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Coupled-Mode Theory for Guided-Wave Optics

' AMNON YARIV

Abstract—The problem of propagation and interaction of optical radia-
tion in dielectric waveguides is cast in the coupled-mode formalism, This ap-
proach is useful for treating problems involving energy exchange between
modes. A derivation of the general theory is followed by application to the
specific cases of electrooptic modulation, photoelastic and magnetooptic
modulation, and optical filtering. Also treated are nonlinear optical
applications such as second-harmonic generation in thin films and phase
matching.

I. INTRODUCTION

GROWING BODY of theoretical and experimental

work has been recently building up in the area of
guided-wave optics, which may be defined as the study and
utilization of optical phenomena in thin dielectric
waveguides [1], [2]. Some of this activity is due to the hopes
for integrated optical circuits in which a number of optical
functions will be performed on small solid substrates with
the interconnections provided by thin-film dielectric
waveguides [3], [4]. Another reason for this interest is the
possibility of new nonlinear optical devices and efficient op-
tical modulators which are promised by this approach
31-17].

A variety of theoretical ad hoc formalisms have been
utilized todate in treating the various phenomena of guided-
wave optics. In this paper we present a unified theory cast in
the coupled-mode form to describe a large number of
seemingly diverse phenomena. These include: 1) nonlinear
optical interactions; 2) phase matching by periodic pertur-
bations; 3) electrooptic switching and modulation; 4)
photoelastic switching and modulation; and 5) optical filter-
ing and refiection by a periodic perturbation.

II, THE CouPLED-MODE FORMALISM

We will employ, in what follows, the coupled-mode for-
malism [8]to treat the various phenomenallisted in SectionI.
Before embarking on a detailed analysis it will prove
beneficial to consider some of the common features of this
theory. Consider two electromagnetic modes with, in
general, different frequencies whosecomplex amplitudes are
A and B. These are taken as the eigenmodes of the unper-
turbed medium so that they represent propagating distur-
bances
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b(z, x,1) = Be fulx) (1)

with 4 and B constant.
In the presence of a perturbation which, as an example,
cantake the place of a periodicelectricfield, asound wave, or
a surface corrugation, power is exchanged between modesa
and b, The complex amplitudes 4 and 8 in this case are no
longer constant but willbefound to depend onz. They will be

shown below to obey relations of the type
dA

—ilds

dz = Kgp Be
Eﬁ = K, A€+ iz (2)
dz

where the phase-mismatch constant A depends on the
propagation constants 8, and 3, as well as on the spatial
variation of the coupling perturbation. The coupling
coefficients x,, and k., are determined by the physical situa-
tion under consideration and their derivation will take up a
major part of this paper. Before proceeding, however, with
the specific experimental situations, let us consider some
general features of the solutions of the coupled-mode
equations.

A. Codirectional Coupling

We take up, first, the case where modes @ and b carry
(Poynting) power in the same direction. It is extremely con-
venient to define 4 and B in such a way that | 4(z)|* and
| B(z)|? correspond to the power carried by modes ¢ and b,
respectively. The conservation of total power is thus ex-
pressed as

d

&;(HI + [B]) =0 (3)
which, using (2), is satisfied when [9]
Kap = —Kpa®. 4)

If boundary conditions are such that a single mode, say b, is
incident at z = 0 on the perturbed region z > 0, we have

b(0)=B,,  a(0)=0. (5)

Subject to these conditions the solutions of (2) become
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Fig. 1. The variation of the mode power in the case of codirectional

coupling for phase-matched and unmatched operation.

B(z) = Bee'***{cos [(3(4x"* + AY)'*z]

A . 2 20142
— i @2 F anvEsin G + A%) %21} (6)

where «? = | kq| % Under phase-matched condition A =0, a
complete spatially periodic power transfer between modesa
and b takes place with a period =/2«.

K (wat—Ha) _=
alz, 1) = B, 2" “*" ™ sin (x2)
K

bz, 1) = B '™ cos (x2). )

A plot of the mode intensities |a|2and | &| 2is shown in Fig.
1. This figure demonstrates the fact that for phase mismatch
A >> |kqs| the power exchange between the modesis negligi-
ble. Specific physical situations which are describable in
terms of this picture will be discussed further below.

B. Contradirectional Coupling

In this case the propagation in the unperturbed medium is
described by

e Aer’(waﬂ+ﬂa=)

hres Beitcuat—ﬁz-z! (8)
where 4 and B are constant, Mode a corresponds to a left
(—z)traveling wave while b travels to the right. A time-space

periodic perturbation can lead to power exchange between
the modes. Conservation of total power can be expressed as

B — 15
(Al — 1B = 0 ©)

which is satisfied by (2) if we take

Kab=xbﬂ* (]0)
so that
dA g liE dB * Az
= = e . 1
= K. Be e Ko T Ae (11)

In this case we take the mode & with an amplitude B(0) to be
incident at z = 0 on the perturbation region which occupies
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Fig. 2. The transfer of power from an incident forward wave B(z) to a
reflected wave 4(z) in the case of contradirectional coupling.

the space betweenz = 0 andz = L. Since mode ais generated
by the perturbation we have a(L) = 0. With these boundary
conditions the solution of (11) is given by

I 7 sinh I:g (z — L):l
— A sinh _E- -+ i§ cosh —2-

P —i(Azs2)
2!;{,1,,8 :

A(z) = B(D)

(A2

B(z) = B(0)
— A sinh u_zé -+ i8 cosh %é

-{A sinh [% (z — L):[ + i8S cosh I:% {z‘ — L)]} (12)

S= V&= A, k= |k (13)
Under phase-matching conditions A = 0 we have
_ &a | Sinh [k(z — L)]
Al = B0 (x ) cosh (kL)
- cosh [x(z — L)]
Bal = B0 e @ (14)

A plot of the mode powers | B(z)|2and | A(z)|* for this case
is shown in Fig. 2. For sufficiently large arguments of the
cosh and sinh functions in (14), the incident-mode power
decays exponentially along the perturbation region. This
decay, however, is due not to absorption but to reflection of
power into the backward traveling mode a. This case will be
considered in detail in following sections, where acoustoop-
tic, electrooptic, and spatial index perturbation will be
treated. The exponential-decay behavior of Fig. 2 will be
shown in Section VIII to correspond to the stopband region
of periodic optical media.

