mode profile associated

with the field. Thus the perturbed modal field is

(

Ep

Hp

)

=P0

(

Ẽ

H̃

)

exp

(

−i

(

γ +
ωǫ0
R

∫

∞

0 (ǫp − ǫ)Ẽ · Ẽ∗

r dr
∫

∞

0 aθ · (Ẽ × H̃
∗

+ Ẽ
∗ × H̃) dr

)

Rθ

)

,

and the change in propagation constant δγ due to the perturbation is given by

δγ =
ωǫ0
R

∫

∞

0 (ǫp − ǫ)Ẽ · Ẽ∗

r dr
∫

∞

0 aθ · (Ẽ × H̃
∗

+ Ẽ
∗ × H̃) dr

. (2.29)

Note that above expression can also be written in terms of modal fields (E,H)
instead of mode profiles (Ẽ, H̃). The right hand side of Eq. (2.29) is a pure real

number. Therefore this expression, in fact, gives the change in the real part of the

propagation constant only. In Ref. [43] a similar expression for the change in prop-

agation constant for bulk uniform permittivity perturbations of straight waveguides

is derived by means of a variational principle.

The use of asymptotic expansion of H
(2)
ν (nkr), given by Eq. (2.5), reveals that, in

the present case of bent waveguides, the integral
∫

∞

0 (ǫp−ǫ)Ẽ·Ẽ∗

r dr is undefined

for the upper limit r = ∞, if ǫp − ǫ does not vanish for large radial coordinates.

Still for a uniform perturbation δǫf = δn2
f = n2

f,p − n2
f of the core refractive index,

it is well defined; in that case Eq. (2.29) simplifies to

δβ =
ωǫ0
R

δn2
f

∫ R
R−d E · E∗ r dr

∫

∞

0 aθ · (E × H
∗ + E

∗ × H) dr
(2.30)

where R−d and R define the core interface as shown in Figure 2.1, nf,p and nf are

perturbed and unperturbed core refractive index respectively. For a small uniform

perturbation of the core refractive index, using Eq. (2.30), one can approximately

write

∂β

∂nf

= 2nf

∂β

∂ǫf

≈ 2nf

ωǫ0
R

∫ R
R−d E · E∗ r dr

∫

∞

0 aθ · (E × H
∗ + E

∗ × H) dr
. (2.31)

Note that the integrals that occur in the above expression are well behaved.
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2.6 Concluding remarks

Simulation results

Now we assess the validity of the perturbation expression (2.31). For the moder-

ately lossy bent waveguide configuration considered in Figure 2.14, the estimation

of the change in the phase propagation constants by the perturbation expression

agrees very well with the directly computed values.
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Figure 2.14: Phase propagation constants estimated by the perturbational expres-

sion, for a bent waveguide configuration with ns = nc = 1.0, d = 0.5µm,

R = 5µm. Dashed lines denote β/k obtained by direct calculations, dots are

reference points nf = 1.5 and nf = 1.75, and the slope of the solid line segments

is given by expression (2.31).

As an another example, for Figure 2.15, the perturbational expression (2.31) is

assessed for the WGMs. For the moderately lossy fundamental and first order

WGMs, the agreement is excellent, but for the second order WGMs with consid-

erable losses (e.g. nf = 1.5, γ/k = 1.0422 − i 5.7410 · 10−3 (TE2), 1.0339 −
i 1.21610 · 10−2 (TM2)) there are major deviations. Apparently, here the changes

in the mode profiles and the attenuation constants due to the core refractive index

perturbation are not negligible, such that the ansatz (2.26) is not appropriate for

these fields.

2.6 Concluding remarks

In this chapter we have reconsidered a classical rigorous analytic model for 2-D op-

tical bent slab waveguides and curved dielectric interfaces with piecewise constant

refractive index profiles. A frequency domain ansatz in terms of complex order

Bessel and Hankel functions leads to an eigenvalue equation (transverse resonance

condition) that is to be solved for the complex valued angular mode number.

According to the asymptotic expansions of the relevant Hankel functions, it is
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Figure 2.15: Phase propagation constants of WGMs evaluated by the pertur-

bational expression (2.31), for a bent waveguide configuration with nc = 1.0,

d = R = 5µm. Interpretation of the curves is as for Figure 2.14.

shown that the modal solutions decay according to 1/
√
r for growing radial co-

ordinates r, i.e. specific products of the profile components are integrable along

the radial axis. For purposes of bend mode normalization, we could derive quite

compact expressions for the angular modal power. A complex valued product of

two general fields in the polar coordinate system has been defined, which is suit-

able to express orthogonality properties of nondegenerate, directional, and polar-

ized modal solutions of the bent waveguide problem. Perturbational analysis for

the effect of core refractive index changes is presented.

A series of detailed (benchmarking) examples complements the former abstract

reasoning. Concerning propagation constants, these emphasize the arbitrariness in

the definition of the bend radius. Examples for profiles of bend modes and for

the spatial evolution of the related physical fields are given, for fundamental and

higher order modes of bent slabs with relatively small refractive index contrast, as

well as for whispering gallery modes supported by high-contrast curved interfaces.

A few illustrative examples for interferences of bend modes have been shown,

that exhibit a periodic angular beating pattern (apart from the mode decay) in the

guiding regions of the bends, and tangential, ray-like bundles of outgoing waves in

the exterior regions. The validity of the perturbational expression for shifts in the

(real part of) propagation constants of moderately lossy modes is also verified.

With the present results, a sound analytical basis for (2-D) coupled-mode-theory

modeling of resonator devices involving microrings or microdisks as cavities has

been established. We expect that many of the notions discussed in this chapter are

directly transferable to the case of 3-D configurations involving bent channels with

2-D cross sections.
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Chapter 3

Bent-Straight waveguide couplers

Bent-straight waveguide couplers are one of the ingredi-

ents of the “standard model” of circular microresonators.

Capitalizing on the availability of rigorous analytical

modal solutions for 2-D bent waveguides, in this chapter

these couplers are modeled using a frequency domain spa-

tial coupled mode formalism, derived by means of a vari-

ational principle. Simulation results for the response of

2-D couplers for varying separation distances, radii, and

different wavelengths are discussed. The resulting scat-

tering matrices show reciprocity properties as expected

according to the symmetry of the coupler structures.

Parts of this chapter are adapted from:

K. R. Hiremath, R. Stoffer, M. Hammer. Modeling of circular integrated optical microresonators by

2-D frequency domain coupled mode theory. Optics Communications. (accepted).
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Analysis of circular microresonators by means of the functional decomposition

elaborated in Section 1.4 involves bent-straight waveguide couplers. The response

of these couplers is characterized by scattering matrices, which in turn determine

the spectral response of the resonators. Therefore it is essential to have a parameter

free model of bent-straight waveguide couplers.

In this chapter, we analyze the interaction between bent waveguides and straight

waveguides in two dimensional settings, using spatial coupled mode theory. The

formulation presented in Section 3.2 takes into account that multiple modes in

each of the cores may turn out to be relevant for the functioning of the resonators.

Section 3.3 discusses reciprocity of the scattering matrices, which also provides

a useful means of assessing the reliability of the simulations. Having access to

analytical 2-D bend modes proves useful for the numerical implementation of this

model, which is outlined in Section 3.4. Sections 3.4.1, 3.4.2 discuss simulation

results for monomode and multimode settings. Section 3.5 presents the conclusions

of the present work on bent-straight waveguide couplers.

3.1 Coupled mode theory

A rigorous approach to investigate an electromagnetic wave-propagation problem

is to solve the Maxwell equations (in differential or integral form) for a given de-

vice, along with the material interface conditions, and relevant initial and bound-

ary conditions. Analytic solutions exist for rather a few problems only. In many

cases, one has to resort to computational techniques of more analytical charac-

ter [99, 100, 88, 101, 102, 103], or to pure numerical methods, e.g. different ver-

sions of finite difference (time domain) methods or finite element methods [55, 57,

104, 105, 106]1.

At times, the above rigorous approach may not be intuitive. Direct applications

of the numerical methods do not provide much insight into the functioning of the

devices in terms of their “special structures”. For devices made of directional cou-

plers, i.e. formed by several more or less parallel waveguides in close vicinity,

the above approaches play down the coupling viewpoint. To model such devices,

a more pragmatic approximation technique - “Coupled mode theory” (CMT) is

used [42, 50, 51, 52]. CMT has been quite successfully employed for the anal-

ysis of wave interaction in straight waveguides [35, 107] and fibers [108]. To

our knowledge, most of the studies [21, 54, 109, 110] on CMT based modeling

of interaction between bent/cavity waveguides and straight waveguides (in optical

1For comprehensive information about finite difference time domain methods, see www.fdtd.org
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regime) are based on Ref. [44], where a complex eigenfrequency model of the cav-

ity waveguides is used. Also the interaction between the cavity and the straight

waveguide is treated with a rather heuristic “coupled point” argument (see Eq.(48)

in Ref.[44]).

Capitalizing on the availability of the real frequency analytical model of 2-D bent

waveguides discussed in Chapter 2, in the subsequent sections we address the prob-

lem of wave interaction in bent-straight waveguide couplers in terms of a frequency

domain spatial coupled mode theory model. This model is consistent with standard

physical notions, and the coupling is modeled with systematically and rigorously

derived coupled mode equations.

3.2 Bent-straight waveguide couplers

Consider the coupler configuration shown in Figure 3.1(a). The coupled mode

theory description starts with the specification of the basis fields, here the time-

harmonic modal solutions associated with the isolated bent (b) and straight cores

(c). Customarily, the real, positive frequency ω is given by the vacuum wavelength

λ; we omit the common time dependence ∼ exp (iωt) for the sake of brevity. Only

forward propagating modes are considered, where, for convenience, we choose the

z-axis of the Cartesian system as introduced in Figure 3.1 as the common propa-

gation coordinate for all fields.
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Figure 3.1: The bent-straight waveguide coupler setting (a). One assumes that the

interaction between the waves supported by the bent and straight cores is restricted

to the rectangular computational window [xl, xr] × [zi, zo]. Inside this region the

optical field is represented as a linear combination of the modal fields of the bent

waveguide (b) and of the straight waveguide (c).

Let Ebp, Hbp, and ǫb represent the modal electric fields, magnetic fields, and the

spatial distribution of the relative permittivity of the bent waveguide. Due to the
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Chapter 3: Bent-Straight waveguide couplers

rotational symmetry, these fields are naturally given in the polar coordinate system

r, θ associated with the bent waveguide. For the application in the CMT formalism,

the polar coordinates are expressed in the Cartesian x-z-system, such that the basis

fields for the cavity read

(

Ebp

Hbp

)

(x, z) =

(

Ẽbp

H̃bp

)

(r(x, z)) e−iγbpRθ(x, z). (3.1)

Here Ẽbp and H̃bp are the radial dependent electric and magnetic parts of the

mode profiles; the complex propagation constants γbp prescribe the harmonic de-

pendences on the angular coordinate. Note that the actual values of γbp are related

to the (arbitrary) definition of the bend radius R, see Section 2.4.1.

Likewise, Esq, H sq, and ǫs denote the modal fields and the relative permittivity

associated with the straight waveguide. These are of the form

(

Esq

Hsq

)

(x, z) =

(

Ẽsq

H̃sq

)

(x) e−iβsqz, (3.2)

i.e. guided modes with profiles Ẽsq, H̃sq that depend on the lateral coordinate x,

multiplied by the appropriate harmonic dependence on the longitudinal coordinate

z, with positive propagation constants βsq. Note that for the present 2-D theory all

modal solutions can be computed analytically. While the modal analysis is fairly

standard for straight multilayer waveguides with piecewise constant permittivity,

for the bend structures we employ analytic solutions in terms of Bessel- and Hankel

functions of complex order, computed by means of a bend mode solver as presented

in Chapter 2.

Now the total optical electromagnetic field E, H inside the coupler region is as-

sumed to be well represented by a linear combination of the modal basis fields

(3.1), (3.2),
(

E

H

)

(x, z) =
∑

v=b,s

Nv
∑

i=1

Cvi(z)

(

Evi

Hvi

)

(x, z) (3.3)

with so far unknown amplitudes Cvi that are allowed to vary with the propagation

coordinate z, andNb,Ns denote number of bent waveguide and straight waveguide

modes under consideration. This assumption forms the central approximation of

the present CMT approach; no further approximations or heuristics enter, apart

from the numerical procedures used for the evaluation of the CMT equations (sec-

tion 3.4). Note that here, unlike e.g. in Ref. [44], no “phase matching” arguments

appear; via the transformation r, θ → x, z the tilt of the wave front of the bend

modes (3.1) is taken explicitly into account.
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3.2 Bent-straight waveguide couplers

3.2.1 Coupled mode equations

For the further procedures, the unknown coefficients Cvi are combined into am-

plitude vectors C = (Cb,Cs) = ((Cbi), (Csi)). To determine equations for

these unknowns, here we follow an approach that relies on a variational princi-

ple [111, 112]. Consider the functional

F(E,H) =

∫∫

[(∇× E) · H∗ − (∇× H) · E∗

+ iωµH · H∗ + iωǫ0ǫE · E∗] dx dz,

(3.4)

a 2-D restriction of the functional for the 3-D setting given in [43], stripped from

the boundary terms. For the present 2-D configurations, the convention of vanish-

ing derivatives ∂y = 0 applies to all fields; the curl-operators are to be interpreted

accordingly. F is meant to be viewed as being dependent on the six field com-

ponents E, H . If F becomes stationary with respect to arbitrary variations of

these arguments, then E and H satisfy the Maxwell curl equations as a necessary

condition:

∇× E = −iωµH , ∇× H = iωǫ0ǫE. (3.5)

We now restrict the functional to the fields allowed by the coupled mode ansatz.

