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Coupled-mode theory for chirowaveguide

Abstract

In this paper, electromagnetic wave propagation and mode coupling in a chirowaveguide are treated using
the coupled-mode theory. A chirowaveguide, as defined in our previous work, is a conventional cylindrical
waveguide filled with homogeneous chiral materials. A set of coupled linear differential equations is
derived for various mode amplitudes in the waveguide. We then show that, in any single chirowaveguide,
owing to the handed properties of chiral materials filling the waveguide, energy coupling occurs from one
mode to the other. We also demonstrate that in a parallel-plate chirowaveguide a TE mode can be
completely converted into a TM mode and vice versa as they propagate in the guide. Thus a
chirowaveguide can indeed be used as a mode converter. Selected results are compared with those
reported in the literature. Applications of such mode coupling in the design of novel microwave,
millimeterwave, and optical devices and components are mentioned.
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Coupled-mode theory for chirowaveguides

Philippe Pelet and Nader Engheta

The Moore School of Electrical Engineering, University of Pennsylvania. Philadelphia, Pennsylvania 19104

{Received 25 September 1989; accepted for publication 18 December 1989)

In this paper, electromagnetic wave propagation and mode coupling in a chirowaveguide are
treated using the coupled-mode theory. A chirowaveguide, as defined in our previous work, is
a conventional cylindrical waveguide filled with homogeneous chiral materials. A set of
coupled linear differential equations is derived for various mode amplitudes in the waveguide.
We then show that, in any single chirowaveguide, owing to the handed properties of chiral
materials filling the waveguide, energy coupling occurs from one mode to the other. We also
demonstrate that in a parallel-plate chirowaveguide a TE mode can be completely converted
into a TM mode and vice versa as they propagate in the guide. Thus a chirowaveguide can
indeed be used as a mode converter. Selected results are compared with those reported in the
literature. Applications of suck mode coupling in the design of novel microwave, millimeter-
wave, and optical devices and components are mentioned.

L INTRODUCTION

A chiral object is formally defined to be a three-dimen-
sional body that is not superimposable with its mirror image
by translation and rotation. Such an object has the handed
property and must be either left handed or right handed. The
fundamental concept of chirality has been investigated in a
large number of fields and has been actually a subject of
interest since the early part of the 19th century with the
works of Arago,’ Biot,”* Fresnel,” and Pasteur.® These re-
searchers were mainly interested in the rotation of plane of
polarization of optical waves in a certain class of crystals and
liquids, and discovered a new phenomenon called optical ac-
tivity. Several years later, in the early and midpart of the 20th
century, chiral materials started to generate a great deal of
interest in the electromagnetics community with the micro-
wave experiments of Lindman’™® and Pickering,” which were
analogous to the optical experiments performed in the 19th
century. More recently, a wide variety of problems related to
chiral media, and, in general, gyrotropic materials, have
been investigated and reported in the literature.'**? For in-
stance, it has been shown'® that for time-harmonic electro-
magnetic fields with exp( — jwr) excitation, a homoge-
neous, lossless, isotropic, chiral medivm can be described by
the following constitutive relations:

D = ¢E + i€, B, (0
H=i{,E4+ B/u, (2)

where €, ¢, and £, represent, respectively, the permittivity,
permeability, and chirality admittance of the chiral medium.
This set of constitutive relations is a subset of the more gen-
eral constitutive relations used to describe bianisotropic me-
dia.** Bianisotropic media and their electromagnetic proper-
ties have been studied by Kong'®*** and Cheng and
Kong.?®

In the past few years, electromagnetic chirality?” and
chiral materials have been extensively investigated in a large
number of applications. Among those is the effect of electro-
magnetic chirality in guided-wave structures. In previous
works,' 12 we introduced the idea of chirowaveguide: a con-
ventional cylindrical waveguide filled with homogeneous
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chiral materials. The detailed analysis of chirowaveguides
revealed some notable features such as bifurcation of modes,
impossibility to support individual TE, TM, or TEM modes,
etc.'© In other words, we demonstrated that such wave-
guides always support hybrid modes. The hybrid structure
of modes in these waveguides may potentially be used as a
mechanism for mode coupling. More specifically, if a TE
wave enters into such a chirowaveguide, since this wave is
not one of the eigenmodes of the chirowaveguide, it will be
coupled into those guided modes supported by the wave-
guide. Chien, Kim, and Grebel,'® showed experimentally
that TE—TM conversion is indeed possible in optically ac-
tive and isotropic waveguides. They also studied theoretical-
ly the problem of coupling of 2 pair of lowest TE and TM
modes in a weakly guided slab dielectric waveguide filled
with optically active materials. However, in their analysis
the weakly guiding approximation was assumed and fields
were expressed in terms of only two modes. It is the purpose
of the present study to generalize the analysis of mode cou-
pling in chirowaveguides and to use the coupled-mode theo-
ry to obtain a complete set of coupled-mode equations for
amplitudes of all modes available in such waveguides. We
will show that results of our general analysis will reduce to
what Chien and co-workers obtained for the weakly guided
diclectric waveguides.'”