[1I. ELECTROMAGNETIC DERIVATIONS OF THE COUPLED-
MoDE EQUATIONS

A. TE Modes

Consider the dielectric waveguide sketched in Fig. 3. It
consists of a film of thickness ¢ and index of refraction r,
sandwiched between media with indices »n, and »,. Taking
(8/8y) = 0, this guide can, in the general case, support a
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Fig. 3. The basic configuration of a slab dielectric waveguide.
finite number of confined TE modes with field components
E,H,, and H., and TM modes withcomponents 4, E,, and
E.. The “radiation” modes of this structure which are not
confined to the inner layer are not considered in this paper
and will be ignored. The field component E, of the TE
modes, as an example, obeys the wave equation

fQ_E

2 ——— E—- —
VE, =355, i=123 (15)
We take E,(x, z, 1) in the form
Ey(x,z,t) =8,(x) et - 52, (16)

The transverse function &,(x) is taken as
C exp (—gx), 0<x< =

Clcos (hx) — (g/h) sin (hx)],

&,(x) = HE¥SN

Clcos (ht) + (g/h) sin (k)] exp [p(x + 1)],
—w < x< =t (17)

which, applying (15) to regions 1, 2, 3, yields

b= (0% — Y
g = (@ — n2k)"
p e (ﬁ -, H33k2)l‘l’2
k = w/e. (18)

From the requirement that £, and H, becontinuousatx = 0
and x = —t, we obtain!

a+p
rq
h(l_h)

This equation in conjunction with (18) is used to obtain the
eigenvalues 8 of the confined TE modes.

Theconstant C appearingin(17)isarbitrary, Wechooseit
in such a way that the field &,(x) in (17) corresponds to a
power flow of I W (per unit width in the y direction) in the
mode. A mode whose £, = 4g ,(x) will thus correspond to a

tan (ht) = (19)

! The assumed form of E, in (17) is such that &, and 3¢, = (i/wg)
€ &,/8x are continuous at x = 0 and that &, is continuous at x = —r. All
that is left is to require continuity of 68,/éx at x = —i. This leads to
(19).
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power flow of |4|* W/m. The normalization condition is
thus

Bm @

1 £--}
e f_m EH.* dx = A (6, ) dx = 1 (20)

where the symbol m denotes the mth confined TE mode cor-
responding to mth eigenvalue of (19).
Using (17) in (20) we determine

W sz
Cn = 2h,,.” = LD
Elﬁml (!+ =+ )(b + gn’)
Since the modes &, are orthogonal we have
f 8,78,™ dx = 204 8. 22
B. TM Modes
The field compenents are
H,,(x, z, .’) = SC,(x}e"I““_"ﬁ’)
EGzn=-~-2%_28 a0, (i i=Re
we Oz we
i 0H,
E(x,z,t) = e (23)

The transverse function 3¢,(x) is taken as

—CI:;—; cos (ht) + sin (hr):le”““’, X< -1

FC(x) = C’I:—g cos (hx) + sin (kx):l 5 -1 <x <0

x > 0. 24)

The continuity of H, and E. at the interfaces requires that
thevarious propagation constants obey the eigenvalueequa-
tion

tan (he) = "2+ D (25)
W — pg
where
o re i
p"'naﬂps q“"nl‘ﬁq

The normalization constant C is chosen so that the field
represented by (23) and (24) carries 1 W per unit width in the
y direction.

1/ . _ﬁ;fw
zf_mﬁ.,b; ax =3 |

5G)
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or using n,* = €;/¢,

e, M r | 2we
./_,., n*(x) dx = B (26)
This condition determines the value of C,, as [10]
W€y
w = 2 4]
Cw \'ﬁmferr
_+ K [_f a4+ r 1 eijr_fff_l__]
S + g+ hn’q T Ay
@n

C. The Coupling Equation

The wave equation obeyed by the unperturbed modes is

2

a@'E
2 = ——— e
VE(r, 1) = pe Py

(28)
We will show below that in most of the experiments of in-
terest to us we can represent the perturbation as a distributed
polarization source Pe.(r,?), which accounts for the devia-
tion of the medium polarization from that which accompanies
the unperturbed mode. The wave equation for the perturbed
case follows directly from Maxwell’s equations if we take D
=¢E + P.
2 _ OB P 29)

AV E,,{r, f) = pe ?‘” + aurarz [ pen{rr I}]y (
with similar equations for the remaining Cartesian com-
ponents of E.

Wemay take theeigenmodes of (28) asan orthonormal set
in which to expand E, and write

E‘, = Zé;ﬁz} Sy'zll{x)e:'{wi—ﬁh} + c.c.

1

ok
+ [ A(f) olet=ang By g
venak

thang

(30)

where / extends over the discrete set of confined modes and
includes both positive and negative traveling waves. The in-
tegration over 8 takes in the continuum of radiation modes,
and ¢.c. denotes complex conjugation. Our chief interest lies
in perturbations which couple only discrete modesso that, in
what follows, we will neglect thesecond term on theright side
of (30). Problems of coupling to the radiation modes arisein
connection with waveguide losses [11] and grating couplers
[12].

Substituting (30) into (29), assuming “‘slow’’ variation so
that d®4.,,/dz* << 8, dA../dz, and recalling that &,'™ (x)
etwt—Bn oheysthe unperturbed wave equation (28), gives

5 d A 23] Pfwi—fs) az
E[ﬂﬁz%;uw m}+uawn@wmm

(31)
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Multiplying (31) by &,'™(x), and integrating and making
use of the orthogonality relation (22) yields

dA;;_) g leteBnn @j}e"“““‘" =+ €6
—i g (" {m)
= 5o 52 | [P D18, T @ dx - (32)

where A ,,'~ is the complex normal mode amplitude of the
negative traveling TE mode while 4 ,,'*' isthat of the positive
one, Equation (32)is the main starting point for the follow-
ing discussion in which we will consider a number of special
cases.

IV. NONLINEAR INTERACTIONS

In this section we consider the exchange of power between
three modes of different frequencies brought about through
the nonlinear optical properties of the guiding or bounding
layers. The relevant experimental situations involve second-
narmonic generation, frequency up-conversion, and optical
parametric oscillation. To be specific we consider first the
case of second-harmonic generation from an input mode at
w/2toanoutput mode atw. The perturbation polarizationis
taken as

P, 1) = 3PP 4 clell. (33)
The complex amplitude of the polarization is
Pl(nJ] s d”RI_U}(r)E}w;QEk«H! {34)

whered;;;'“'is an element of the nonlinear optical tensor and
summation over repeated indices is understood. We have
allowed, in (34), for a possible dependence of d;;, on the posi-
tion r.