After inserting the trial field (3.3) into the functional (3.4), F becomes a functional

that depends on the unknown amplitudes C. For the “best” approximation to a

solution of the problem (3.5) in the form of the field (3.3), the variation of F(C)
is required to vanish for arbitrary variations δC. Disregarding again boundary

terms, the first variations of F at C in the directions δCwj , for j = 1, . . . ,Nw and

w = b,s, are

δF =

∫

∑

v=b,s

Nv
∑

i=1

{

Mvi,wj
dCvi

dz
− Fvi,wjCvi

}

δC∗

wj dz − c.c. (3.6)

where c.c. indicates the complex conjugate of the preceding integrated term,

Mvi,wj = 〈Evi,Hvi;Ewj,Hwj〉=
∫

az·
(

Evi × H
∗

wj + E
∗

wj × Hvi

)

dx, (3.7)

Fvi,wj = −iωǫ0

∫

(ǫ− ǫv)Evi · E∗

wj dx, (3.8)

and where az is a unit vector in the z- direction. Consequently, one arrives at the

coupled mode equations

∑

v=b,s

Nv
∑

i=1

Mvi,wj
dCvi

dz
−
∑

v=b,s

Nv
∑

i=1

Fvi,wj Cvi = 0, (3.9)
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for all j = 1, . . . ,Nw and w = b,s as a necessary condition for F to become

stationary for arbitrary variations δCwj . Note that the same expression is also

obtained from the complex conjugate part of equation (3.6). In matrix notation,

equations (3.9) read

M(z)
dC(z)

dz
= F(z)C(z). (3.10)

Here the entries of the matrices M and F are given by the integrals (3.7) and (3.8).

Due to the functional form of the bend modes and the varying distance between the

bent and straight cores, these coefficients are z-dependent.

Derivation of coupled mode equation by reciprocity technique

Alternatively, the coupled mode equations (3.9) or (3.10) can be derived by means

of a “reciprocity” technique [43]. For any two electromagnetic fields (Ep,Hp) and

(Eq,Hq) with corresponding relative permittivity distributions ǫp and ǫq, using the

Maxwell equations one can derive the following identity,
∫

∇ ·
(

Ep × H
∗

q + E
∗

q × Hp

)

dx = −iωǫ0

∫

(ǫp − ǫq)Ep · E∗

q dx, (3.11)

commonly known as “reciprocity identity” or “Lorentz reciprocity theorem”.

Apply Eq. (3.11) for (E,H , ǫ) and (Ewj,Hwj, ǫw). After straightforward manip-

ulations with the coupled mode field ansatz (3.3) leads to

∑

v=b,s

Nv
∑

i=1

∫

az · (Evi × H
∗

wj + E
∗

wj × Hvi) dx
dCvi

dz
+

∑

v=b,s

Nv
∑

i=1

∫

∇ · (Evi × H
∗

wj + E
∗

wj × Hvi) dx Cvi

= −iωǫ0
∑

v=b,s

Nv
∑

i=1

∫

(ǫ− ǫw)Evi ·E∗

wj dx Cvi. (3.12)

By applying the “reciprocity identity” for the second term on the left hand side of

Eq.(3.12), and combining it with the right hand side, one obtains

∑

v=b,s

Nv
∑

i=1

∫

az · (Evi × H
∗

wj + E
∗

wj × Hvi) dx
dCvi

dz

= −iωǫ0
∑

v=b,s

Nv
∑

i=1

∫

(ǫ− ǫv)Evi ·E∗

wj dx Cvi. (3.13)

Rewriting Eq. (3.13) in terms of the coefficients Mvi,wj , Fvi,wj given by Eqs. (3.7),

(3.8) leads to the coupled mode equations (3.9).
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Coupled mode equations for couplers with monomodal waveguides

In the single mode case Nb = Ns = 1, Eq.(3.10) is given explicitely [71, 34] as

(

Mbb Msb

Mbs Mss

)

d

dz

(

Cb

Cs

)

=

(

Fbb Fsb

Fbs Fss

)(

Cb

Cs

)

, (3.14)

where the mode index p = q = 1 is omitted for simplicity.

3.2.2 Transfer matrix and scattering matrix

To proceed further, the CMT equations are solved by numerical means. Brief de-

tails about the procedures are given in Section 3.4; the result can be stated in terms

of a transfer matrix T that relates the CMT amplitudes at the output plane z = zo

to the amplitudes at the input plane z = zi of the coupler region:

C(zo) = T C(zi). (3.15)

It remains to relate the transfer matrix, obtained directly as the solution of the CMT

equations on the limited computational window, to the coupler scattering matrix as

required for the abstract model of Section 1.4 or Section 4.1, respectively.

Outside the coupler (i.e. outside the region [xl, xr]× [zi, zo]), it is assumed that the

interaction between the fields associated with the different cores is negligible. The

individual modes propagate undisturbed according to the harmonic dependences

on the respective propagation coordinates, such that the external fields are:

ap

(

Ẽbp

H̃bp

)

(r) e−iγbpR(θ − θi), for θ ≤ θi,

Aq

(

Ẽsq

H̃sq

)

(x) e−iβsq(z − zi), for z ≤ zi,

(3.16)

and

bp

(

Ẽbp

H̃bp

)

(r) e−iγbpR(θ − θo), for θ ≥ θo,

Bq

(

Ẽsq

H̃sq

)

(x) e−iβsq(z − zo), for z ≥ zo.

(3.17)

Here a = (ap), A = (Aq) and b = (bp), B = (Bq) are the constant external mode

amplitudes at the input and output ports of the coupler (c.f. the corresponding

definitions in the abstract resonator model of Section 1.4 or Section 4.1). See

Figure 3.1 for the definitions of the coordinate offsets zi, θi and zo, θo.
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For a typical coupler configuration, the guided modal fields of the straight wave-

guide are well confined to the straight core. On the contrary, due to the radiative

nature of the fields, the bend mode profiles can extend far beyond the outer inter-

face of the bent waveguide. Depending upon the specific physical configuration,

the extent of these radiative parts of the fields varies, such that also outside the

actual coupler region, the field strength of the bend modes in the region close to

the straight core may be significant. Therefore, to assign the external mode ampli-

tudes Aq, Bq, it turns out to be necessary to project the coupled field on the straight

waveguide modes.

At a sufficient distance from the cavity, in the region where only the straight wave-

guide is present, the total field φ = (E,H) can be expanded into the complete set

of modal solutions of the eigenvalue problem for the straight waveguide. The basis

set consists of a finite number of guided modes φsq = (Esq,H sq) and a nonguided,

radiative part φrad, such that

φ =
∑

q

Bqφsq + φrad, (3.18)

where Bq are the constant amplitudes of φsq. These amplitudes can be extracted

by applying the formal expansion to the total field (3.3) as given by the solution of

the CMT equations. Using the orthogonality properties of the basis elements, the

projection at the output plane z = zo of the coupler yields

Bq exp (iβsqz) = Csq +

Nb
∑

p=1

Cbp
〈φbp;φsq〉
〈φsq;φsq〉

= Csq +

Nb
∑

p=1

Cbp
Mbp,sq

Msq,sq
. (3.19)

where the mode overlaps 〈φmi;φnj〉 = 〈Emi,Hmi;Enj,Hnj〉 = Mmi,nj occur

already in the coupled mode equations (3.10). An expression analogous to (3.19)

can be written for the projection at z = zi, where the coefficients Aq are involved.

What concerns the external amplitudes of the bend modes, no such procedure is

required, since the field strength of the straight waveguide modes is usually neg-

ligible in the respective angular planes, where the major part of the bend mode

profiles is located. Here merely factors are introduced that adjust the offsets of the

angular coordinates in (3.16),(3.17) .

Thus, given the solution (3.15) of the coupled mode equations in the form of the

transfer matrix T, the scattering matrix S that relates the amplitudes ap, bp, Aq , Bq

of the external fields as required in equation (1.1) is defined as

S = Q T P
−1 (3.20)

56



3.2 Bent-straight waveguide couplers

where P and Q are (Nb +Ns) × (Nb +Ns) matrices with diagonal entries Pp,p =
exp (−iγbpRθi) and Qp,p = exp (−iγbpRθo), for p = 1, . . . ,Nb, followed by the

entries Pq+Nb,q+Nb
= exp (−iβsqzi) and Qq+Nb,q+Nb

= exp (−iβsqzo), for

q = 1, . . . ,Ns.

A lower left block is filled with entries Pq+Nb,p = exp (−iβsqz) Mbp,sq/Msq,sq|z=zi

and Qq+Nb,p = exp (−iβsqz) Mbp,sq/Msq,sq|z=zo
, for q = 1, . . . ,Ns and p =

1, . . . ,Nb, respectively, that incorporate the projections. All other coefficients of

P and Q are zero.

3.2.3 Remarks on the projection operation

Admittedly, at the first glance the projection operation might appear redundant,

since the CMT solution in the form (3.3) provides directly amplitudes for the ba-

sis fields that occur also in the external field representation (3.16), (3.17). Here

perhaps further explanatory remarks are necessary.

The physical field around the exit planes of the CMT window can be seen as a

superposition of the outgoing guided modes of the bus core with their constant

amplitudes, and a remainder, that, when expanded in the modal basis associated

with the straight waveguide, is orthogonal to the guided waves. The notions of

“vanishing interaction” or “decoupled” fields, as used e.g. for the motivation of

the assumptions underlying the abstract framework of Section 1.4, are to be con-

cretized in precisely this way: The guided waves in the straight core are stationary,

iff projections onto the mode profiles at growing propagation distances lead to con-

stant amplitudes Aq,Bq (apart from the phase changes according to the undisturbed

propagation of the respective modes).

Now the coupled mode theory formalism is limited to the few non-orthogonal bend

and straight modes included in the CMT ansatz, which are overlapping in the re-

gions of the input and exit ports A and B of the coupler. Consequently, when the

CMT procedures try to approximate both the guided and radiative part of the real

field, the optimum approximations may well be superpositions with non-stationary

coupled mode amplitudes Csq of the modes of the bus waveguide. Indeed, as ob-

served in Sections 3.4.1 and 3.4.2, the projected amplitudes |Bq|2 (or the related

scattering matrix elements |Ssq,wj|2) become stationary, when viewed as a function

of the exit port position zo, while at the same time the associated CMT solution

|Csq(z)|2 (or the elements |Tsq,wj |2 of the transfer matrix) exhibit an oscillatory

behaviour. Still, in the sense of the projections, one can speak of “non-interacting,

decoupled” fields. That justifies the limitation of the computational window to z-

intervals where the elements of S (not necessarily of T) attain constant absolute
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values around the input and output planes.

In conclusion, it is at least partly misleading to stick to the familiar notion of “mode

evolutions” computed by the CMT approach. If one abandons that viewpoint and

regards the CMT procedures as just “a” method that generates an approximate field

solution inside the computational window, then applying the projections to extract

the external mode amplitudes appears perfectly reasonable.

3.3 Reciprocity of scattering matrix

For the analysis of the bent-straight waveguide couplers discussed in Section 3.2,

we have considered only forward propagating modes. By considering backward

propagating modes also, the corresponding full scattering matrix that relates the

bidirectional amplitudes of the outgoing waves to the amplitudes of the correspond-

ing incoming modes is given as:









a−

A
−

b

B









=









0 0 S
−

bb S
−

bs

0 0 S
−

sb S
−

ss

Sbb Sbs 0 0

Ssb Sss 0 0

















a

A

b
−

B
−









. (3.21)

Here the superscripts − indicate the amplitudes of backwards (anticlockwise) prop-

agating waves, where the zeroes implement the assumption of negligible backre-

flections. The entries of the submatrices Svw with v,w = b, s represent the “cou-

pling” from the modes of waveguide w to the fields supported by waveguide v.

A fundamental property of any linear optical circuit made of nonmagnetic materials

is that the transmission between any two “ports” does not depend upon the prop-

agation direction. The proof can be based e.g. on the integration of a reciprocity

identity over the spatial domain covered by that circuit [43]. More specifically, the

full scattering matrix of the reciprocal circuit has to be symmetric. The argument

holds for circuits with potentially attenuating materials, in the presence of radiative

losses, and irrespectively of the particular shape of the connecting cores. It relies

crucially on the precise definition of the “ports” of the circuit, where independent

ports can be realized either by mode orthogonality or by spatially well separated

outlets.

Assuming that the requirements of that argument can be applied at least approxi-

mately to our present bent-straight waveguide couplers, one expects that the cou-

pler scattering matrix is symmetric. For the submatrices this implies the following
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equalities (T denotes the transpose):

Sbb = (S−

bb)
T, Ssb = (S−

bs)
T, Sbs = (S−

sb)
T, Sss = (S−

ss)
T. (3.22)

If the coupler shown in Figure 3.1 is defined symmetrical with respect to the central

plane z = 0 and if identical mode profiles are used for the incoming and outgoing

fields, then one can further expect (see [43]) the transmission A → b to be equal

to the transmission B
− → a−. Similarly, one expects equal transmissions a → B

and b
− → A

−, or

Sbs = S
−

bs, Ssb = S
−

sb. (3.23)

Consequently, according to equations (3.22) and (3.23), also the unidirectional

scattering matrix

S =

(

Sbb Sbs

Ssb Sss

)

(3.24)

associated with the forward, clockwise propagation through the coupler, i.e. the

lower left quarter block of the full matrix in equation (3.21) can be expected to be

symmetric:

Sbs = (Ssb)
T, S

−

bs = (S−

sb)
T. (3.25)

Here translated to the multimode coupler setting, this means that “the coupling

from the straight waveguide to the cavity bend is equal to the coupling from the

cavity bend to the bus waveguide”.