Since in most cases, chirality of the medium is weak and
thus &_ is small compared with (€/u)"'/?, this parameter is
treated as a small perturbation. The results of the present
investigation emphasize that a transfer of energy between
the modes can occur inside a general chirowaveguide. It is
well known that many conventional mode converters use
materials such as ferroelectric or ferromagnetic media which
require biasing ficlds in order to operate properly. Further-
more, these converters are generally nonreciprocal elements.
Chirowaveguides, however, have the advantage of operating
with no such biasing fields, and moreover, they are recipro-
cal devices. Such features, along with the mode coupling
properties of chirowaveguides, may be used to design simple
and efficient TE<—TM converters in the microwave, miili-
meter-wave, and optical regimes.
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iL PROBLEM FORMULATION

Letus consider a cylindrical structure of arbitrary cross-
sectional shape with its axis in the direction of z axis and
filled with a homogeneous, lossless, isotropic chiral material
described by Egs. (1) and (2), where ¢, y, and £, are now
assumed to be real scalar quantities. As was noted earlier, £,
is taken to be much smaller than (e/g) Y2 Ytis also assumed
that in this structure the electromagretic energy is guided
along the z axis. Such a waveguide can be either a closed or
an open structure. Since &, < (&/u)'’?, the present probiem
can be considered as a small perturbation of the problem of
wave guiding through a conventional waveguide with the
same geometry filled with a simple nonchiral lossless dielec-
tric material characterized by € and y. Following this as-
sumption, the electromagnetic fields in the perturbed wave-
guide, i.e., E' and H' in the chirowaveguide, can be expressed
in terms of a superposition of fields of guided modes in the
unperturbed waveguide, i.e., E and H of the conventional
guide filled with the simple nonchiral dielectric. To obtain
the relationship between the perturbed and unperturbed
field guantities, the Lorentz reciprocity theorem is needed.
The fields E and H of the unperturbed waveguide satisfy the
Maxwell equations with £, = G:

YXE = iopH, 3

VXH = — iweE, (4)
and the fields E’ and H’ inside the chirowaveguide satisfy the
following Maxwell equations with £, +£0:

VXE =iwgH + aué E, (5}

VXH = oué H — tcue(l + 5’:—5 {)E’ (6)

Following the standard technique used in the Lorentz reci-
procity thecrem,”° and ignoering the second- and higher-
order terms of £,, we obtain, from (3)-(6), the following
equation:

VAE*xH + E xXH*) = wuf (H*E — E*H'), (7)
where superscript * denotes the complex conjugation. Inte-
grating both sides of Eq. {7) over a volume ¥ and making
use of Gauss’ theorem yields

” (E*XH' + ' xXH*)dS
s,

= { J(uygr(H*vE’c—E“H’)dV, (8)
., Vv

where the closed surface S, surrounds the volume ¥, This
relation is, indeed, in the form of the Lorentz reciprocity
theorem. The closed surface S, can be chosen as a circular
cylinder of infinitely large radius centered about the z axis of
the waveguide and of infinitesimal width Az along the z axis
(see Fig. 1). It can be easily shown that as Az approaches
zero, in the limit, Eq. (8) may be rewritten as follows:

ff 9 (BFxH. + E X H*)dS

=fJ‘ wpé, (H*E — E*H'")dV, (9
S
where S, as shown in Fig. 1, is one of the circular bases of the
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FIG. 1. A sketch of the geometry of the problem: a cylindrical chirowave-
guide which is filled with a homogeneous isotropic lossless chiral material.
The closed mathematical surface S, s used in the mathematical derivation
of the coupled-mode equations in the chirowaveguide.

cylinder S, transverse to the z axis, Z is the unit vector along
the z axis, and subscript ¢ indicates the transverse part of a
vector. [t must be noted that if the waveguide under study is
an open structure; i.e., if the guide’s walls are not perfect
canductors, the surface § for the integral of the left side of
(9) shall extend to infinity and the integration on the right
side shall be carried out over those regions of surface § with
nonzero perturbation, i.¢., those areas on Swhere £, #0. For
a closed chirowaveguide with perfectly conductive walls,
however, the surface § shall be taken to be the finite cross
section of the guide.