A. Casel: TEmpue“'TEoucpux

Without going, at this point, into considerations in-
volving crystalline orientation, let us assume that an optical
field parallel to the waveguide y direction will generate a
second-harmonic polarization along the same direction

Py-:w: = dEylwg’Ey[um {35)
where P and E represent complex amplitudes, and d
corresponds to a linear combination of d;;, which depends
on the crystal orientation. In this special case an input TE
mode at «/2 will generate an output TE mode at w. Using
(30) in (35) gives

Pp(r, D= %d(r) Z Z Ancule Ap(n:.r’zjautn,u/?}gy(:p.ur'Z}
n v
X eli-l‘l—{ﬂn“'"’+|sn”"'?2? 3 grey (36)

We consider a case of a single mode input, say n. In that case
the double summation of (36)collapsesto asingletermn = p.
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If we then use P,(r,7) as [Puere(r, )], in (32) we get

dA ted iﬂdd(z) {(0/2) 92 —i{2fn¥/2—Fu @) { )
ki1 i R 135 n =l . 3
o S S (37
with
S(n.n.w} § f Sk{n.w/‘zlgyin‘mleguim,wkf(x} dx (38)

where we took d(r) = d(z) fix).

Inthe interest of conciseness let us consider the case where
the inner layer 2 is nonlinear and where both the input and
output modes are well confined. We thushave g, pm >> hm
and A,d ~ =. From (17) and (21) we get

r?mx
28 sm _—

fm w)

-1 <x=<0.

The overlap integral S™™™ is maximum forn =m =1, i_.e.,
fundamental mode operation both at w and w/2. For this
case the overlap integral becomes

o
1,1,1 1, 2) 1.0/2) (1, w)
5 J_zf g, erDg (D Loy gy
—w

0

I

(L.w/2) (3, w/2) {1,a)
g Boriig, S (LY,

1.2v2  (w)*”?
Vi (8

and (37) can be written as

(39)

dA L 2y 1.2 ___d_ “:szzws/a ( {wxz))ze-idz
2 Y A
(40)
with
A=ge—2841 (41)

and where the, now-superfluous, mode-number subscripts
havebeen dropped. In Legratmg (40) over the interaction dis-
tance [ gwes

_ w5#3(1 .2)2d2
Sﬁu{ﬁwKE)Bt

2 sin® (Al/2)

(e) o
LA (m,/z)_’

JA«:/?]'I : (42)
The normalization condition (20) was chosen so that | 4|*
is the power per unit width in the mode. We can thus rewrite

(42) as
P* u W d'iz( “’2) sin® (A1/2)
pom 072 (;0) n \wt /) (Al2)

where we used 8% ~ w/jic, ¢/, = n*. Note that (P*/?/wt) is
theintensity (watts/square meter) of the input mode. Except
for a numerical factor of 1.44, this expression is similar to
that derived for the bulk-crystal case [13]. Eﬁicient conver-

(43)
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Fig. 4. The orientation of a 43m crystal for converting 2 TM input at
w/2 to a TE wave at w. x, y, z are the dielectric-waveguide coordinates,
while 1, 2, and 3 are the crystalline axes. Top surface is (100);
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sion results when the phase-matching condition

A=pg—282=0 (44)

is satisfied. In this case the factor sin® (Al/2)(Al/2)" is
unity. Phase-matching techniques will be discussed later.
B. Case II: .Tanp“;"TEpugpuz

The anisotropy of the nonlinear optical properties can be
used in such a way that the output at w is polarized
orthogonally to the field of the input mode at w/2. To be
specific, we consider the case of an input TM mode and an
output TE mode. If, as an example, the guiding layer (or one
of the boundmg layers) belongs to the 43m crystal class
(GaAs, CdTe, InAs), it is possible to have a guide geometry
as shown in Fig. 4. x,y,z is the waveguide coordinate system
as defined in Fig. 4, while 1, 2, and 3 are the conventional
crystallmc axes. For input TM mode with E || x we have

& 2. ,
V2

The nonlinear optical propertlas of 43m crystals are
described by [13]

P, = 2d,33E,E,

P, = 2d,33E, E;

Py = 2d1?3E1E2
so that

-Py:PzzdI”E;R. (45}

Taking
Hv e % 2 BI:}CV(i)(x}ei(!m!!2}—ﬁ“"’e] + ¢c.c.
1
and using (8 H,/éz) = —iwe E, gives

Cw/2)
By,

1f 1 Er S
f) = -2- (‘”——6/2) :Z 6!Bi3CvC”3 Walaaine 2 + c.C.

(46)
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Using (45) and assuming a single, say m, mode input at
w/2 results in

P.( _ g M (w/f2) (m,w/2} §
u\Ts I) - 4 Cb"f,l”2 Bm scy (x)

sl =B L e (47)
Substituting (47) into (32) we obtain
Ca} N wfZ g ) )
d__A; = e l_‘-:ﬁ fﬁgﬁ_é)_ (BMIUIEJ)ﬁeu‘lsS.m,m.n] + c.c.
-4 w e (48)
where

S“”"""” = f vatm,u;‘ﬂg_cu{m.u,fz\gﬁ(n,m)f(x) dx (49)

and
A=(3,")re = 2Bm" *Irm-

For thespecial case m = n = 1 and for well-confined modes
we have, using (17) and (22),

P (L)(Z_wg.)”” 12
ﬁTsz Brr” \/f

Proceeding as in the previous section leads finally to

3/2 2 2.2 w2 s B ;

AN ¢ (P )sm Al/2
s Lo > 1
LUl (en) n we /] (AlL/2)° G

(50)

(P”)T B
(P

an expression identical to that obtained in (43) for TE-TE
conversion. We must recall, however, that the nonlinear
coefficientdin(51)is not necessarily the sameasthatappear-
ingin (43),reflecting the differencesin crystalline orientation
needed to achieve coupling in each case.