3.4 Simulation results

The coupled mode equations (3.9), (3.10) are treated by numerical means on a

rectangular computational window [xl, xr] × [zi, zo] as introduced in Figure 3.1.

The solution involves the numerical quadrature of the integrals (3.7), (3.8) in the

z-dependent matrices M and F, where a simple trapezoidal rule [113] is applied,

using an equidistant discretization of [xl, xr] into intervals of length hx.

Subsequently, a standard fourth order Runge-Kutta scheme [113] serves to generate

a numerical solution of the coupled mode equations over the computational domain

[zi, zo], which is split into intervals of equal length hz . Exploiting the linearity of

equation (3.10), the procedure is formulated directly for the transfer matrix T, i.e.

applied to the matrix equation

dT(z)

dz
= M(z)−1

F(z) T(z) (3.26)
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with initial condition T(zi) = I (the identity matrix), such that C(z) = T(z)C(zi).
While the evaluation of the resonator properties via equations (3.20) and (1.4),

(1.5) requires only the solution T = T(zo) at the coupler output plane z = zo,

also the examination of the evolutions of T(z), or S(z), respectively, turns out be

instructive.

Having explained how to compute the scattering matrices for the bent-straight

waveguide couplers, in Section 3.4.1 and 3.4.2 we summarize a series of numeri-

cal results for the theory outlined in Section 3.2 and 3.3. Note that couplers with

quite small radius with substantial refractive index contrast are considered as test

structures. For the CMT approach, these represent rather extreme configurations,

partially with strongly leaky fields, thus with relatively large field strengths in the

regions where the CMT ansatz-field clearly violates the Maxwell equations. One

expects that for couplers that consist of bent waveguides with large radii, i.e. with

better confined bend modes, and more adiabatic interaction in the coupler regions,

the CMT approach comes even closer to reality.

3.4.1 Coupler with monomodal bent waveguide

As the first example, we consider bent-straight waveguide couplers according to

Figure 3.1, formed by straight and circularly bent cores of widths ws = 0.4µm and

wc = 0.5µm with refractive index nc = ns = 1.5, embedded in a background with

refractive index nb = 1. The configurations differ with respect to the radius R of

the outer bend interface, and with respect to the distance g between the cores. The

interaction of waves with vacuum wavelength λ = 1.05µm is studied, k = 2π/λ is

the associated vacuum wavenumber. Both constituent waveguides are single-mode

at the target wavelength, with mode profiles that are well confined to the respective

cores. Figure 3.2 illustrates an example for the two basis fields. The longer outer

tail of the bend profile is accompanied by a slight shift of the profile maximum

towards the exterior of the bend.

The CMT simulations of the couplers are carried out on computational windows

of [xl, xr] × [zi, zo] = [0, R + 10µm] × [−R + 1µm, R − 1µm], if R ≤ 5µm,

otherwise on a window [xl, xr] × [zi, zo] = [R − 5µm, R + 10µm] × [−8, 8]µm,

discretized with stepsizes of hx = 0.005µm and hz = 0.1µm. For the two basis

fields the CMT analysis generates 2×2 transfer matrices T and scattering matrices

S that can be viewed as being z-dependent in the sense as discussed in Section 3.4.

Figure 3.3 shows the evolution of the matrix elements with the position z = zo of

the coupler output plane.

The matrix elements To,i and So,i relate the amplitudes of an input mode i to an
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Figure 3.2: Normalized fundamental TE mode profiles |Ẽy| (top) and snapshots

of the propagating physical fields Ey (bottom) of the constituent bent (left) and

straight waveguides (right) related to the coupler configurations of Section 3.4.1,

for R = 5µm. The effective mode indices of the basis fields are γ/k = 1.29297−
i 7.5205 · 10−6 (bend mode), and β/k = 1.3137 (straight waveguide).

output mode o; for the present normalized modes the absolute squares can thus

be viewed as the relative fractions of optical power transferred from mode i at the

input plane z = zi to mode o at the output plane z = zo of the coupler. After an

initial interval, where these quantities remain stationary, one observes variations

around the central plane z = 0 of the coupler, which correspond to the interaction

of the waves. Here the nonorthogonal basis fields are strongly overlapping; it is

therefore not surprising that the levels of specific components of |To,i|2 and |So,i|2
exceed 1 in this interval.

After the region of strongest interaction, near the end of the z-computational in-

terval, one finds that the elements |Tb0,i|2 that map to the bend mode amplitude

become stationary again, while the elements |Ts0,i|2 related to the output to the

straight mode still show an oscillatory behaviour. This is due to the interference

effects as explained in Section 3.2.3. The proper amplitudes of the modes of the

bus channel can be extracted by applying the projection operation (3.19); the corre-

sponding matrix elements |Ss0,i|2 attain stationary values, such that the “coupling

strength” predicted for the involved modes does not depend on the (to a certain

degree arbitrary) position of the coupler output plane.
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Figure 3.3: Elements of the transfer matrix T and scattering matrix S for TE (first

row) and TM (second row) polarized light, versus the output plane position zo, for

couplers as introduced in Section 3.4.1 with R = 5µm and g = 0.2µm.

Anyway, the scattering matrix S, that enters the relations (1.4), (1.5) for the trans-

mission properties of the resonator device, should be considered a static quantity,

computed for the fixed computational interval [zi, zo]. From the design point of

view, one is interested in the elements of this matrix (the “coupling coefficients”)

as a function of the resonator / coupler design parameters. Figure 3.4 summarizes

the variation of S with the width of the coupler gap, for a series of different bend

radii.

Uniformly for all radii and for both polarizations one observes the following trends.

For large gap widths, the non-interacting fields lead to curves that are constant, at

levels of unity (|Ss0,s0|2, full transmission along the straight waveguide), moder-

ately below unity (|Sb0,b0|2, attenuation of the isolated bend mode, stronger for

the TM field), or zero (|Sb0,s0|2 and |Ss0,b0|2, decoupled fields). As the gap width

decreases, the growing interaction strength between the modes in the two cores

causes increasing cross coupling |Sb0,s0|2, |Ss0,b0|2 and decreasing self coupling
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Figure 3.4: Scattering matrix elements |So,i|2 versus the gap width g, for couplers

as considered in Section 3.4.1 with cavity radii R = 3, 5, 10, 15µm, for TE (first

row) and TM (second row) polarized waves.

|Ss0,s0|2, |Sb0,b0|2. This continues until a maximum level of power transfer is at-

tained (where the level should depend on the “phase mismatch” between the basis

fields, though a highly questionable notion in case of the bend modes [114]).

If the gap is further reduced, the cross coupling coefficients decrease, even if a

growing strength of the interaction can be expected; the decrease can be attributed

to a process of “forth and back coupling”, as shown in Figure 3.5, where along

the propagation axis a major part of the optical power changes first from the input

channel to the second waveguide, then back to the input core. One should therefore

distinguish clearly between the magnitude of the coefficients (3.8) in the differen-

tial equations that govern the coupling process, and the solution of these equations

for a finite interval, the net effect of the coupler, represented by the scattering ma-

trix S.
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Figure 3.5: Forth and back coupling as the separation distance g is reduced.

The plots show the real physical Ey field for the coupler configuration as in Sec-

tion 3.4.1, with R = 15µm.

For the symmetric computational windows used for the present simulations, the

abstract reasoning of Section 3.3 predicts symmetric coupler scattering matrices.

According to Figures 3.3 and 3.4, this constraint is respected remarkably well by

the CMT simulations. In Figure 3.3, the curves related to |Ss0,b0|2 and |Sb0,s0|2
end in nearly the same level at z = zo. Figure 3.4 shows pairs of close curves

for the cross coupling coefficients, where larger deviations occur only for rather

extreme configurations with small bend radii and gaps close to zero; the deviations

are more pronounced for the TM case. Here one might question the validity of

the assumptions underlying the CMT ansatz (3.3). Otherwise the symmetry of the

scattering matrices provides a useful means to assess the accuracy of the CMT

simulations, beyond merely the power balance constraint.

In the “standard resonator model”, as seen from Eqs. (1.4), (1.5), the spectral re-
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sponse of the resonators depends on the scattering matrix entries. Therefore it

is useful to look at the wavelength dependence of the scattering matrix, which is

shown in the plots of Figure 3.6 and 3.7.
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Figure 3.6: Wavelength dependence of the entries (absolute square) of the scat-

tering matrix S, |Sb0,b0|2 (solid line), |Sb0,s0|2 (dashed line), |Ss0,b0|2 (circles), and

|Ss0,s0|2 (squares). The coupler configuration is as in Section 3.4.1, withR = 5µm

and gap widths g = 0.2µm, 0.3µm, 0.4µm.

Note that the scattering matrix entries are complex numbers. While the absolute

square of these entries, as shown in Figure 3.6, shows a monotonic behaviour,

the corresponding real and imaginary parts, shown in Figure 3.7, oscillate. These

oscillations are due to phase changes experienced by the modal fields while prop-

agating along the coupler. We will elaborate this point further in Section 4.3, with

a numerical example in Section 4.4.1.

As the wavelength increases, the bent waveguide and straight waveguide modes be-

come less confined, and the interaction between these modes increases. This results

in a steady increase of the cross coupling coefficients |Sb0,s0|2, |Ss0,b0|2, and a de-

crease of the self coupling coefficients |Sb0,b0|2, |Ss0,s0|2. For varying wavelengths

and for both polarizations, the simulation results in Figures 3.6 and 3.7 show that

reciprocity is maintained very well, i.e. the cross coupling coefficients Sb0,s0 and

Ss0,b0 coincide as complex numbers (see the plots in the second row of Figure 3.7).

Slight deviations can be observed for the configurations with g = 0.2µm and TM

polarization, for the structure with the strongest interaction and lossy, less regular

fields.
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Figure 3.7: Wavelength dependence of complex valued entries of the scattering

matrix S. For each separation distance, the plots in the first row show ℜ(Sb0,b0)
(line with circles), ℑ(Sb0,b0) (line with squares), ℜ(Ss0,s0) (solid line), ℑ(Ss0,s0)
(dashed line), and the plots in the second row show ℜ(Sb0,s0) (circles), ℑ(Sb0,s0)
(squares), ℜ(Ss0,b0) (solid line), ℑ(Ss0,b0) (dashed line). ℜ and ℑ denote the real

and imaginary parts of the complex numbers. Coupler configurations are as in

Figure 3.6.

3.4.2 Coupler with multimodal bent waveguide

If the core width of a bent waveguide is increased beyond a certain limit, then

as discussed in Section 2.4.5, the whispering gallery regime is reached, where the

modes are guided by just the outer dielectric interface. Figure 3.8 illustrates the first

four lowest order whispering gallery modes that are supported by a structure with

the parameters of the previous ring segments, where the interior has been filled with

the core material. If the resulting disk is employed as the cavity in a resonator struc-

ture, all bend modes with reasonably low losses must be suspected to be relevant

for the functioning of the device. Therefore we now consider bent-straight coupler

configurations, where the bend supports multiple whispering gallery modes.

A parameter set similar to Section 3.4.1 is adopted, with nc = ns = 1.5, nb =
1.0, R = 5µm, wc = R, ws = 0.4µm, g = 0.2µm, for the target wavelength

λ = 1.05µm. The CMT analysis of the coupler structures is carried out on a

computational window [xl, xr] = [0, 15]µm, [zi, zo] = [−4, 4]µm with large extent

in the (radial) x-direction, in order to capture the radiative parts of the lossy higher

66



3.4 Simulation results

z [µm]

x
 [

µ
m

]

TE
0

−5 0 5
0

2

4

6

−5 −3 −1 0 1 3 5

0

10

20

30

(r−R)  [µm]

|E
y
|

TE
0

z [µm]

x
 [

µ
m

]

TE
1

−5 0 5
0

2

4

6

−5 −3 −1 0 1 3 5

0

10

20

30

(r−R)  [µm]

|E
y
|

TE
1

z [µm]

x
 [

µ
m

]

TE
3

−5 0 5
0

2

4

6

−5 −3 −1 0 1 3 5

0

10

20

30

(r−R)  [µm]

|E
y
|

TE
2

z [µm]

x
 [

µ
m

]

TE
3

−5 0 5
0

2

4

6

−5 −3 −1 0 1 3 5
0

10

20

30

(r−R)  [µm]

|E
y
|

TE
3

~
~

~
~

Figure 3.8: TE polarized whispering gallery modes; basis fields for the CMT

analysis of the multimode couplers of Section 3.4.2. The plots show the abso-

lute value |Ẽy| of the radial mode profile (left) and snapshots of the propagating

physical field Ey (right). The effective mode indices γj/k related to the bend ra-

dius R = 5µm are 1.32793− i 9.531 ·10−7 (TE0), 1.16931− i 4.032 ·10−4 (TE1),

1.04222−i 5.741·10−3 (TE2), and 0.92474−i 1.313·10−2 (TE3), for λ = 1.05µm.