Let us now assume that the unperturbed fields Eand H
are the solutions for the nth mode in the unperturbed wave-
guide, i.e.,

B = (e, +¢,,%) g (10)
H=h,e"" = (h, +h,2)e"" (i1

where ¢, and h, depend only on the transverse coordinates,
withe,, andh,, being the transverse partsand e, and &, the
longitudinal components. Without loss of generality, these
modes are assumed to be normalized to a power flow of unity
in the z direction. B, is the guide wave number of the nth
mode propagating along z axis. It is known that transverse
components of these modes form a complete set of orthonor-
mal bases on the transverse plane S. Therefore, the trans-
verse components of the perturbed fields E' and ', ie., E;
and H; can be represented in terms of superposition of these
orthonormal bases as

E=e,e

i#,,2
E,’:Zam(z)em,e' 3 (12)
m

‘ Bt
Hr, = Zam (Z)hmrg ?

il

(13)

where coeflicients a,, (z} are functions of z, and the summa-
tion is over all possible modes.® From Maxwell’s equations
and the constitutive relations, and ignoring the second-order
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terms of £,, we obtain the following expressions for the lon-
gitudinal components of perturbed field, £, and H ;:

E;iz——i——V,XH:‘inXE{» (14)
e wE
Hig= — 509 xH; — - v,xE, (15)
W€ WL

where V, = V — (38 /92). Substituting Egs. (12} and (13)
into (14) and (15), we obtain

Eit=Ya, (z)(emzi — ;f_i‘éf_ hmz)é”'mi (16)
m €

H3=30,(2)(h.i+ i£.e,, 2", (17

Since the chirality admittance is assumed to be small, from
(12), (13), (16), and (17), we can express, approximately,
the total perturbed fields in terms of the total unperturbed
fields. That is,

E'=Ya, (z)e,e", (18)

H'=Sa, (2, (1%)

Let us now apply the Lorentz reciprocity theorem in (9)
with E, H, E’, and H' given, respectively, by Egs. (10), (11},
(18), and (19). After some mathematical manipulations,
we obtain

da, (z)

;( dz

xf}(em,xh:: + et xh,, )2dS
RY

+ B —B.)ay (Z))ei"g’" B

== E a., (Z)ei(ﬁm - ﬂ")zj- f wrué‘c (em °h: - ef!hm )dS
m S
(20)

For the unperturbed fields, the orthogonality relation indi-
cates .

J‘j‘(em, Xh}, 4 ek Xh,, }2dS = 4sgn(n)d),. ., (21)
S

where sgn{#n} indicates sign of n,and §,,),, is the Kronecker
delta.?! Substituting (21) into (20), we get

dﬂ" (Z) - i Zam (Z)el'(ﬁ,,, -85z
dz 4 sgn(ny <

X [f(aﬂg‘c(e,,,'hf‘,‘ — e¥h, )dS, (223
J Js
or, equivalently,
dan (Z) B, — Bz
— Y g, {(z)e " T, 23
= % i (2) i (23}

with the coupling coefficients defined as

! j [ ont.epmr — ermnas. )
g

= 4 sgn(n)
As can be seen from (24), these coupling coefficients are
proportional to the chirality admittance £,. It can also be

i
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shown that the self-terms C,,,,, are identically zero. From the
above analysis, it becomes evident that the electromagnetic
fields guided by a chirowaveguide can be expanded in terms
of the modes of unperturbed conventional waveguides, and
the coeflicients of expansion g, (2) satisfy a set of coupled
linear differential equations given in (23).