C. Phase Matching

It follows from (43) or (51) that a necessary condition for
second-harmonic generation is Al/2 << 7 so that the factor
sin?(Af/2)/(Al/2)? is near unity. In this case the conversion
efficiency is proportional to /2. This phase-matching condi-
tion can be satisfied by using the dependence of the propaga-
tion constants 8 of the various modes on the waveguide
dimensions [7]. An alternate approach is to introduce a
space-periodic perturbation into the waveguide with a
period A satisfying

(52)

Schemes based on waveguide corrugation and on
modulating the nonlinear coefficient ¢ have been proposed
[14]. In this section we will consider thecase of dmodulation.
We go back to (37) but allow explicitly for a spatial modula-
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tion of d by taking d(z) as

de) =4 + (53)

g odd integer qm A

corresponding to asquare-wave alternation between O and d
with a period A. Instead of (37) we now have

iA__m:m wor = f_w _{1 s Eﬂ(e;unn_m Sy c—vzn”_f).):‘
dZ 4 2 aodd T .

% [ANUJKE:IJQC’—I'(Z&\.“'"‘—ﬂm"’)!sth.n.ml’ (54)

We can choose the period A such that for some value of ¢

5
?r o [
~ 2+ — 287 = 0.

(53)
Thisresultsin a synchronous term (i.e., one withazeroexpo-
nent) on the right side of (54) so that

dA,'" wd Cwse SR
_...(;:_._ s Zq_ﬂ- [An\ ."’-]128[ ]

(56)
where the nonsynchronous terms have been neglected. A
comparison to (37) shows that the effective nonlinear
coefficient is now reduced to

Pw L Fs2 2d 2,2 Pw/i
=0.72 (F) =——
peit (eo) n wi

operation based on g = | is thus most efficient, leading to a
reduction by a factor of 72 in the conversion efficiency. We
note, however, that the factor sin®(A//2)/(Al/2)* is now
unity, which makes it possible to take advantage of the /?
dependence of the conversion efficiency.

(57)

V. ELecTtrooOPTIC MODE COUPLING

The electrooptic effect in thin-film configurations can be
used in a variety of switching applications. Its use as a
polarization switch in a GaAs waveguideat 1.15 ¢ has been
demonstrated [6]. In contrast to the conventional bulk [15]
treatment of the electrooptic effect which relies heavily on
the concept of induced retardation, we view the process as
that of coupling between TE and TM modes brought about
by the applied low-frequency electric field.

The linear-electrooptic effect is conventionally defined
[16] in terms of a third-rank tensor r,;, which relates the
changes in the constants of the index ellipsoid to the applied
field according to

(58)
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It follows from (58) that an alternative and equivalent defini-
tion would be tospecify thechanges of thedielectrictensore;;
as

_ &€ - (0}
Agy; = FiinEy
€

(59

where the (0) superscript denotes a “low” frequency, i.e., a
frequency well below the crystal’s Reststrahl band. Using
the relations

EDE + P
D‘- = E“'E,'

and choosing a principal coordinate system so that

EIJ(ED:?£0)={U5”+AEU

leadsto

P = [“'—} reaB® + (6 — @) 6.-.—] E/ " (60)
b

where we used the convention ¢; = ¢;. The perturbation
polarization to be used in (32) is that part of P/’ which is
proportional to the “low”-frequency electric field, i.e.,

- _[M] 4
[Posilrn )y = S22 o0 [5-2— eI c.c.]- (61)
i

- Tobespecific, we assume that the input isa TM mode with
E“ || a, which is coupled by the electrooptic properties of
the bounding media or the guiding layer to the TEmode with
E“ || a,.? The starting point is again (32) where the mode m
corresponds to the output TE and [ Ppert]y is they component
of the polarization (61) induced by the x (and =*) electric-
field components of the input TM mode. Using (61) we get

(0}
€€ iidinli By

P E” (62)
€n
where the /'s are direction cosines. Defining
el yaliyl i By = ErE® (63)
(62) becomes
2 (0} £
Pu(w] _ erk Extw} (64)
€

where P,/ is the complex amplitude of the polarization.
In most cases of practical interest the choice of crystal
orientation and the field £,'” is such as to simplify (63) to
a simple form resembling (64); an example is provided at
the end of Section VI. In any case, the definition of (63)
applies to the most general case,

® The £, component of a TM mode can also cause coupling but this will
typically be a smaller effect, since E, << E,.
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Using (22) the E, component of a single forward-
traveling TM mode is given by

B

I i
B e s

Biscsii}(x)e\'(wt-mz,’ (65)

where the normalization (26) is such that | B,|? is the power
per unit width in the mode. From (64) and (65) we obtain

2
o BB (TP - ce. (66)

Substitution of (66) into the wave equation (32) leads to

T
% exp (—iB, z) =

--i]

1

exp (i8,.""2)

—=r 2 8, Bi3e, YV (x)8, ™ (x) dx
e(x)eg

X exp (—iB:"Mz2) + c.c. (67)
Equation (67) is general enough to apply to a large variety
of cases. The dependence of £ and r(x, z) on x allows for
coupling by electrooptic material in the guiding or in the
bounding layers. The z dependence allows for situations
where £ or r depend on position. To be specific, we con-
sider first the case where the guiding layer —t < x < 0is
uniformly electrooptic and where E'” is uniform over the
same region, so that the integration in (67) is from —¢t0 0.
In that case, the overlap integral of (67) is maximum when
the TE(m) and TM(/) modes are well confined and of the
same order so that / = m. Under well-confined conditions
P, @ >> h and the expressions (17) for §,'™'(x) and (24) for
¢ ,'™(x) in the guiding layer become

" 4{)) 1/2 .
&, (x) — (3!3 f:;) sin

"

mmx
t

X

@eﬁn;)]"g
!

™™
18,

5e, ™ (x) — (

where for well-confined mode 3™ =~ 3,,™ = 8 = kn,. In
this case the overlap integral becomes

0 o ]
f 3,7 (08, () dx = 0¥ b2 f sin® T dx =
-t 18 — t
(69)

Having chosen the case of a uniform E® and 7, the
only z dependence on the right side of (67) is that of the
exp (—iB,™z) factor. Since 8,™ = 8,"F (I = m) we may
neglect the term involving A,,~. The coupling thus involves
only the forward TE and TM modes. Using (69), (67)
becomes

a4,

= —ikBa cxp [—iB." ™ — 8. "2}

(70)
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while from (4)

._(.]..J_g.-m-— = — g Am exp [f{lsm‘rM

7 — 8. el

3, o
ny krE

2 (71)

=

The form of (70) will apply to the general case involving
arbitrary spatial dependence of » and £, In that case we
need to perform the integration in (67) to evaluate the
coupling coeflicient «.