All modes are power normalized.

order bend fields. Stepsizes for the numerical integrations are hx = 0.005µm,

hz = 0.1µm, as before.

It is not a priori evident, how many basis fields are relevant for a particular simu-

lation. Figure 3.9 shows the effect of the inclusion of the higher order bend modes

on the evolution of the primary coefficients of the scattering matrix S.

The self coupling coefficient |Sb0,b0|2 of the fundamental bend field is hardly in-

fluenced at all, and there is only a minor effect on the cross coupling coefficients

|Ss0,b0|2 and |Sb0,s0|2. Inclusion of the first order bend field reduces merely the self

coupling coefficient |Ss0,s0|2 of the straight mode by a substantial amount, due to

the additional coupling to that basis field. Apparently, for the present structure it
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Figure 3.9: CMT analysis of the multimode coupler of Section 3.4.2, effect of the

inclusion of higher order cavity modes on the evolution of the scattering matrix.

Results for TE waves with one (dashed line), two (dash-dotted line), three (solid

line), and four cavity modes (dotted line) taken into account. Note the different

vertical axes of the plots.

is sufficient to take just the two or three lowest order bend modes into account.

This hints at one of the advantages of CMT approach, where one can precisely

analyze the significance of the individual basis modes. We will resume this issue

in Section 4.4.2.

With three cavity fields and the mode of the straight waveguide, the CMT sim-

ulations lead to coupler scattering matrices of dimension 4 × 4. Curves for the

evolution of the 16 elements of the propagation and scattering matrices T, S are

collected in Figure 3.10. Just as in Section 3.4.1, the application of the projection

procedure to extract the stationary levels of |Ss0,j|2, |Sj,s0|2 from the nonstationary

quantities |Ts0,j|2, |Tj,s0|2 at the exit port of the coupler is essential.

Again, the agreement of the exit levels of all cross coupling coefficients indicates

that reciprocity is satisfied. In contrast to Figure 3.3, the noticeable decay of the

self coupling coefficients |Sb1,b1|2, |Sb2,b2|2 is due to the strong attenuation of the

basis fields, as directly introduced into S via equation (3.20).
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Figure 3.10: Evolution of the propagation matrix T and scattering matrix S for

the coupler configuration with multimode bend as specified in Section 3.4.2; CMT

results with four basis fields.

According to Figure 3.11, the elements of the scattering matrix exhibit a simi-

lar variation with the gap width as found for the former monomode bent-straight

waveguide coupler (cf. Figure 3.4). With growing separation distance the cross

coupling coefficients tend to zero. The constant levels attained by the self cou-

pling coefficients of the bent modes are determined by the power the respective

mode loses in traversing the computational window. Also here, with the exception

of configurations with almost closed gap, we find that cross coupling coefficients

with reversed indices coincide, i.e. that the simulations obey reciprocity.
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Figure 3.11: Scattering matrix elements |So,i|2 versus the gap width g for the cou-

pler structures of Section 3.4.2 for TE (top) and TM polarization (bottom). The

CMT simulations take three whispering gallery modes and the field of the straight

waveguide into account.

3.5 Concluding remarks

In this chapter, we presented a spatial coupled mode theory based model of 2-

D bent-straight waveguide couplers. In this frequency domain approach, coupled

mode equations are rigorously derived by a variational principle. Availability of

2-D analytical bent waveguide modes facilitates the implementation of the model

consistent with standard physical notions. By solving the coupled mode equations
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numerically, and projecting the resulting coupled mode field on the modes of the

straight waveguide, we obtained the scattering matrices of the couplers. In sym-

metrical coupler settings, the scattering matrices satisfy the reciprocity property,

that permits to assess the validity of the simulation results.

Using the above coupled mode theory model, a detailed study of the effects of sep-

aration distance, the radius of the bent waveguide, and the wavelength on the scat-

tering matrices has been carried out. For the couplers involving bent waveguides

that support multiple whispering gallery modes, one can systematically investigate

the significance of the individual modes. In combination with analytically com-

puted bent mode propagation constants, the model allows to calculate rigorously

the free parameters in the “standard resonator model” and to analyze the spectral

response of the microresonators (Sections 1.4, 4.1). While the present study dis-

cusses only 2-D couplers, this theory can be extended in a straightforward way to

the 3-D setting, as discussed in detail in Ref. [69].
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Chapter 4

Microresonators

Circular integrated optical microresonators are increas-

ingly employed as compact and versatile wavelength fil-

ters. In this chapter, we investigate an ab-initio 2-D fre-

quency domain model for these devices. The resonators

are functionally represented in terms of two couplers with

appropriate connections using bent and straight wave-

guides. The abstract scattering matrices of these couplers

and the propagation constants of the cavity bends allow to

compute the spectral responses of the resonators. These

parameters are calculated by means of the rigorous an-

alytical model of bent waveguides, and the spatial cou-

pled mode theory model of the constituent bent-straight

waveguide couplers. We present results for the spectral re-

sponse and field examples for microresonators with mono-

and multi-modal cavities for TE and TM polarizations.

Comparisons with finite difference time domain simula-

tions show very good overall agreement. Effect of the

separation distances on the spectral response is investi-

gated. Also examples for the effect of slight changes of

the core refractive index on the resonator spectra, evalu-

ated by perturbational expressions, are presented.

Parts of this chapter are adapted from:

K. R. Hiremath, R. Stoffer, M. Hammer. Modeling of circular integrated optical microresonators by

2-D frequency domain coupled mode theory. Optics Communications. (accepted).
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In Section 1.4 we discussed the “standard resonator model” for structures with

monomodal waveguides. Knowing the propagation constants of the cavity seg-

ments and the scattering matrices of the bent-straight waveguide couplers, one can

compute the throughput power and the dropped power for the entire resonator de-

vices. As explained in Chapter 2, the required propagation constants of bent wave-

guides can be calculated analytically. With the coupled mode theory model of

bent-straight waveguide couplers, as presented in Chapter 3, one can reckon the

required scattering matrices. Thus, given the geometrical and material parameters

of a resonator, the spectral response can be computed. Preliminary results of this

approach are contained in Refs. [34, 71].

In this chapter, we generalize the above resonator model to the multimodal set-

ting. The chapter is organized as follows. Section 4.1 introduces the schematic

microresonator model, formulated directly for configurations with multimode cav-

ities. Section 4.3 outlines how to compute the spectral response of the resonators.

Section 4.4 provides a series of example simulations, including the benchmarking

against independent rigorous numerical calculations. A detailed study of effect

of the separation distances on the resonator spectral response is presented in Sec-

tion 4.5. Tuning of resonators is investigated in Section 4.6.

4.1 Abstract microresonator model

Referring to the classification of resonator types given in [53], we treat the circular

microcavities as traveling wave resonators in the framework of a pure frequency

domain description. Neglecting reflected waves turns out to be adequate even for

the present devices with already quite small radii (though we can check this only

implicitly via comparison to numerical results). One expects this approximation

to break down for even smaller cavities, where the interaction between the waves

in the bus waveguides and the cavity can no longer be regarded as adiabatic. In

that regime of standing wave resonators descriptions similar to those given in Refs.

[53, 115] would have to be applied, that take reflected waves fully into account.

The resonators investigated in this chapter consist of ring or disk shaped dielec-

tric cavities, evanescently coupled to two parallel straight bus cores. We consider

guided-wave scattering problems in the frequency domain, where a time-harmonic

optical signal ∼ exp(iωt) of given real frequency ω is present everywhere. Carte-

sian coordinates x, z are introduced for the spatially two dimensional description

as shown in Figure 4.1. The structure and all TE- or TM-polarized optical fields

are assumed to be constant in the y-direction.
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Figure 4.1: Schematic microresonator representation: A cavity of radius R, core

refractive index nc and width wc is placed between two straight waveguides with

core refractive index ns and width ws, with gaps of width g and g̃ between the

cavity and the bus waveguides. nb is the background refractive index. The device

is divided into two couplers (I), (II), connected by cavity segments of lengths L
and L̃ outside the coupler regions.

Adhering to the most common description for microring-resonators [35, 34], the

devices are divided into two bent-straight waveguide couplers, which are connected

by segments of the cavity ring. Half-infinite pieces of straight waveguides consti-

tute the external connections, where the letters A, B, Ã, B̃ (external) and a, b, ã, b̃

(internal) denote the coupler ports. If one accepts the approximation that the inter-

action between the optical waves in the cavity and in the bus waveguides is neg-

ligible outside the coupler regions, then this functional decomposition reduces the

microresonator description to the mode analysis of straight and bent waveguides,

and the modeling of the bent-straight waveguide couplers.

Assuming that all transitions inside the coupler regions are sufficiently smooth,

such that reflections do not play a significant role for the resonator functioning,

we further restrict the model to unidirectional wave propagation, as indicated by

the arrows in Figure 4.1. Depending on the specific configuration, this assumption

can be justified or not; at least for the structures considered in Section 4.4.2 we

observed this approximation to be adequate.

Consider coupler (I) first. Suppose that the straight cores support Ns guided modes

with propagation constants βsq , q = 1, . . . ,Ns. For the cavity, Nb bend modes

are taken into account. Due to the radiation losses, their propagation constants
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Chapter 4: Microresonators

γbp = βbp − iαbp, p = 1, . . . ,Nb, are complex valued [114]. Here βsq, βbp and αbp

are real positive numbers. The variables Aq, Bq, and ap, bp, denote the directional

amplitudes of the properly normalized “forward” propagating (clockwise direction,

cf. Figure 4.1) basis modes in the respective coupler port planes, combined into

amplitude (column) vectors A, B, and a, b. A completely analogous reasoning

applies to the second coupler, where a symbol˜ identifies the mode amplitudes Ã,

B̃, and ã, b̃ at the port planes.

The model of Chapter 3 for unidirectional wave propagation through the coupler

regions provides scattering matrices S, S̃, such that the coupler operation is repre-

sented as
(

b

B

)

= S

(

a

A

)

,

(

b̃

B̃

)

= S̃

(

ã

Ã

)

. (4.1)

Outside the coupler regions the bend modes used for the description of the field in

the cavity propagate independently, with the angular / arc-length dependence given

by their propagation constants (cf. equation (3.1)). Hence the amplitudes at the

entry and exit ports of the connecting cavity segments are related to each other as

a = G b̃ and ã = G̃ b, (4.2)

where G and G̃ are Nb ×Nb diagonal matrices with entries Gp,p = exp (−iγbpL)
and G̃p,p = exp (−iγbpL̃), respectively, for p = 1, . . . ,Nb.

For the guided wave scattering problem, modal powers PIq = |Aq|2 and PAq =
|Ãq|2 are prescribed at the In-port A and at the Add-port Ã of the resonator, and

one is interested in the transmitted powers PTq = |Bq|2 at port B and the backward

dropped powers PDq = |B̃q|2 at port B̃. The linear system established by equations

(4.1) and (4.2) is to be solved for B and B̃, given values of A and Ã. Due to the

linearity of the device the restriction to an excitation in only one port, here port A,

with no incoming Add-signal Ã = 0, is sufficient. One obtains

B = (SsbGS̃bbG̃Ω−1
Sbs + Sss)A, B̃ = (S̃sbG̃Ω−1

Sbs)A (4.3)

for the amplitudes of the outgoing guided modes in the Through- and Drop-ports,

and

b = Ω−1
SbsA, b̃ = S̃bbG̃Ω−1

SbsA (4.4)

for the internal mode amplitudes in the cavity, where Ω = I − SbbGS̃bbG̃.

Among the factors in the expressions (4.3) and (4.4) only the inverse of Ω can be

expected to introduce a pronounced wavelength dependence. Thus Ω−1 can be

viewed as a resonance denominator in matrix form; resonances appear in case Ω
becomes nearly singular, i.e. exhibits an eigenvalue close to zero. This “resonance
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4.2 Scattering matrix analysis of the full resonator

condition” permits a quite intuitive interpretation: Resonances appear if a field

amplitude vector is excited inside the cavity, that corresponds to a close-to-zero

eigenvalue of Ω, or a unit eigenvalue of SbbGS̃bbG̃. That relates to a field which

reproduces itself after propagating consecutively along the right cavity segment,

through coupler (II), along the left cavity segment, and finally through coupler (I).

In general, resonances must be expected to involve all bend modes that are taken

into account for the description of the cavity field, due to the interaction caused

by the presence of the straight cores (cf. e.g. the example of the hybrid cavity ring

given in Ref. [69]). If, however, this direct interaction between the bend modes

is weak, the matrices Sbb and S̃bb become nearly diagonal just like G and G̃, and

resonances can be ascribed to individual cavity modes. Analogously to the case

of standing wave resonators [115], this viewpoint allows a quantitative charac-

terization of resonances associated with “almost isolated” cavities, where the bus

waveguides are absent. Also for the numerical examples in Section 4.4.2 we found

this regime to be realized; resonances can be classified as belonging to specific

bend modes by inspecting the mode amplitudes that establish inside the cavity at

the resonance wavelength.

In case of a configuration with single mode cavity and bus cores, further evaluation

of expressions (4.3) and (4.4) is presented in Section 1.4; one obtains the famil-

iar explicit, parameterized expressions for the transmitted and dropped power, for

the free spectral range and the resonance width, for finesse and Q-factor of the

resonances, etc. Here the above resonance condition means that at coupler (I) the

incoming signal from the bus waveguide is in phase with the wave propagating

already along the cavity, and that it compensates the propagation loss of the cavity

round trip. Resonances appear as a drop in the directly transmitted power PT, and

a simultaneous peak in the dropped power PD. Assuming that this reasoning is

also applicable to a multimode configuration with weak interaction, one can estab-

lish separate resonance conditions for the individual cavity modes, which in gen-

eral will be satisfied at different wavelengths. The power spectrum of the micro-

resonator shows a systematically repeating pattern with multiple extrema, where

each resonance corresponds to cavity modes of different orders. See Figure 4.9 for

an example.