. CHIROWAVEGUIDE AS A MODE CONVERTER

The set of differential equations given in (23) is particu-
tarly usefui in analyzing how energy can be converted from
one mode to the other inside a single chirowaveguide. Con-
sider, for example, a simple waveguide filled with nonchiral
material such that only the first two unperturbed orthonor-
mal modes can propagate (modes | and 2}, and the guide is
below cutoff for other modes. Let us then introduce some
chirality £, in the waveguide; we assume £, small enough to
be treated as a small perturbation. Due to the chirality, the
unperturbed orthonormal modes are no longer orthogonal
in the sense of (21), and there will be a iransfer of energy
from one mode to the other. The wave numbers of these two
modes (modes | and 2) along z are denoted by 3, and £,
respectively.

Considering the first two terms m = ! and 2 in Eq. (23),
and ignoring the other terms corresponding evanescent
modes, we obtain

dai(z) —_ az(z)ei(l}: ~—- B|)ZC2]’ (25)
day(z) _ a{z)e BB (26

dz
with C,, and C,; defined in (24), and C,;, = C,, =0. We
also note that C¥ = — C,,. Suppose that at z =0, all the

energy is in mode 2, i.e., that a,(0) =0 and a,(0) = 1.
Then, the solutions for a,(z)and a,(z} are

a,(z) =§i—fle"”":‘5"z"zsin(l“z), 27N
a,(z) = % B ’32’”2(1" cos(I'z) + i'l—gz—%—@—’s sin(I“z)),
(28)

where T = [(8, — B,)%/4 1 +|C,,[>. These results are
similar to that obtained by Chien and co-workers!” in their
theoretical study of mode conversion in weakly guided slab
dielectric waveguides made from optically active and iso-
tropic polymers. Figure 2 presents plots of the power
la,(2)]* and |@,(z}|* carried by each individual modes
{modes | and 2}, as a function of z with 8, # f3,. In this case,

since propagation constants of the two unperturbed modes
are unequal, i.e., 5,5%8,, the coupling of energy from one

mode to the other is not complete, and only a fraction of
modal power of mode 2 transfers into mode 1. However, if
the phase-matched condition is fulfilled, ie, 8, =/0,, a

complete power transfer between the two modes will occur
periodically along the z axis. For example, consider a paral-
lel-plate waveguide where the two unperturbed modes TE
and TM,, have the equal propagation constants (5, = f5,)

for any frequency. If we introduce some chirality in the ma-
terial filling the guide and then apply a TE,; mede at z =0,
since 8, = f3,, a complete power transfer between TE,; and

P. Pelet and N. Engheta 2744
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FIG. 2. Modal power variation along the z direction for modes 1 and 2. This
figure is depicted for the case where the propagation constants along the z
direction of the two unperturbed modes 5, and B3, are unequal.

TM,, will occur periodically along z axis. The lengths re-
quired for a complete mode conversion from TE; te TM,, 1s
given by

z=ka/¥ = ku/{C,, . (29)

It is worth noting that the larger the chirality admittance £,
is, the bigger the coupling coefficient C,, becomes, and the
shorter distance is required for complete mode conversion.
The mode coupling afforded by chirality of materials
have potential applications in a variety of novel microwave,
infrared, and optical devices and components. Examples giv-
en in this paper can be used in the design of efficient
TE«>TM converters without using conventional microwave
materials which require biasing fields. It must be noted that
the coupled-mode theory given in this report can be easily
extended to the case of mode coupling between two and more
chirowaveguides and similar results will be obtained.

Iv. CONCLUSIONS

In this paper, we have analyzed the problem of wave
propagation and mode coupling in chirowaveguides which
are defined as cylindrical waveguides filled with homoge-
neous chiral materials. The chirality admittance is assumed
to be small enough o be treated as a small perturbation. We
have studied the coupled-mode theory for these waveguides
and derived coupled-mode equations for different unper-
turbed modes of the waveguide. These equations were solved
for a particular case where only the first two unperturbed
modes were considered, and the results were compared with
those reported in the literature. In this case, using the cou-
pied-mode theory, we demonstrated that in a chirowave-
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guide there exists a periodic transfer of power from one mode
to the other. The coupling coefficient is shown to be propor-
tional to the chirality admittance £,. We have also shown
that for the phase-matched conditions, where propagation
constants of unperturbed modes are equal, a complete power
transfer from TE to TM mode is possible. This feature has
potential application to novel microwave and cptical devices
such as TE<-TM converters without employing materials
which need biasing fields.
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