The form of (70) is identical to that of (2). The solution
of (70) is thus given by (6) with

A=8,™— g, (72)

The transfer of power between the modes for the phase-
matched (A = 0) and A # 0 case are as shown in Fig. 1. A
complete transfer of power between the modes thus re-
quires that A = 0, i.e., phase matching. Means for phase
matching will be discussed in Section VI. For the
meantime let us assume that x >> A so that, according to
(6), the effects of phase mismatch can be neglected. A com-
plete power transfer in this case occurs in a distance / such
that

ki=w/2
or using (71)
_ Mo
= 2nsr 73

where A\, = 27/k. The product /E is identical to the “half-
wave” voltage of bulk electrooptic modulators [15]. The
“half-voltage™ in the bulk case, we recall, is the field-
length product which causes a 90° rotation in the plane of
polarization of a wave incident on an electrooptic crystal.

Unlike the bulk case, the coupling between the two
guided modes can take place even when the electrooptic
perturbation is limited to an arbitrarily small portion of
the transverse dimensions [6] or when the two modes are
of different order (/ # m).

To appreciate the order of magnitude of the coupling,
consider a case where the guiding layer is GaAsand &, = 1
wm. In this case [15]

1a M

ner = 59 % 107 =

Ha 3.5,

Taking an applied field £ = 10° V/m we obtain from (71)

k= 1.85 cm™
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for the coupling constant and the power-exchange
distance, respectively.

VI. PHASE MATCHING IN ELECTROOPTIC COUPLING

In general, 3™ = B™F even for the same-order mode so
that the fraction of the power exchanged in the
electrooptic-coupling case described previously does not
exceed, according to (6), «%/(x* + A%, If A>> k, the cou-
pling is negligible. To appreciate the importance of this fact,
let us use the numerical data of the example considered at
the end of Section V. We have x = 1.85 cm™! and 8 ~ nyk
~ 2.2 X 105cm~". The exchange factor «*/(k* + A?) is thus
reduced to 0.5 when A/8 =~ [(Brg — Bin)/Brg] ~ 1075,
The critical importance of phase matching is thus
manifest. Since the dispersion due to the waveguide will in
general be such as to make A >> k, some means for phase
matching are necessary. We start by considering again the
coupled-mode equations (70), reintroducing the possible z
dependence of «

dA .
dzm (IR IK[Z)B,”E-‘ idz
gg_@ = —idx
e ix(z) Ane
A=g""— g™ (74)

with
k(2) = n kr(z) E'V(z).

As in the case of second-harmonic generation, we can use a
spatial modulation of r or the field £/” for phase matching.
Consider, for example, the case where the field E'"(z)
reverses its direction periodically as with the electrode
arrangement of Fig. 5. Approximating theelectricfield inthe
guiding layer by

EP@) = 3 a5 sin 2% z

9 pdd qm A

(75)

corresponding to afield reversal between E,and — E,every A
meters, we can take x(z) in (74) as

e—;eZa—u.—”.‘\h)

. 2 li2rglfddz
wl(z — K, ot O
z) 0 2 -

a

a
Ko = Ry krEy.

(76)

If we substitute (76) in (74) we obtain on the right-side
terms with exponential dependence of the type

2
exp i(:l:A =+ %)z
Az

One can choose A such that, for some ¢, (2rg/A) = A. This
resultsin asynchronousdrivingterm (i.e.,one withazeroex-
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Fig. 5. An interdigital-electrode structure for applying a spatially
modulated electric field in electrooptic phase matching. x, y, and z are
the waveguide coordinates, while 1, 2, and 3 refer to the cubic [100]
axes of a #3m crystal,

ponent). To be specific, let us choose
an

and keeping only the synchronous term, obtain from (74)

dAm . Ky
dz  (w/2)
dB, _ ko
&= " @D A,. (78)

This corresponds to phase-matched operation with an effec-
tive coupling coefficient reduced by w/2 relative to phase-
matched operation with a uniform field £'%(z) = E,. The
solution of (78) is given by (7).

We close this section by considering, again, theuse of43m
crystals for the phase-matching scheme just discussed. The
nonvanishing elements of the ¥, tensor are [15] #yy = #312 =
r123. From (61) it follows directly that a 43m crystal oriented,
asin Fig. 5, so thatitscubic 1, 2, 3axes coincide, respectively,
with the x, y, zdirections of the waveguide, is optimal sincein
this case

2 2

(w) £ 10 5 (w) ¢ € (0) 7 (@)

-Pa-'d =E_?'193£a E:.«M Pva}‘_‘:-"mafz E'"
o 0

thus coupling the TE mode(E,“") to the TM (£,'*"), and vice
versa, in the presence of a longitudinal dc field £.,

VII. PHOTOELASTIC COUPLING

The possibility of coupling dielectric-waveguide optical
modes through the intermediary of sound waves has been
demonstrated [17]. Inthissection we will treat this class ofin-
teractions using the coupled-mode formalism.

The photoelastic effect is defined by relating the effect of
strain S, onthe constants of theindex ellipseid through [18]

1
&(—2) = Piirr Sut-
LT

(79)
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P, isthe photoelastic tensor. Comparing (79) to (58) wecan
apply the results of Section V directly. Taking the strain field
in the form of

Sutm(f, I) g iz’Sum)‘?i(m_Kﬁ + c.c. (80)
we obtain in a manner similar to (61)
Ei€;Di; g} w) il{w+ Qre= =]
[Ppﬂ!i.(r; 0l = '"_4;51 [S.H[ }E;‘{ ’e ! G
+ Sk:{-—Q)El_iulex'itw-ﬂ]l—{_ﬂ—f(]z]]+ c.c. (81)

for the polarization wave arising from the nonlinear mixing
of an electric field

%Ej(m}ei(ws—ﬁz) + c.c. (82)

and a sound strain wave (80).

To be specific, we will assume again that the input optical
field isa TM mode and will derivethe equation governing the
evolution of the TE mode due to the coupling. In a manner
similar to (63) we abbreviate the information relating to
crystal symmetry and orientation by defining

Esz = eie.;p,-msmfmhy (83)
and instead of (81) use

{Pnert(r’ F)L

4 . pISPES exp {il(w + Ot — Bru + K21}

+ STPE exp {illw — Q) — Bru — K)z1}]1 + c.c.
In a manner identical to that leading to (67) we obtain

{4+

dz

exp [i{wppt — Brgz)]

=)

e
Ep(x, 2)S° €plx, z)S " (x)

T8 f e(x)e

[exp {illw + Q) — Brm + K)zl}
+ exp {illw — )t — Bru — K1} 1.