4.2 Scattering matrix analysis of the full resonator

Treating the resonator shown in Figure 4.1 as a black box with four external ports

A, B, Ã, B̃, let’s assume that the response of the resonator is characterized by

an abstract bidirectional resonator scattering matrix S. Let Ai, Bi, Ãi, B̃i be

the amplitudes of incoming fields, and Ao, Bo, Ão, B̃o be the outgoing field
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amplitudes at the respective ports. Then one can write









Ao

Bo

Ão

B̃o









=









0 SAB 0 SAB̃

SBA 0 SBÃ 0
0 SÃB 0 SÃB̃

S B̃A 0 S B̃Ã 0

















Ai

Bi

Ãi

B̃i









, (4.5)

where the zeros represent negligible backreflections. The interpretation of the

scattering matrix elements is as for the bent-straight waveguide coupler (see Sec-

tion 3.3).

Again following the reciprocity arguments for linear circuits made of nonmagnetic

materials (see Section 3.3), the above scattering matrix is symmetric, i.e.

SBA = (SAB)T, S B̃A = (SAB̃)T, SÃB = (SBÃ)T, SÃB̃ = (S B̃Ã)T, (4.6)

where the superscript T represents the transpose.

If the resonator shown in Figure 4.1 is defined symmetrical with respect to the

central plane z = 0, and if identical mode profiles are used for the incoming and

outgoing fields, then one can further expect the transmission A → B̃ to be equal

to the transmission B → Ã. Similarly, one expects equal transmissions Ã → B

and B̃ → A. Therefore one has

S B̃A = SÃB, SBÃ = SAB̃. (4.7)

From Eq. (4.6), (4.7), one obtains

SB̃A = (SBÃ)T. (4.8)

In case of monomodal port waveguides, this simplifies to

SB̃A = SBÃ, (4.9)

which means that, irrespective of different separation distances, as long as there

is a symmetry with respect to the z = 0 plane, the output power at port B̃ for

unit power input at port A and no input at port Ã is exactly the same as the power

observed at port B for unit power input at port Ã and no input at port A.

In Section 4.5.3 we show that the numerical implementation respects these abstract

constraints.
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4.3 Spectrum evaluation

A quantitative evaluation of the present microresonator model requires the propa-

gation constants of the cavity modes γbp, hidden in G, G̃, and the scattering ma-

trices S, S̃ of couplers (I) and (II). Once these quantities are available, the optical

transmission through the resonator is given by equations (4.3).

In principle the spectral response of the device can be obtained by repeating the

entire solution procedure for different wavelengths in an interesting range. That

direct approach requires repeated computations of the bend propagation constants

and the scattering matrices. A large part of the numerical effort can be avoided,

if one calculates the relevant quantities merely for a few distant wavelengths, and

then uses complex interpolations of these values for the actual spectrum evaluation.

The interpolation procedure, however, should be applied to quantities that vary but

slowly with the wavelength.

In line with the reasoning concerning the resonances in Section 1.4.3, one can

expect that any rapid wavelength dependence of the transmission is determined

mainly by the phase gain of the waves circulating in the cavity. Rapid changes

in these phase relations are due to a comparably slow wavelength dependence of

the bend propagation constants γbp, that is multiplied by the lengths L, L̃ of the

external cavity segments. If a substantial part of the cavity is already contained

in the coupler regions, then the elements of the scattering matrices S exhibit also

fast phase oscillations with the wavelength, as depicted in Figure 3.7, such that

S directly is not suitable for the interpolation. Apart from these rapid changes,

which can be attributed to the unperturbed propagation of the basis modes along

the bent and straight waveguides, the interaction between the waves in the two

coupled cores introduces an additional wavelength dependence, which in turn can

be expected to be slow.

To separate the two scales of wavelength dependence in S, one divides by the

exponentials that correspond to the undisturbed wave propagation of the bend and

straight modes towards and from the symmetry plane z = 0:

S
′ = Q

0
S (P0)

−1
(4.10)

Here P
0 and Q

0 are diagonal matrices with entries P0
j,j and Q0

j,j as defined for P

and Q in equation (3.20). Formally, one can view S
′ as the scattering matrix of a

coupler with zero length, where the interaction takes place instantaneously at z =
0. This modification of S, applied analogously to S̃, is compensated by redefining

the lengths of the external cavity segments as L′ = L̃′ = πR, by changing the
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matrices G and G̃ accordingly, and, where necessary, by taking into account the

altered phase relations on the external straight segments.

After these modifications, the new matrices G
′ and G̃

′ capture the phase gain of

the cavity field along the full circumference. The modified scattering matrices S
′

and S̃
′ show only a slow wavelength dependence (see Figure 4.4), such that the

interpolation can be successfully applied to these matrices and to the bend propa-

gation constants in G
′ and G̃

′. The resonant features of the device are now entirely

effected by the analytical relations (4.3), such that one obtains an excellent agree-

ment between the transmission spectra computed with the interpolated quantities

and the direct calculation, while the computational effort is significantly reduced.

4.4 Simulation results

In this section we summarize a series of numerical examples for the theory outlined

in Sections 4.1, and 4.3, based on analytical bent modes (Chapter 2) and the CMT

coupler model (Chapter 3).

The results of the CMT approach are compared with Finite Difference Time Do-

main (FDTD) simulations [55]. We apply an own implementation [95, 57] based on

a simple second order Yee scheme [94]. Perfectly Matched Layer (PML) boundary

conditions enclose the rectangular computational window, where fields are excited

using the total-field / scattered field formulation. In order to generate reference

signals for purposes of normalization, all FDTD calculations are carried out twice,

once for the entire microresonator structure, then for one of the constituent straight

waveguides only. To evaluate the spectral throughput- and dropped power, the time

evolutions of the fields at suitable cross section lines through the respective ports

are Fourier transformed, then projected onto the outgoing frequency domain mode

profiles associated with the port. The ratio of the absolute values of these spectral

signals (calculation for the microresonator structure / reference calculation) forms

an approximation for the normalized output powers.

For a comparison with literature results, we consider structures as in Ref. [56],

where microring/microdisk with high index contrast and very small radius res-

onators are calculated by 2-D FDTD with PML boundary conditions.

4.4.1 Microring resonator

For all subsequent computations of microresonator spectra, unless stated explicitly,

we restrict ourselves to symmetric structures (g = g̃) with identical monomodal
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straight waveguides. In line with the assumptions leading to equations (4.3), (4.4),

the fundamental mode of the bus waveguides is launched at the In-port with unit

power; there is no incoming field at the Add-port.

Figure 4.2 shows the spectral response for a microring-resonator made of two

couplers as considered in Section 3.4.1, with cavity radius R = 5µm and gaps

g = g̃ = 0.2µm. The CMT calculations use the computational setting as intro-

duced for Figure 3.3. One observes the familiar ringresonator resonance pattern

with dips in the transmitted power and peaks in the dropped intensity. According

to Figure 3.4, the present parameter set specifies configurations with rather strong

interaction in the coupler regions (|Sb0,s0|2 = 30% (TE), |Sb0,s0|2 = 54% (TM)),

such that the resonances are relatively wide, with a substantial amount of optical

power being directly transferred to the Drop port also in off resonant states. These

properties are related to the attenuation of the cavity modes, and to the interaction

strength in the coupler regions, i.e. to the radial confinement of the bend fields,

hence one finds resonances of lower quality for TM polarization, and a decrease in

quality with growing wavelength for both TE and TM polarized light.
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Figure 4.2: Relative transmitted PT and dropped power PD versus the vacuum

wavelength for a ringresonator according to Figure 4.1, with parameters nc = ns =
1.5, nb = 1.0, wc = 0.5µm, ws = 0.4µm, R = 5µm, g = g̃ = 0.2µm; CMT and

FDTD results for TE (left) and TM polarization (right).

The CMT results are compared with FDTD simulations, where a computational

window that encloses the entire resonator device has been discretized by a rectan-

gular grid of 1200 × 1220 points along the x- and z-directions with uniform mesh

size of 0.0125µm. The boundaries of the computational window are enclosed by

0.4µm wide perfectly matched layers with quadratically varying strength, which

provide a reflectivity of 10−6 for the central wavelength λ = 1.05µm. The sim-

ulations are carried out over a time interval of 13.1 ps with a step size of 0.025 fs.
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According to the left and right plots of Figure 4.2, we find an excellent agreement

between the CMT and the FDTD results for TE polarization, and only minor de-

viations for the TM case with less regular fields, more pronounced radiation, and

stronger interaction in the coupler regions, where apparently the assumptions un-

derlying the CMT approach are less well satisfied. Note that already in the present

2-D setting these FDTD calculations typically require a computation time of sev-

eral hours, while the CMT analysis (with interpolation) predicts the entire spectrum

in just a few minutes.

Interpolated spectrum evaluation

Now we look at the faster spectrum evaluation technique outlined in Section 4.3.

For the bent-straight waveguide couplers involved in the ringresonator of Fig-

ure 4.2, the wavelength dependence of the “original” scattering matrix entries Sv,w

is depicted in Figure 3.6 (absolute square) and Figure 3.7 (real and imaginary part).

By extracting phase gains for propagation along the coupler length, one obtains a

“modified” scattering matrix S′ (4.10). The wavelength dependence of S′

v,w is

shown in Figures 4.3, 4.4.

As the bend modes in the present coupler are not that lossy (see Figure 3.2), the

plots of the absolute square of S′

v,w in Figure 4.3 do not differ much from Sv,w in

Figure 3.6, although for the TM modes one can observe a slight change. But the

plots of the real and imaginary parts of S′

v,w clearly bring forward the essence of

the discussion in Section 4.3. While the corresponding plots in Figure 3.7 show

considerable oscillations, the curves in Figure 4.4 are almost linear such that S′

v,w

can be reliability interpolated.

The left side plots of Figure 4.5 shows the resonator spectrum as obtained by inter-

polating bend mode propagation constants and CMT scattering matrices for only

two (linear interpolation) or three different wavelengths (quadratic interpolation),

according to Section 4.3. While small deviations remain for the linear approxi-

mation, on the scale of the figure the curves related to quadratic interpolation are

hardly distinguishable from the direct CMT results. Thus the interpolation ap-

proach provides a very effective means to predict the resonator spectrum, in partic-

ular if narrow dips /peaks in the responses of high-quality resonators would have

to be resolved.

In Section 1.4.3 we discussed an approximate spectrum evaluation method, where

one assumes that for a narrow wavelength interval the scattering matrices are ap-

proximately constant, and the resonances are “exclusively” due to the phase gains

experienced by the cavity modes while propagating along the cavity. By using the
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Figure 4.3: Wavelength dependence of the absolute square of the entries of the

scattering matrix S
′

. The coupler configuration and the interpretation of the curves

are identical to Figure 3.6.
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Figure 4.4: Wavelength dependence of the complex valued entries of the scattering

matrix S′. For the coupler configuration and the interpretation of the curves, refer

to Figure 3.7.

scattering matrices S′ and S̃′ (corresponding to a total cavity length of 2πR), we

can verify this approximation. In fact according to the right part of Figure 4.5, this

scenario is quite well realized. For the present configuration with a low loss cavity

mode, the spectrum evaluated with S′, S̃′ at λ = 1.05µm and a wavelength depen-

dent propagation constant γb0 agrees quite well with “direct” CMT calculations.

Note that, far from the reference wavelength λ = 1.05µm, the approximation of
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Figure 4.5: Left: CMT results, where the spectrum has been evaluated directly

and by interpolation of CMT computations for nodal wavelengths 1.015µm and

1.085µm (linear), or 1.015µm, 1.05µm, and 1.085µm (quadratic interpolation).

Right: Comparison of spectra computed with the approximation of constant cou-

pler scattering matrices as discussed in Section 1.4.3 and computed with direct

CMT calculations. The microresonator setting is as in Figure 4.2.

constant matrices S′, S̃′ slightly deteriorates.

Beyond modal amplitudes and power levels, the CMT solutions permit to access

the full optical electromagnetic field. Figure 4.6 collects plots of the principal com-

ponents for off resonance and resonant configurations for both polarizations. Off

resonance, one observes the large Through transmission, small amplitudes of the

waves in the Drop-port, and also only minor wave amplitudes in the cavity. At the

resonances, the straight transmission is almost completely suppressed; the major

part of the input power arrives at the Drop-port. For the present strongly coupled

configurations, the power that enters and leaves the cavity at the two couplers leads

to considerably different field intensities in the left and right halves of the ring.

Here the radiative parts of the bend modes are appreciable outside the cavity, in

particular for the more lossy TM waves.

4.4.2 Microdisk resonator

We now consider the symmetrical microdisk resonator that is constituted by two

of the multimode couplers discussed in Section 3.4.2. The computational setting

and all parameters are identical to the data given in Section 3.4.2, for gap widths

g = g̃ = 0.2µm. The CMT description represents the optical field in the cavity as

a superposition of the whispering gallery modes of Figure 3.8, where in principle

84



4.4 Simulation results

z [µm]

x
 [

µ
m

]

|E
y
|

λ = 1.0414 µm

−6 −4 −2 0 2 4 6

−6

−4

−2

0

2

4

6

z [µm]

x
 [

µ
m

]

|E
y
|

λ = 1.053 µm

−6 −4 −2 0 2 4 6

−6

−4

−2

0

2

4

6

z [µm]

x
 [

µ
m

]

Re(E
y
)

λ = 1.0414 µm

−6 −4 −2 0 2 4 6

−6

−4

−2

0

2

4

6

z [µm]

x
 [

µ
m

]

Re(E
y
)

λ = 1.053 µm

−6 −4 −2 0 2 4 6

−6

−4

−2

0

2

4

6

z [µm]

x
 [

µ
m

]

|H
y
|

λ = 1.0411 µm

−6 −4 −2 0 2 4 6

−6

−4

−2

0

2

4

6

z [µm]

x
 [

µ
m

]

|H
y
|

λ = 1.053 µm

−6 −4 −2 0 2 4 6

−6

−4

−2

0

2

4

6

z [µm]

x
 [

µ
m

]

Re(E
y
)

λ = 1.0414 µm

−6 −4 −2 0 2 4 6

−6

−4

−2

0

2

4

6

z [µm]

x
 [

µ
m

]

Re(H
y
)

λ = 1.053 µm

−6 −4 −2 0 2 4 6

−6

−4

−2

0

2

4

6

Figure 4.6: CMT results for the microring structure of Figure 4.2, local intensities

(first and third row) and snapshots of the physical field (second and forth row) of the

principal components of TE (Ey) (first and second row) and TM (Hy) (third and

forth row) polarized waves, for an off-resonance wavelength (first column) and at a

resonance (second column). For visualization purposes the coupler computational

window has been extended to [zi, zo] = [−4, 8]µm.
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Figure 4.7: TE power spectrum of the microdisk resonator of Section 4.4.2. CMT

analysis with different sets of basis modes; besides the mode of the straight wave-

guide, only one bend field (TE0, TE1, TE2, left), or the two, three, or four lowest

order whispering gallery modes (right) are taken into account.

one must expect that more or less pronounced features related to all of these basis

fields appear in the resonator spectrum. Figure 4.7 allows to investigate the sig-

nificance of the individual cavity modes on the spectral response predicted by the

CMT analysis.

The plots of Figure 4.7 show the spectral response as obtained by CMT compu-

tations where, besides the mode of the straight waveguide, different sets of bend

modes are used as basis fields. The curves related to calculations with single cavity

modes (left) exhibit only specific extrema of the full spectrum with similar ex-

tremal levels; obviously these resonances can be assigned to the respective (TE0

or TE1) whispering gallery mode. As these modes circulate along the cavity with

their different propagation constants, individual resonance conditions are satisfied

in general at different wavelengths. Apparently the regime discussed at the end of

Section 4.1 is realized here (cf. also the tiny bend mode cross coupling coefficients

|Sbo,bi|2 in Figure 3.11).

While the fundamental and first order bend mode are essential for the present res-

onator, inclusion of the second order whispering gallery mode into the CMT analy-

sis leads only to minor, the third order bend field to no visible changes of the curves

in the right plot of Figure 4.7. Thus for this microdisk configuration it is sufficient

to take into account the three lowest order cavity modes as basis fields to predict

reliably the spectral response.

The left plot of Figure 4.8 allows to validate the interpolation approach of Sec-
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tion 4.3 for the spectrum evaluation; just as in Section 4.4.1 one finds that the

quadratic interpolation of the scattering matrix coefficients and propagation con-

stants leads to curves that are almost indistinguishable from the directly computed

results. The spectrum computed with the approximation technique of Section 1.4.3

is shown in the plots on right side Figure 4.8. Using constant scattering matrices

S′, S̃′ evaluated at λ = 1.05µm along with the wavelength dependent cavity mode

propagation constants, computed spectrum (dashed line) agrees quite well with the

strictly wavelength dependent calculations (solid line). On the scale of the figure,

the locations of the resonances predicted by this approximation match with those

corresponding to the “direct” calculations; but away from the reference wavelength

λ = 1.05µm, the TE1 extrema levels differ slightly. Anyway, here one can accept

the line of arguments in Section 1.4.3 as a very good approximation.
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Figure 4.8: Left: CMT spectra (four basis modes) for the resonator setting as

in Figure 4.7 computed directly, and by interpolation of data evaluated at the

nodal wavelengths 1.015µm, 1.085µm (linear) or 1.015µm, 1.05µm, 1.085µm

(quadratic interpolation). Right: Spectrum computed with direct CMT calculations

(solid line) and with the approximation technique in Section 1.4.3 (dashed line).

Figure 4.9 compares the CMT spectra for TE and TM polarized light with rigorous

FDTD calculations, where the simulation parameters are identical to those given

in Section 4.4.1. There is a quite satisfactory agreement; as before minor devia-

tions occur for the configurations with highly radiative, strongly interacting, and

less regular fields in the TM case. The computational effort required for the CMT

analysis is about two orders of magnitude lower than the effort required for the

FDTD simulations.
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Figure 4.9: Power transmission through the microdisk resonator of Section 4.4.2,

CMT and FDTD spectra (top) for TE (left) and TM polarized modes (right). The

plots in the second row show the wavelength dependence of the amplitudes |bq|2
of the whispering gallery modes inside the cavity at port b (see Figure 4.1).

As an alternative to the computations of Figure 4.7, the inspection of the ampli-

tudes of the basis modes that establish inside the cavity for varying wavelength

provides a direct means for labeling the spectral features. The plots in the second

row of Figure 4.9 identify the narrower, most pronounced resonances as belonging

to the fundamental cavity modes, while the wider, less pronounced peaks are due

to the first order whispering gallery fields.

Figure 4.10 gives an impression of the field distributions that accompany the res-

onance phenomena. Off resonance, most of the input power is directly transferred

to the Through-port. At the wavelength corresponding to the minor resonance, the

field pattern in the cavity exhibits a nearly circular nodal line that corresponds to

the radial minimum in the profile of the first order whispering gallery mode (cf.

Figure 3.8). According to Figure 4.9, here the first order mode carries most of the

power inside the cavity. The deviation form the circular pattern is caused by the

interference with the fundamental bend mode, which is also excited at this wave-

length with a small power fraction. The major resonance related to the fundamental

mode is of higher quality, with much larger intensity in the cavity, almost full sup-
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pression of the waves in the Through-port and nearly complete drop of the input

power.
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Figure 4.10: Field examples for the microdisk resonator of Section 4.4.2, CMT

simulations with four basis modes, absolute value |Ey| of the principal component

of the TE fields (top), and snapshots of the real physical electric field (bottom).

The wavelengths correspond to an off-resonance configuration (left) and to minor

(center) and major resonances (right). The color scale levels of the plots in each

row are comparable.

4.4.3 Compact high contrast cavities

Now we compare CMT simulations with FDTD results for microring resonators

with high index contrast and extremely small radius as presented in Ref. [56]. A

ring cavity of radius R = 2.5µm is coupled to straight waveguides. The cavity and

the straight waveguides have a core of width wc = ws = 0.3µm, and refractive

index nc = ns = 3.2, the background refractive index is nb = 1, and the separation

distance is g = g̃ = 0.232µm. The fundamental mode of the In-port straight

waveguide is launched with unit power. The response of this resonator is scanned

over a wavelength range [1.42, 1.62]µm.
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CMT calculations are carried out over a computational window (xl, zi) = (0,−2)
µm, (xr, zo)=(8, 2)µm with stepsizes hx = 0.001µm, hz = 0.1µm. For the

spectrum evaluation, quadratic interpolation is used with nodal wavelengths λ =
1.42µm, 1.52µm, 1.62µm. At these nodal wavelengths, as shown in Table 4.1,

the straight waveguides are bimodal and the bent waveguide (ring segment) is

“monomodal” (i.e. the bend does not support other modal fields with reasonably

low attenuation).

β/k Straight waveguide γ/k Bent waveguide

λ[µm] TE0 TE1 TE0

1.42 2.7959 1.4133 2.6332 − i 0
1.52 2.7572 1.2578 2.5964 − i 0
1.62 2.7186 1.1268 2.5598 − i 0

Table 4.1: Effective refractive indices of the modes of the straight waveguides and

bent waveguide for the ringresonator of Section 4.4.3. Due to the high refractive

index contrast, the bend modes have negligible losses.

The resultant spectral response of the ringresonator is shown in Figure 4.11. Even

though the straight waveguides are bimodal, due to the “phase matching” condition

(see the values in Table 4.1), practically no power is coupled to the TE1 straight

waveguide mode. In good qualitative agreement with Ref. [56], the plots represent

the output powers for the fundamental TE mode of the straight waveguide. The

left plot of Figure 4.11 shows sharp resonances of the transmitted power, whereas

the plot on the right side magnifies the resonance features at λres = 1.5596µm.

At this resonance wavelength, the CMT simulations predict a full width at half

maximum (FWHM) 2δλ ≈ 0.3 nm, a quality factor Q ≈ 5200, while Ref. [56]

quotes 2δλ ≈ 0.3 nm, Q ≈ 5000.

A comparison of the resonance wavelengths obtained by the CMT simulations and

the results of Ref. [56] is shown in Table 4.2. On the micron scale these results

agree up to the second decimal place. For applications, where the positions of the

resonance wavelengths on a large wavelength range (as e.g. in the left plot of Fig-

ure 4.11) is relevant, one can consider the difference relative to the free spectral

range (FSR), i.e. look at the expression |λCMT
res − λFDTD

res |/FSR. For the TE0 reso-

nance at λCMT
res = 1.5596µm, one obtains a small deviation of about 6%; in this

respect, we find a reasonable agreement between FDTD and CMT simulations.

On the other hand, for applications that involve a fine sampling of wavelengths,

one might be interested in the deviation relative to the resonance width (FWHM),

given by |λCMT
res − λFDTD

res |/FWHM. This leads to a deviation of about 930%, i.e.

the computational values for the resonance positions become meaningless in this
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Figure 4.11: Left: CMT Spectral response of the microring resonator of Sec-

tion 4.4.3. Right: Resonance feature at λres = 1.5596µm. At this wavelength,

almost 98% of the input power is dropped.

respect.

Note that for the present configuration, it is difficult to access the reliability of the

CMT or the FDTD approach. The corresponding ring resonator with the high re-

fractive index contrast represents an extreme configuration for the CMT approach.

Also, the FDTD computations are seriously constrained by inherent numerical dis-

persion. Therefore we do not attempt a statement about which of the simulations

corresponds to physical reality, what concerns the precise resonance positions.

λres [µm]

Ref. [56] 1.4252 1.4675 1.5122 1.5624 1.6103

Present 1.4280 1.4715 1.5149 1.5596 1.6131

Table 4.2: Comparison of resonance wavelengths for the ringresonator in Sec-

tion 4.4.3 computed with FDTD (Ref. [56]) and CMT (present).

By filling the interior of the ring waveguide in Section 4.4.3 with the core mate-

rial, one obtains a microdisk resonator. For this structure, we now compare CMT

results with Ref. [56]. As before, the TE0 mode is excited at the In-port, the

spectral response is computed with quadratic interpolation at nodal wavelengths

λ = 1.42µm, 1.52µm, 1.62µm. For the present setting, apart from the straight

waveguide modes, the first three lower order cavity modes are sufficient as basis

fields. Table 4.3 gives their effective refractive indices at the nodal wavelengths.
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λ[µm] γ/k TE0 γ/k TE1 γ/k TE2

1.42 2.7482 − i 0 2.3435 − i 0 2.0153 − i 6.4147 · 10−11

1.52 2.7298 − i 0 2.3067 − i 0 1.9638 − i 1.0137 · 10−9

1.62 2.7119 − i 0 2.2709 − i 1.0878 · 10−12 1.9137 − i 1.0653 · 10−8

Table 4.3: Effective indices of the whispering gallery modes (wc = R) of the

disk with radius R = 2.5µm, inner core refractive index nc = 3.2, and external

cladding refractive index nb = 1.0.

As in the case of the corresponding microring configuration, again here most of

the input power is coupled to only the TE0 mode of the straight waveguides. The

spectral response of this microdisk resonator is shown in Figure 4.12; we again find

a reasonable qualitative agreement with Ref. [56]. As evident from the plot on the

left side, for the present configuration, only the TE0 and TE1 cavity modes play a

significant role. Details of the resonances are shown in the associated plots.
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Figure 4.12: CMT Spectral response of the microdisk resonator (left plot) of Sec-

tion 4.4.3 with wc = R. The central plot shows the resonance of the TE1 cavity

mode with λres = 1.5640µm, 2δλ ≈ 0.1 nm, and Q = 14000, whereas the right

plot shows that of the TE0 cavity mode with λres = 1.5813µm, 2δλ ≈ 0.2 nm, and

Q = 7900.

Note that these plots are obtained by quadratic interpolation of CMT results for

scattering matrices S′ and cavity segment propagation constants γbp at just three

nodal wavelengths, whereas to resolve such sharp features with FDTD simulations,

one has to do FDTD calculations over extremely large time intervals, which turns

out to be demanding in terms of computational effort.

The corresponding comparison of resonant wavelengths computed with CMT sim-

ulations and values of Ref. [56] is given in Table 4.4. As in the case of the pre-
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viously discussed ringresonator, the remarks concerning the accuracy of the two

simulation techniques with respect to the resonance positions apply to these results

as well.