B:B,3, " (x)8, ™ (x) dx

(84)

A few comments may be in order here. Each of the two
terms on the right-hand side of (84) represents a traveling
polarization wave. Both input waves, i.e., $ and E,'*, we
recall, are taken as traveling in the +:z direction. Or-
dinarily, 8+g is close to, but slightly larger than, Bry. In
this case the coupling is via the first term on the right side
of (84) and the wavelength of the sound wave is adjusted
so that

e = Brm + K (85)
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and the resulting TE mode is shifted up in frequency to®
wpg = w + (0.

Since the sign of Brg and By is the same, the coupling is
codirectional. This is the case which we consider in detail
below. Since K/8 = (c/vs)(Q/w), where v; is the sound
velocity, it is possible for reasonable values of the sound
frequency €2 to have K = 28. In this case the second term
on the right side of (84) represents a polarization wave
traveling in the —z direction with a phase velocity —w/(K
— 8) = (—w/B). This wave is capable of coupling to the
backward TE (or TM) mode. In this case we have

I

By — K0
w + 9.

Bre

1l

Another possibility exists when the sound wave travels op-
positely to the input TM mode. In this case we merely
reverse the sign of K in (84). Codirectional coupling is now
provided by the second term on the right side of (84) with

Breg = fru + K
(87)

wep = w — £
where the fact that now wrz < w can be understood by
noting that for each photon removed by the interaction
from the input TM mode one new (negative traveling)
phonon and one new TE photon are generated. Con-
tradirectional coupling can take place due to the first term
when

Bre = Brm — K <0

wrg = w -+ §. (88)
Returning to the codirectional-coupling case represented
by (85), we obtain, following the same steps leading to
(70),

g (w) —id
dAmtu+u]/dz o IKB,.,”L’ ida

dB, " [dz = —ixdn """ Ve (89)

A= K — Brr — Bru)

where we assumed w >> Q. In the case of well-confined
modes and of a photoelastic medium filling uniformly the
guiding region 2, the coupling constant, following the
procedure leading to (71), is found to be

R 3
— IP%TEZ_ (90)
o

* A guaptum mechanical analysis of this phenomenon [19] shows that
in the section of the waveguide in which the TE mode grows, phonons
combine with TM photons on a one to one basis to generate TE photons
50 that wrg = wm + 8.
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which is similar to &« of (71) except that the photoelastic
constant p replaces r, the electrooptic constant, and a fac-
tor of 2 appears in the denominator. The latter is due to
the fact that the sound strain was taken as a time-har-
monic field while, in the electrooptic case, the modulation
field E' was taken as a dc field. The solution of (89) is
given by (6) and illustrated by Fig. 1. Complete power
transfer can take place only when A = 0, i.e., when

K = Brg = frm. (91)
Since K = /v, this condition can be fulfilled by adjusting
the sound frequency 2. Under phase-matched conditions
we have, according to (6)

|4, P 7 = |B(0)] sin’ xz

|Bo''|® = |B.(0)|” cos’ kz (92)
with complete power exchange in a distance
[ =m/2x (93)

It is of interest to estimate the acoustic power needed to
satisfy the switching condition {93). Solving (93) for the
strain using (90) gives

;\ 2
§* = ?;Ega .
The corresponding acoustic intensity / (W/m?) can be ob-
tained using the relation I = [(pv,*S$?)/2] where p is the
mass density. The result is

Ao . .O_li; }\oﬂ

“i_zzpana (94)

Iswibehlng

where M = n°p*/pr® is the acoustic figure of merit [18].

In a GaAs crystal, as an example, using the following
data: M ~ 107%,/ = 5 mm, and an optical wavelength A,
= | um, we get

Jfs\l\iltchinu =20 W/cm?,

The corresponding strain amplitude is
S =23X 108
where we used

p=>534g/cm® and v,=5.15x10°m/s.

VIII. COUPLING BY A SURFACE CORRUGATION

Consider an idealized dielectric waveguide such as that
in Fig. 3. Let us next perturb the spatial distribution of »*
slightly from that shown in the figure. If the perturbation
is small it is useful to consider its effect in terms of cou-
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Fig. 6. A corrugated dielectric waveguide.

pling of the modes of the unperturbed system [11]. In
this section we will consider a perturbation due to a
mechanical corrugation of the interface as shown in Fig. 6.
Using the relation

P = [¢(r) — &) E
we get

Poer = Ae(r) E(r, 7) = An'(r) o E(r, 1) (95)
where e(r) = n%(r)e, 5o that coupling is only between TE or
TM modes but not from TE to TM. To be specific, con-
sider the case of a TE mode of order m propagating in the
+z direction in a smooth waveguide. At z = 0 it en-
counters a corrugated region, as shown in Fig. 6, ex-
tending to z = L.

Using (30) for E, and limiting the summation to a single
term / = m gives upon substitution in (93)

Anz(r)eo

R {m}
5 [4n ()&, (x)

[PDQIT;(IS :)]l‘ =

_eimzuﬁmz) + C.C.]. (96)
We anticipate that the period A will be chosen so that
27/A =~ 2B, and the coupling will thus take place
predominantly between the forward and backward modes
of order m. Substituting (96) in (32) and limiting the left
side of the latter to the backward 4,'~’ term gives

dA,,‘{_)

_ e Amuae—zssﬂ.zf Arf(x, 26, T dx.
dz 4 —n

©7)

From Fig. 6 we have
2 2 I 2 - 1 -
An'(x, z) = An (x)[i + 1_r (sm nz + 3 sin 3z + )]

= > An’(x,z)  (98)
L

where
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Jlﬁ'gz = ?112, —da _<_ X S 0
An'(x) =
IO, elsewhere
n = 2r/A. (99)

Coupling from 4,,'"’ to 4,,'~' occurs when, for some /,

in = 12—::& 28...