TE0 TE1 TE2

Ref. [56] Present Ref. [56] Present Ref. [56] Present

1.4402 1.4373 1.4654 1.4626 - 1.4371
λres 1.4852 1.4823 1.5146 1.5115 1.4861 1.4833

[µm] 1.5332 1.5301 1.5672 1.5640 1.5390 1.5361
1.5845 1.5813 - - 1.5961 1.5935

Table 4.4: Comparison of resonance wavelengths for the microdisk resonator as

considered in Section 4.4.3.

4.5 Influence of separation distance on the spectral response

In Section 3.4 we analyzed the effect of changes in the separation distance on the

coupler performance. In this section, we investigate its influence on the spectral re-

sponse of the entire resonators. Three types of changes of g and g̃ are discussed viz.

changing both separation distances identically, changing only one of the separation

distances while keeping the other constant, and changing both separation distances

with g + g̃ = constant (i.e. shifting the cavity between fixed port waveguides).

The simulations are carried out for the resonator configurations of Figure 4.5 (ring

resonators) and Figure 4.8 (disk resonators), and the spectrum evaluation procedure

by quadratic interpolation is employed.

4.5.1 Changing both separation distances identically

Figure 4.13 shows the effect of symmetrical changes of both separation distances

on the spectral response. As evident from Figures 3.4, 3.11, as the distances g,

g̃ are reduced, the cross coupling between the straight waveguide and the cavity

increases, and the self coupling decreases. Due to the reduced self coupling of the

upper straight waveguide, the nonresonant level of throughput power decreases;

whereas as more power is coupled from the upper waveguide to the cavity, and

then from the cavity to the lower waveguide, the nonresonant level of drop power

increases.

Due to the increased cavity self coupling (|Sbb|), as seen from Eq. (1.15), the
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Figure 4.13: Spectral response of a ring resonator for different gap widths. The

resonator configuration is as in Figure 4.5.

FWHM decreases. This is clearly revealed in plots of Figure 4.13. As shown

in Table 4.5, there is also a change in the resonance positions, here defined as

the wavelengths corresponding to the extrema in the transmitted and the dropped

power.

g = g̃ [µm] TE0 resonance wavelengths [µm]

0.1 1.01700 1.03950 1.06350
0.2 1.01836 1.04138 1.06540
0.3 1.01890 1.04200 1.06606
0.4 1.01913 1.04227 1.06647
0.5 1.01924 1.04239 1.06661
0.6 1.01928 1.04245 1.06668

eigenfrequencies 1.01928 1.04248 1.06678

Table 4.5: Resonance positions of the ring resonator of Figure 4.5, for different

separation distances g = g̃. For large separations, the resonance positions com-

puted by the CMT based simulations tend to the eigenfrequencies of the “isolated”

ring cavity [39, private communication].
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4.5Influence of separation distance on the spectral response

For larger separation distances, the influence of neighboring straight waveguides

on the cavity field propagation is marginal, and the resulting resonances of the

microresonator (cavity coupled to two straight waveguides) tend to resonances of

the “isolated” cavity. The comparison with resonance wavelengths of the isolated

cavity obtained by the complex eigenfrequency model [39], shown in Table 4.5,

confirms this fact.

The same trend is observed in case of a resonator with a disk cavity, see Figure 4.14

and Table 4.6. The disk resonance wavelengths will converge to the wavelength

corresponding to the eigenfrequencies of the isolated disk (note that corresponding

data for eigenfrequencies of the isolated disk was not available).
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Figure 4.14: Spectral response of disk resonators as in Figure 4.8 with different

coupler gaps. The plots show the resonances of the TE0 mode (the pronounced

extrema) and of the TE1 mode (the secondary extrema). The CMT simulations

involve the first three WGMs.

4.5.2 Changing only one of the separation distances

Figure 4.15 shows CMT simulation results for microring resonators for varying

one of the gaps g or g̃, while keeping the other constant. Keeping the separation

g̃ constant, if g is reduced, then the coupling between the upper bus waveguide
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Resonance wavelengths [µm]

g = g̃ [µm] TE0 TE1

0.1 1.01952 1.04311 1.06787 - 1.04559 1.07161

0.2 1.01937 1.04307 1.06790 1.02324 1.04813 1.07430

0.3 1.01953 1.04324 1.06809 1.02394 1.04893 1.07520

0.4 1.01962 1.04334 1.06820 1.02425 1.04928 1.07562

0.5 1.01966 1.04340 1.06826 1.02440 1.04946 1.07584

0.6 1.01969 1.04342 1.06829 1.02449 1.04957 1.07596

Table 4.6: Resonance positions of the disk resonator of Figure 4.8, for different

separations g = g̃. Note that for g = g̃ = 0.1µm, the broad peaks related to the

TE0 and TE1 resonances interfere strongly.

and the cavity increases. Due to reduced self coupling of the input waveguide,

the nonresonant level of the through power decreases, as more power is coupled

to the cavity, the nonresonant drop power increases. On the other hand, keeping

the separation g constant, if g̃ is reduced, then the coupling between the lower bus

waveguide and the cavity increases. As more power is coupled from the cavity

to the Drop-port waveguide, the nonresonant level of the drop power increases,

whereas the nonresonant through power decreases.

For the simulations shown in Figure 4.15, changing the separation distance also

affects the position of the resonances. In both cases, enlarging one of the separation

distances, increases the resonance wavelength.

The simulation results of Figure 4.15 show a very peculiar behaviour for g = g̃,

for which the resonant through power and drop power attain extrema. Figure 4.16

shows the variation of the resonant power transmission for different settings of the

separation distances for the ring resonator. As evident from these plots, when both

coupler gaps are identical, the drop power is maximum (≈ 1), and the through

power is minimum (≈ 0). This can be explained as following.

In Section 1.4.3, we derived an expression for the drop power at resonance for a

microresonator configuration with identical couplers (g = g̃). Generalizing that

expression to non-identical couplers (g 6= g̃) gives

PD|res = PI

|S̃sb|2|Sbs|2e−α(L+ L̃)

(1 − |Sbb||S̃bb|e−α(L+ L̃))2
. (4.11)

If the cavity mode under consideration has negligible attenuation (α ≈ 0), and if

the coupling is assumed to be lossless (power is conserved, i.e. |Sbs|2 = 1−|Sbb|2,
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Figure 4.15: Effect of changing one of the separation distances on the spectrum

response of the ring resonator. The first two plots show the response for different

gaps g for a constant separation distance g̃; for the two lower plots, g is kept fixed,

while g̃ varies (note the different values chosen in the upper and lower graphs).

|S̃sb|2 = 1 − |S̃bb|2), then

PD|res = PI

(1 − |S̃bb|2)(1 − |Sbb|2)
(1 − |Sbb||S̃bb|)2

. (4.12)
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Figure 4.16: Resonant power transmission of a ring resonator for different coupler

gaps. The plots show the through power and the drop power at the respective

resonance wavelengths around λ = 1.043µm for g̃ = constant (left plot), g =

constant (middle plot) and g + g̃ = constant (right plot).

For |Sbb| = |S̃bb|, this leads to PD = PI, i.e. complete transfer of the input power

to the Drop-port. This implies |Sss| = |S̃ss|, |Sbs| = |S̃bs|, |Ssb| = |S̃sb|, which is

realized for identical couplers (g = g̃), as illustrated in Figure 4.16.

If the attenuation losses are not negligible, then the ideal complete power trans-

fer is not achieved. This becomes apparent for the simulation results of the disk

resonator, shown in Figure 4.17. For the low loss TE0 modes, the power drop is al-

most 1. But as the TE1 mode has substantially higher attenuation (see Figure 3.8),

the TE1 resonance power drop for the symmetrical resonator is far from complete

power transfer (also see Fig. 4.7).

Comparison of the first two plots of Figure 4.16 shows that for low loss case, g
and g̃ have almost identical effects on PD, PT at resonance. Moreover, the plots

in Figure 4.15 and 4.17 reveal that as one of the gaps increases, the width of the

resonance reduces.

4.5.3 Shifting the cavity between fixed bus waveguides

From the view point of realization of microresonators, it is useful to understand the

effects of a displacement of the cavity with respect to the adjacent straight wave-

guides. This means, studying the effects of changing both separation distances,

while keeping g + g̃ = constant. Figure 4.18 shows corresponding simulation re-

sults for the previous ring resonator.

While for the off-resonance wavelengths there are hardly any differences, close to

the resonance wavelengths, one can observe substantial changes. As seen from the

right plot of Figure 4.16, for growing g with g < g̃, the through power steadily de-
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Figure 4.17: Effect of changing one of the gaps on the spectrum response of the

disk resonator. The interpretation of the curves is the same as for Figure 4.15.

creases and the drop power steadily increases (also see Figure 4.18). As discussed

before, for g = g̃, at resonance there is complete transfer of the input power to the

drop port. For larger g with g > g̃, the reverse effect takes place, i.e. the through

power steadily increases, and the drop power steadily decreases.
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Figure 4.18: Spectral response of the ring resonator for shifting the cavity between

fixed straight waveguides. For g + g̃ = 0.4µm, the plots show the through power

(first row) and the drop power (second row) for ring resonators with g = 0.10µm

and g̃ = 0.30µm (dash-dotted line), g = 0.15µm and g̃ = 0.25µm (dashed line),

g = 0.20µm and g̃ = 0.20µm (solid line).

For constant g + g̃, the simulations of Figure 4.18 systematically investigate the

consequence of shifting the cavity closer to the lower straight waveguide. It will be

equally interesting to investigate the effect of shifting the cavity closer to the upper

(input) waveguide. For this, it is sufficient to know the influence of interchanging

the separation distances g and g̃ on the spectral response.

As an illustration, Figure 4.19 compares the ring resonator spectral response for

g = 0.25µm, g̃ = 0.15µm and g = 0.15µm, g̃ = 0.25µm. On the scale of the

figure, the curves (solid line and dashed line) for the through power (first row) and

the dropped power (second row) are almost indistinguishable. But when the dif-

ference between the two results is plotted (third row), one sees that power through

for the setting g = 0.25µm, g̃ = 0.15µm is more than that for g = 0.15µm,

g̃ = 0.25µm, whereas the drop power is equal in both cases. The same behaviour

is also observed in case of corresponding simulations for the disk resonator, which

are shown in Figure 4.20. In that case, one can clearly distinguish the two through

power curves around the resonances of the TE1 mode. But in both cases, the
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Figure 4.19: Power transmissions of the ring resonator for interchanging g and

g̃. For g + g̃ = 0.4µm, the plots show the through power (top plot) and the

dropped power (middle plot) for g = 0.25µm, g̃ = 0.15µm (dashed lines) and g =
0.15µm, g̃ = 0.25µm (solid lines), whereas the bottom plot shows the difference

between the respective through powers (dash-dotted line), drop powers (circles) for

the two settings. Note that the curves for PD and –on the scale of the figure– also

the curves for PT are superimposed.

dropped power remains unchanged.

The invariance of the drop power for interchange of g and g̃ can be explained by

flipping the resonator along the z axis, and using SB̃A = SAB̃ from Eq. (4.6).

This can also be explained by using Eq. (4.9) . For the resonator setting as in
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Figure 4.20: Power transmissions of the disk resonator for interchanging g and g̃
with g+g̃ = 0.4µm. The interpretation of the curves is the same as for Figure 4.19.

Figure 4.1 (symmetrical around the plane z = 0), interchanging the separation

distances g and g̃ is equivalent to changing the setting with input at port A to a

setting, where port Ã is excited.

According to Eq. (4.9), the power at port B̃ for PI = 1 and PA = 0, which is the

drop power with g = 0.25µm, g̃ = 0.15µm, is the same as the power at port B

for PI = 0 and PA = 1, which is the drop power with g = 0.15µm, g̃ = 0.25µm.

Hence the difference between the drop powers for the two settings (depicted by a

line with circles in the bottom plot of Figures 4.19, 4.20) is zero.

What concerns the nonnegligible difference in the throughput power (dash-dotted
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line in the last plots of Figure 4.19, 4.20, one can consider the “ideal” resonator

discussed in context of Eq. (4.12). If the attenuation corresponding to the propa-

gation along the cavity is negligible, i.e. α ≈ 0 for the cavity mode, and if the

coupling is lossless, then for monomodal port waveguides, one has

|SBA|2 + |SB̃A|2 = 1, for PI = 1, PA = 0, (4.13)

|SB̃Ã|2 + |SBÃ|2 = 1, for PA = 1, PI = 0. (4.14)

From the Eq. (4.9), one has SB̃A = SBÃ, which leads to |SBA|2 = |SB̃Ã|2, i.e. for

the low loss resonator, given input only at port A, the output power at port B is

exactly the same as the output power at port B̃ for input given only at port Ã. Or in

the other words, interchanging g and g̃ does not affect the through power.

For the ring resonator in Figure 4.19, such an “ideal” situation is realized (see

Figure 3.2, a well guided cavity mode, and Figure 3.4, almost lossless coupling).

Therefore the difference in the throughput power for these simulations is quite

small. As the wavelength increases, the attenuation of the cavity mode increases,

resulting in corresponding growing deviation ∆PT/PI. This can be clearly seen for

the resonances of the TE0 mode.

The simulations of the disk resonator in Figure 4.20, involve a substantially lossy

TE1 whispering gallery mode (see Figure 3.8). Here |SBA|2 6= |SB̃Ã|2, which

is evident from the significant difference of the through power PT. Apart from the

minor differences near the resonances of the TE0 mode, one can see the pronounced

deviations near the resonances of the TE1 mode.

It should be emphasized that the invariance of the dropped power for interchanging

the gaps can be used as an additional check of the consistency of the model. The

almost perfect agreement of the the curves for the dropped power in Figures 4.19

and 4.20 shows that the present CMT based model of microresonators satisfies this

constraint very well.

4.6 Tuning

From a practical point of view, the ability to tune the spectral response of the res-

onators is an essential feature. As mentioned in Section 1.4.5, a tuning mechanism

can relax otherwise quite demanding fabrication tolerances, and it can also help to

eliminate any unwanted temperature induced deviations of the spectral response.

For the applications of microresonators as tunable wavelength filters, suitable ma-

terials are introduced that permit to change slightly the refractive index of the cav-
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ity core by external mechanisms like electro- or thermo-optic effects. Then using

Eq. (1.21), shifts in resonance wavelengths due to changes of the core refractive

index are given by

∆λm = ∆nc

∂β

∂nc

λm

βm
, (4.15)

where the derivative of the phase propagation constant with respect to the core

refractive index can be approximated by Eq. (2.31) as

∂β

∂nc

= 2nc

ωǫ0
R

∫ R
R−d E · E∗ r dr

∫

∞

0 aθ · (E × H
∗ + E

∗ × H) dr
. (4.16)

Here E,H are the electric field and magnetic field of the cavity mode associated

with the m’th order resonance.

Spectrum evaluation for perturbed resonators

By the interpolation method outlined in Section 4.3, in principle one can compute

the resonator spectra for the unperturbed and the perturbed configurations sepa-

rately. Instead of the scattering matrices S,S̃ as given by Eq. (4.1), which are as-

sociated with the couplers defined over a larger z interval, one uses the scattering

matrices S′,S̃′ as given by Eq. (4.10), which are associated with couplers of a zero

length.

Similar to the arguments presented in Section 1.4.3, let’s assume that for a slight

change of the cavity core refractive index the scattering matrices S′,S̃′ do not

change much, and the shifts of the resonances are entirely due to the changes in

the cavity mode propagation constants. Then using S′,S̃′ of the unperturbed res-

onator, and adding the phase propagation constants shifts δβbp to the propagation

constants γbp of the unperturbed cavity segments, one can again follow the interpo-

lation method described in Section 4.3, without recalculating the scattering matri-

ces for the perturbed resonator. In this way, a significant amount of computational

work can be avoided.

Simulation results

Now we assess the validity of expressions (4.15), (4.16), and the above spectrum

evaluation method for the perturbed resonators. For the assessment, we consider

again the configurations of Sections 4.4.1 and 4.4.2. A cavity of radius R = 5µm

is coupled to straight waveguides of width ws = 0.3µm and core refractive index
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ns = 1.5. The background refractive index is nb = 1.0, and the gap widths

g = g̃ = 0.2µm. The cavity has the form of a ring, with a core width wc =
0.3µm, and of a disk, with wc = R. For the unperturbed setting, the cavity core

refractive index is nc = 1.5. For the perturbed structure, this value is changed

to ncp = 1.504. The spectra are evaluated by quadratic interpolation with nodal

wavelengths λ = 1.015µm, 1.05µm, 1.085µm.

With the help of Eq. (4.16), the shifts in the (real part of) the cavity mode propaga-

tion constants at the resonance wavelengths of the unperturbed resonators are cal-

culated; Eq.(4.15) then gives the shifts in the resonance wavelengths. Adding these

differences to the unperturbed resonance wavelengths, determines the resonance

positions for the perturbed configuration, which are compared with the resonance

positions obtained by direct CMT simulations for the perturbed (ncp = 1.504) res-

onator. Figure 4.21 depicts the spectral responses for the perturbed and the unper-

turbed ring resonators. The spectral response computed with the method outlined

in this section agrees with the direct CMT calculation. Thus for a small pertur-

bation of the cavity core refractive index, using the scattering matrices and the

cavity propagation constants of the unperturbed structure, and the shifts in the cav-

ity mode propagation constants, one can quite reliably predict the spectral response

for the perturbed resonator.
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Figure 4.21: Spectrum shift due to tuning of the cavity core refractive index.

The microring resonator configuration is as in Section 4.6. The curves of the nor-

malized transmitted power are calculated by the spectrum evaluation method of

Section 4.3 for the unperturbed resonator with nc = 1.5 (dash-dotted line) and for

the perturbed resonator with ncp = 1.504 (circles), and by the approximation of

Section 4.6 for the perturbed resonator (solid line).
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A similar comparison of the transmitted power for the unperturbed and the per-

turbed disk resonator is shown in Figure 4.22. Just as in the case of the monomodal

ring, for the present multimodal disk we find that the perturbed resonator spectrum

computed by the approximation method (solid line) discussed in this section agrees

well with the direct CMT simulations (circles), what concerns the resonance posi-

tions.

Minor deviations are observed in the depths of the resonance dips, in particular

for the TE1 resonances, where apparently the change in modal attenuation due to

the core refractive index change is slightly larger than for the TE0 mode. This

alteration of the cavity mode losses is not taken into account by the present ap-

proximation procedure.
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Figure 4.22: Spectral shift due to the cavity core refractive index perturbation, for

the microdisk resonator as specified in Section 4.6. The interpretation of the curves

is as for Figure 4.21.

4.7 Concluding remarks

A two dimensional frequency domain model of circular integrated optical micro-

resonators based on spatial coupled mode theory has been investigated. Represent-

ing a direct implementation of the most common notions found in discussions of

optical microring resonators, the present approach provides a thorough quantitative

basis for the resonator design. It turns out that only a few most relevant basis fields

are required to construct approximate solutions to the scattering problems that are

sufficient for purposes of practical resonator design. The CMT results agree well

with rigorous FDTD simulations; the computational effort for the CMT analysis
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is significantly lower. Hence the approach qualifies for a generalization to three

spatial dimensions [69], where hardly any alternative, practically applicable tools

are available.

The numerical examples included single- and multimode microring and -disk struc-

tures, with relatively small cavity diameters and substantial refractive index con-

trasts, which represent rather worst-case configurations for the CMT analysis. Be-

yond the optical power transmission characteristics, the CMT procedures permit

the direct examination of the local amplitudes of all included basis modes, and the

inspection of all components of the local optical electromagnetic field. By means

of adequately interpolated bend mode propagation constants and coupler scatter-

ing matrices, the spectral properties of the resonators can be evaluated in a highly

efficient way. A systematic analysis of effect of the separation distances on the res-

onator spectral response shows that for the identical couplers setting, at resonance

the drop power is maximum and the through power is minimum. It is also veri-

fied that the constrain of invariance of the drop power for interchanging the gaps

is satisfied by the present CMT simulations. A perturbational analysis permits to

compute reliably shifts in the resonances due to small changes of the core refractive

index.
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Conclusions and outlook

Resonators based on circular microcavities are promising devices for applications

as tunable add/drop wavelength filters in integrated optics. In this thesis, we have

investigated a two dimensional frequency domain model of these devices based

on spatial coupled mode theory. The approach followed in this work is directly

interpretable in physical terms, and it is free of any fit parameters.

Conclusions

A functional decomposition of the resonators, outlined in Chapter 1, in terms of

two bent-straight waveguide couplers with appropriate straight waveguide and bent

waveguide connections, led to expressions for their spectral responses in terms

of the constituent cavity mode propagation constants and the coupler scattering

matrices. We presented a systematic approach to compute these parameters for

given resonators.

To determine the cavity mode propagation constants, in Chapter 2 we turn to a

classical analytic frequency domain model for 2-D optical bent slab waveguides

and curved dielectric interfaces with piecewise constant refractive index profiles.

A field ansatz in terms of complex order Bessel and Hankel functions led to an

eigenvalue equation that is to be solved for the complex valued mode propagation

constants. Unlike the fields in a complex frequency model of full cavities [39, 40],

in the present case the asymptotic expansions of the relevant Hankel functions show

that the modal solutions decay according to 1/
√
r for growing radial coordinates r.

For the normalization of bend modes, we derived quite compact expressions for the

angular modal power. We also discussed orthogonality properties of nondegener-
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ate, directional, and polarized modal solutions of the bent waveguide problem. For

the later discussion of tuning of resonators by changes of the core refractive index,

a perturbational analysis for shifts in the propagation constants of bend modes is

discussed.

Our implementation of “uniform asymptotic expansions” for Bessel functions of

complex order facilitated the computational evaluation of the present analytic mo-

del of bent waveguides. In Chapter 2 we have presented a series of detailed (bench-

mark) examples of fundamental and higher order modes of bent slabs and whisper-

ing gallery modes. These include the computation of propagation constants (in

view of the arbitrariness in the definition of the bend radius), bend mode profiles,

and the spatial evolution of the related physical fields. A few illustrative examples

for interferences of bend modes have been shown, that exhibit a periodic angular

beating pattern (apart from the mode decay) in the guiding regions of the bends,

and tangential, ray-like bundles of outgoing waves in the exterior regions. The

validity of the perturbational expression for shifts in the propagation constants of

moderately lossy modes has been verified.

To obtain the required coupler scattering matrices, in Chapter 3 we have proposed

a spatial coupled mode theory based model of 2-D bent-straight waveguide cou-

plers. In this pure frequency domain approach, the coupled mode equations are

rigorously derived by a variational principle. Leveraged by the availability of the

analytic bent modes on unbounded radial intervals, we could implement this mo-

del in consistent standard physical notions. By solving the coupled mode equations

numerically, and projecting the resulting coupled mode field on the modes of the

straight waveguide, we obtained the scattering matrices of the couplers. In sym-

metrical coupler settings, the scattering matrices satisfy a reciprocity property, that

permits to assess the validity of the simulation results.

With the above coupled mode theory model, a detailed study of the effects of sep-

aration distance, the radius of the bent waveguide, and the wavelength on the scat-

tering matrices has been carried out. For couplers involving bent waveguides that

support multiple whispering gallery modes, with the present approach we have

systematically investigate the significance of the individual modes. This feature

of the present CMT formulation provides good insight for the characterization of

resonances of the entire device.

With bent modes and coupler scattering matrices being available, in Chapter 4 we

further elaborated the resonator model discussed in Chapter 1. We have formulated

it for the multimodal setting. Also, approximations for fast-yet-reliable spectrum

computation have discussed. The resonator model has been assessed for several

examples of monomodal/multimodal structures with ring or disk cavities. In case
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of a resonator with multimodal cavity, it turns out that only a few most relevant

cavity basis fields are required to construct approximate solutions to the scatter-

ing problems that are sufficient for purposes of practical resonator design. With

the present CMT approach, one can associate different resonance extrema in the

spectral response with specific cavity modes. The comparison of CMT results with

rigorous FDTD simulations shows good agreement. Moreover, the computational

effort for the CMT analysis combined with the interpolation technique of Chap-

ter 4 is substantially lower. The resonator field plots obtained with the CMT model

provide useful qualitative impressions of the functioning of the resonators.

An analysis of effect of the separation distances on the spectral response shows

that for the identical couplers setting, at resonance the drop power is maximum

and the through power is minimum. The constrain of invariance of the drop power

for interchanging the gaps is very well satisfied by the present CMT simulations.

The perturbational analysis of shifts in the resonances due to slight changes in the

cavity core refractive index agrees quite well with direct calculations.

Outlook

Now we would like to mention several interesting issues intimately related to the

work carried out in this thesis, that deserve further attention. A few aspects are of

more theoretical nature, while others are interesting from the application point of

view.

The present analysis for the shifts of propagation constants due to changes in the

cavity core refractive index (see Section 2.5) takes into account only the change

in the real part of the propagation constants. Further investigation is necessary

concerning more appropriate expressions, which give the changes in both the real

and imaginary parts of the propagation constants.

Besides the present formulation, there exist other versions of coupled mode theory,

e.g. spatial CMT with an ansatz for only the electric or the magnetic field, or time

dependent CMT, that are applicable to the 2-D resonators as well. A comparative

study of these different versions of CMT should be attempted.

For demonstrating the applicability and performance of the CMT method for the

modeling of 2-D circular resonators, in the present work we restricted ourselves

to unidirectional waves, and discussed configurations with adiabatic couplers and

negligible backreflections only. For very small cavities the interaction between the

straight waveguides and the cavity may not be adiabatic. To handle such cases, the

present model should be extended to bidirectional waves.

111



Chapter 5: Conclusions and outlook

Multiple coupled rings can improve the filter performance, when compared to a sin-

gle resonator, by enhancing the resonance features in certain aspects [22]. The mul-

tiple cavities can be cascaded serially or in parallel. Modeling of such multicavity

resonators requires the simulations of the coupling between two bent waveguides

(or cavities). A CMT analysis for the interaction between two curved waveguides

needs to be carried out.

Towards 3-D simulations

The approach followed in this thesis can be systematically extended to 3-D set-

tings, where at present hardly any other practically applicable tools are available.

Recently, significant progress has been made in this direction. For the reliable

computation of bent modes and their propagation constants, a 3-D vectorial eigen-

mode solver for bent waveguides based on film mode matching has been pro-

posed [67, 68]. Using these modes, a 3-D model of bent-straight waveguide cou-

plers and microresonators has been implemented, as presented in Ref. [69]. These

tools permit the reliable simulation and analysis of realistic devices, including spe-

cific 3-D features like vertical coupling or cavities that support hybrid modes.
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