In this case, keeping only the synchronous term, we obtain
from (97) and (98)

dA -y ™
Gl W6 A gt j. Ar*(x)(8,™ (0T dx

dz 4l (100)

A= In— 28, (101)
The next task is to evaluate the integral in (100). Using
(99), the integral can be written as

f APPSO dx = (1} — n?)
1}
f {Sy(’“](x)]g dx = (”22 _ H12)C...,2

i} 2
f [cos (hax) — L sin (h,,,x):l dx. (102)

hm

Although the integral in (102) can be calculated exactly us-
ing (19) and (21), an especially simple result ensues if we
consider that operation is sufficiently above the propaga-
tion cutoff, so that g, >> h,.* Performing the integration
and assuming ha << 1 results in

et = n?) [ 187" ax

m2”‘23 3 3
=£—u(1+—+—2;§>'

103
3 Gnd  Gn o

In the well-confined regime, ¢.,, pn >> h. so that (21)
becomes

4hm2w;£ )

.7
T Butgn

(104)

Using B, — mak, h,, — «/t, and (104) in (103) leads to

e
! 3ﬂ 2k 1

3 3
| [1 + amat + qmsaz]

¢ Well above threshold g, /hm — (12 — 1, ¥ (28/)).

(n* — n,%) f B, P dx = (n® —
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which upon substitution into (100) gives

S A e (105)
and using (10)
(+)
dAm - = Am[—.‘e—iﬂ:
dz
L mk ()’ — ) (g)"[l 30/a)
B na t 2m(ny — n )
30/ )" ]
i o — b (106)

where /, we recall, is the order of the (corrugation func-
tion) harmonic responsible for the coupling, and A, =
2r/k.

The behavior of the incident and reflected waves 4,,'*!
and 4,,'""is given by (14) and is illustrated by Fig. 2 [in
which the reflected wave is A(z) and the incident wave B(z)],
The exponential decay behavior occurs only for a narrow
range of frequencies which satisfy, according to (13), the
condition

A=7-28w) T 2 (107)
where n = 2x/A and we consider the case / = 1 only, This
behavior is formally analogous to Bragg scattering of
Bloch electron waves in a crystal from one edge of the
Brillouin zone to the other by the crystal periodicity [20].
The latter phenomenon is responsible for the appearance
of forbidden energy gaps. The behavior of the corre-
sponding optical gap can be elucidated by considering the
total propagation constant of, say, the incident wave B(z) of
(12) [4*(z) in the notation of this section]. From (8) and (12)
we can write it as

.5"(5!’):»5'(:-:)—%:&: i§2- =g:[: f%
s = {/1}?—_3‘? (108)
The imaginary part of 8 is then given by
Im ') = VX — B — 7/2)°
. =
= \/ o "“;J— (@ — w)’  (109)

where w,, the midgap frequency, is defined by 8(w,) = n/2;
and to get the second equality we approximated the unper-
turbed behavior of 8 by 8(w) =~ (w/c)ne:. The height of the
energy gap is thus the frequency region over which g’ is
complex. Using (109) it is given by

2xe

(110)

(aw)gub Ssw, —w =
Fagr
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Corrugation Height: 0 =0.3um
0.905— ;
Thickness of wave guide: t=3um
Refractive index of waove guide:
fig = 3.6

Refractive index of substrate:
ny = 3.4

kDA Periodicity: A arbitrary
0.900F =
Re (BA)
Fig. 7. A plot of the dispersion (kA versus 8A) diagram in the vicinity of

the optical gap.
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Fig. 8. A theoretical plot of the transmission characteristics (12) of a

periodic waveguide near the Bragg (optical-gap) regime.

where w, and w,; are the upper- and lower-gap frequencies,
respectively.

The behavior of 8’ at w > w, and w < w, is likewise
derivable from (108). It is given for w > w,, as an example,
by

B = 7 [ @ —w) +

c ¢

EJ‘EBHK

(111)

(w - wu)'

Equations (109) and (111) are valid for any coupling
between the forward and backward modes of a waveguide
which is describable by a set of equations such as (105),
regardless of the physical mechanism responsible for the
coupling. As an illustration of the above ideas we chose to
plot the w — 8’ diagram in the vicinity of the optical gap
using the case of coupling by a surface corrugation.
Referring to Fig. 7weusedd = 3 um, A = 0.143 ym, g =
0.3 um, n, = 3.6, 1, = 3.4, n; = 1, and took nerr = ng. The
midgap wavelength is A[= (2wc/we)] = 1 um. The plot
corresponding to (109) and (111) is dashed. The solid
curves are the result of an “exact™ analysis [21].

The filtering properties [22] described above are il-
lustrated in Fig. 8 which is a plot of the intensity transmis-
sion [B*(L)/B(0)|* and reflection |4-(0)/B(0)|* as ob-
tained from (12). The curves are plotted for xL = 1.84. The
abscissa AL can also be approximated as above by AL =



YARIV: COUPLED-MODE THEORY

[(wna/c) — n/2]L. Fig. 8 thus describes the transmission as
a function of frequency (filtering) or, alternatively, as a
function of the index n,. The latter can be tuned electroop-
tically, by temperature, photoelastically, or, in anisotropic
media, by varying the propagation direction, thus offering
some new possibilities for modulation and control.

IX. Mope COUPLING BY WAVEGUIDE
ANISOTROPY—MAGNETOOPTIC COUPLING

If we examine the treatment of mode coupling by the
electrooptic of photoelastic effects in Sections V and VII,
we find that the coupling between TE and TM modes
takes place whenever the dielectric tensor, expressed in
terms of the waveguide-coordinate system x, y, z, has off-
diagonal elements ¢,, and ¢.,. These off-diagonal elements
can be induced by 4an external agency such as a sound
wave or applied field. They can, however, be due to
deviations of the waveguide material or its orientation
from that which was assumed in deriving the behavior of
the uncoupled TE and TM modes. In this case we can still
describe the propagation in terms of coupling between the
unperturbed TE or TM modes. This point of view is fruit-
ful when the initial conditions correspond to either £, = 0
(TE) or E, = 0 (TM). We can, alternatively, find the eigen-
modes of the “‘perturbed’ system as will be discussed in
Section X.

As a demonstration of this point of view we consider the
propagation in a dielectric waveguide where one or more
of the three layers is magnetic, if the direction of
magnetization is parallel to the z direction. The dielectric
tensor in the magnetized material is of the form [23]

6, —id 0‘
F= ¢id e, 0 (112)
0 0 e

Considering the off-diagonal e]ements of (l 12) as a pertur-
bation we have

(Ppert)i =

€ Ejy i#Jj
(113)

so that a TM input will generate a perturbation polariza-
tion

{w}

2

(PDert.)y = er.u' exp {i(&” - |8Thlz)] + c.c.
()

id —"2-— exp [i(wt — Brmz)] + c.c.

i

(114)

Using (46) to expand E, in terms of the normal modes
B, 3¢,'"(x),® and substituting into the coupled-mode equa-

5 We only kaep one term in the expansion (46). This is the term for
B > Bre™
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tion (32) results in

d4 _ Brm
23 451;60

[[ 3¢, (x)8, ™ (x) 8(x, 2) dx:l

cexp [{(Brg — Bru)z] (115)

where A is the normal mode amplitude of the mth TE
mode, while B is that of the /th TM mode. The off-
diagonal element  is shown as an explicit function of posi-
tion. Defining

= Bx f 3, (x)8, ™ (x) 8(x,2) dx  (116)
45;’60 i
the coupled-mode equations become
% = kRS
dB
o _nAe
A= Byg — Bru. (117)

The solutions of (117) correspond to the by now familiar
case of codirectional exchange as given by (6).

As an example, we calculate « for the case where the
guiding layer is paramagnetic, and where the two coupled
modes are similar (/ = m) and are well above cutoff.

In a paramagnetic material the element 6 is proportional
to the applied magnetic field A [22]

azkonVH

™

(118)

where V is the Verdet constant of the material and where,
in order to limit our attention to the magnetic effect, we
take e, = €, = ¢, = gn®. Well above cutoff we use (69) to
evaluate the integral inside the square brackets of (115).

f 3,V )8, (%) 8(x, 2) dx b f 5,6, dx = 26.
e [
Using this result in (116)

w0

E‘;: VH.

(119)

K =

In case of phase-matched operation (A = 0) with pure

TM input, the solution of (117) is

A

I

B; sin &z

B By cos kz.

il

(120)

Since A(= Brg — Brwm) is usually different from zero, some
means for phase matching is necessary. One solution [24)
is to reverse periodically the direction of H with a period
2x/A. This method, which is analogous to that described
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in Section VI, gives rise to a phase-matched operation with
an effective coupling constant which, under square-wave
variation of H, is smaller by a factor of 2/7 than that given
by (119).

X. THE EIGENMODES OF A PERTURBED WAVEGUIDE

Up to this point we adopted the point of view of a per-
turbation that couples the otherwise uncoupled TE and
TM modes of a waveguide. This coupling, in the codirec-
tional case, was shown on a number of occasions
throughout this paper to lead to equations of the form

g.‘i s Be_‘i"’

dz %

dB ;

o —i* de't*, (121)

We recall that 4 and B are the normalized mode
amplitudes and that the corresponding field variables vary
as

a(‘xﬂ Z, t) o A(z)&v(””(x)e‘fﬂ'nﬂ—ﬁu}

b(x, z, f) - B(Z)S_Cv{f.](x)ei(wu—ﬂul ) (]22)
An alternative point of view is to find the eigenmodes of
the.perturbed system, i.e., those linear combinations of
A(z) and B(z) which, except for a propagation factor exp
(ivz), are independent of z.
We define a column vector £ as

B(z)e“— sz ,:
. A(Z)E_ :'ﬁul

Ei(z)
E:(z)

~ (123)

EG) =

The evolution of E(z) is obtained from (121) and is
described by

= CE (124)
with

(125)

| K — i3,

An eigenmode of the waveguide will have a solution of the
form

E(z) = F(0) exp (iy2).

Substituting this form in (124) leads to two homogeneous
equations for E, and E,

0

— B, + ¥VIE, — «*E,

kE, — i(B, + V)E; 0. (126)

The solution of the resulting determinantal equation is
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Y2 = — {_@E"w =+ %\/@:_—- .Sh)ﬁaﬁ:ﬂaﬁ

(SRl

= —f + 127

,\/KQ-_F:"‘TNE, ‘3 = |6a - 6&-

The corresponding eigenvectors are found from (126)

B=B.+8)2 8= (128)

_2ik*
A= A+ Sfe—s[.ﬁ—r_wz.\!e
1 |
| 20 |
A — | ~i13+ ‘2) 1
B = S‘e (B=(s/nls (129)
1

Note that £,-E,* and E,.E,* are the mode powers and
that £,.F,* = 0. The two components 2ik*/(A + 5) and |
of each eigenvector represent the normalized amplitudes
of the TE and TM components of each mode, so that the
amount of admixture, i.e., the ratio of the powers in the
two polarizations, is 4x%/(A + §)% In the limit of x/A — 0,
E, and £, become

Ez g !1 ‘f—ﬂibz
o

to within a multiplicative constant, and the eigenvectors
become the uncoupled TE and TM modes. Another im-
portant consequence is that when A = 0, § = 2x and the
admixture is 50-50 percent, regardless of x. Even a more
unconventional consequence is the fact that the two com-
ponents E, and E, of each eigenvector do not, according to
(122), correspond necessarily to fields of the same fre-
guency. Itis thus possible, as an example, when the perturba-
tion is time periodic, to have an eigenmode traveling in a
waveguide with

E, = 2ix*/(A + §) exp {“ |:w;,! - (5 - Ez)z]}ﬂc»“’(x)

while

E, = exp {il:w,.f — (E - g)z]}s,‘""(x). (130)

This is the case in photoelastic coupling by a traveling
sound wave discussed in Section VII. What makes these
strange bedfellows into a mode is the fact that they travel
with the same phase factor, exp [—i(B — (§/2))z]. This
phenomenon may be important in a laser oscillator which
contains in its optical path a time-modulated coupling sec-
tion.

Let us, as an example, apply (129) to the case of
magnetooptic coupling as discussed in Section IX. For this
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case we have from (119) x = VH, and the eigenmodes (129)

in the case A = 0 become
E1(Z) s : i e—ffﬁ—?ﬂ:z
1
Ez(z) e “ie—f-:.hwnz (131)

I

i.e., the well-known [22] circularly polarized modes. The
angle of Faraday rotation in a distance z is

8(z) = VH:. (132)

XI. SUMMARY

We have applied the formalism of coupled modes to
describe a wide range of experimental situations en-
countered in guided-wave optics. Explicit expressions for
the coupling coefficients, which play a central role in this
theory, are given. The formalism treats the case of slab
dielectric waveguides, thus assuming no variation in one
(v) direction. The extension to guides where the confine-
ment is in both the x and y directions principally involves
replacing the integration over all x in the expressions for
the coupling coefficients by an integration over both x and
y. For cases where the modes are very well confined in the
p direction, the numerical correction is small.

We have not discussed the applications of the coupled-
mode formalism to the distributed feedback laser [25], [26]
and to directional coupling [27] since the original
treatments are already cast in this form.
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