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Coupled-Mode  Theory for Guided-Wave Optics 

AMNON  YARIV 

Absrruct-The  problem of propagation  and  interaction of optical  radia- 

tion in dielectric  waveguides is cast in the  coupled-mode  formalism.  This  ap- 

proach is useful  for  treating  problems  involving  energy  exchange  between 

modes. A derivation of the  general  theory is followed by application  to  the 

specific cases of  electrooptic  modulation,  photoelastic and  magnetooptic 

modulation,  and  optical  filtering. Also treated  are  nonlinear  optical 

applications such as second-harmonic  generation in thin films  and  phase 

matching. 

I.  INTRODUCTION 

A GROWING BODY of theoretical  and  experimental 
work has been recently  building up in the  area of 

guided-wave  optics, which may be defined as the  study  and 
utilization of optical  phenomena  in  thin  dielectric 
waveguides [ l ], [2]. Some of  this  activity is due  to  the  hopes 
for  integrated  optical  circuits in which  a number of optical 
functions will be performed on small  solid  substrates  with 
the  interconnections  provided by thin-film dielectric 
waveguides [3], [4]. Another  reason  for  this interest is the 
possibility of new nonlinear  optical devices and efficient op- 
tical modulators which are  promised by this  approach zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

A variety  of  theoretical zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAad zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAhoc formalisms  have been 
utilized to  datein treating  thevarious  phenomena  ofguided- 
wave  optics.  In  this  paper we present  a unified theory  cast in 
the  coupled-mode  form  to  describe  a  large  number of 
seemingly diverse phenomena.  These include: 1) nonlinear 
optical  interactions; 2) phase  matching by periodic  pertur- 
bations; 3) electrooptic  switching  and  modulation; 4) 
photoelastic  switching  and  modulation;  and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 )  optical filter- 
ing and reflection by a  periodic  perturbation. 

[51-[71. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
11. THE  COUPLED-MODE FORMALISM 

We will employ, in what follows, the  coupled-mode  for- 
malism [X] to  treat  the  various  phenomena listed in Section I .  
Before embarking  on  a  detailed analysis it will prove 
beneficial to consider  some of the  common  features of this 
theory.  Consider  two  electromagnetic  modes  with, in 
general,  different  frequencies  whosecomplex  amplitudes are zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
A and B. These  are  taken  as  the  eigenmodes of the  unper- 
turbed  medium so that they  represent  propagating  distur- 
bances 
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with A and B constant. 
In  the presence of a  perturbation  which,  as  an  example, 

can  take  the place ofaperiodicelectricfield, asoundwave, or 
a  surface  corrugation, power is exchanged between modes a 
and 6 .  The complex  amplitudes A and B in this  case are  no 
1ongerconstantbutwillbefoundtodependonz.Theywillbe 
shown below to obey  relations  of  the  type 

where  the  phase-mismatch  constant A depends  on  the 
propagation  constants Pa and P b  as well as  on  the  spatial 
variation  of  the  coupling  perturbation.  The  coupling 
coefficients K~~ and K b a  are  determined by the physical  situa- 
tion  under  consideration  and  their  derivation will take  up a 
major  part of this  paper. Before  proceeding,  however,  with 
the specific experimental  situations,  let  us  consider  some 
general  features  of  the  solutions of the  coupled-mode 
equations. 

A .  Codirectional Coupling 

We  take  up, first, the  case  where  modes  a  and b carry 
(Poynting)  power in thesame  direction.  It is extremely  con- 
venient to define A and B in such  a way that IA(z)( and 
I B(z)l correspond  to  the  power  carried by  modes  a  and b, 
respectively. The conservation  of  total  power is thus ex- 
pressed as 

t 3) 

which,  using (2), is satisfied when [9] 

If boundary  conditions  are  such  that  a single mode, say b, is 
incident at z = 0 on  the  perturbed region z > 0, we have 

b(O)=B,, a(O)=O. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(5) 

Subject to these  conditions  the  solutions of (2) become 
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z=O zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2.L 

Fig. 1 .  The  variation of the  mode  power in the  case zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof codirectional  Fig. 2. The  transfer of power  from  an  incident  forward wave zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAB(z) to  a 
coupling for phase-matched  and  unmatched  operation.  reflected  wave zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA ( z )  in the  case of contradirectional  coupling. 

B(z) = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBABoeiA2/'{ cos [9(4~'  + A2)'''zI the  space  betweenz = 0 andz = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAL. Sincemodeaisgenerated 
by the  perturbation we have  a(L) = 0. With  these  boundary 

A - 
2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

( 4 K  + A ) 
sin [4(4,(' + ~ ' ) " ~ ~ z ] j  ( 6 )  conditions  the  solution of (1 1) is given by 

where K~ = I K = , , I  2. Under  phase-matched  condition A = 0, a A(Z)  = B(O) 
S L   S L  complete  spatially  periodic Ijower transfer  between  modesa - A  sinh - f zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAis cosh - 

and b takes  place  with  a  period i r / 2 K .  2 2 

2 iK ,be - i (4 .2 /2 )  

sinh zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[f (z  - L) ]  

- i ( A z / 2 )  

B(z) = B(0) - 
c 

- A  sinh -- + is cosh - S L  S L  
2 2 

b(=, t )  = ~ ~ ~ ~ ( ~ b ~ - @ b ~ )  cos (KZ). 

(7) -{A sinh [$ ( z  - L) ]  + is cosh 

A plot of the  mode intensities 1 a1 and 1 bJ is shown in Fig. 
1. This figure demonstrates  the  fact  that for phase  mismatch 
A >> I K ~ , , [  the  power exchange between the  modes is negligi- s E 4 4 K 2  - A', K E ] K , b I .  (1 3) 

ble. Specific physical situations which are  describable in 
terms of  this  picture will be discussed further below. Under  phase-matching  conditions A = 0 we have 

B. Contradirectional Coupling 

In this  case the  propagation in the  unperturbed  medium is 
described by 

A(z) = B(0) tf) - sinh [x(z - L ) ]  
cosh ( K L )  

cosh [K(Z - L) ]  
cash (KL)  

B(z)  = B(0) - (1 4) 

A plot of the  mode powers 1 B(z)J and 1 A(z)J for  this case 
(') is shown in Fig. 2. For sufficiently large  arguments of the 

where A and B are  constant.  Mode a corresponds  to a  left 
( -z )  traveling  wave  whileb  travels to  the  right. A time-space 
periodic  perturbation  can  lead to power  exchange  between 
the  modes.  Conservation of total  power  can  be expressed as 

cosh and  sinh  functions in (14), the  incident-mode  power 
decays  exponentially  along  the  perturbation region.  This 
decay,  however, is due  not  to  absorption  but  to reflection of 
power  into  the  backward traveling mode a. This case will be 
considered in detail in following  sections,  where acoustoop- 

d tic,  electrooptic,  and  spatial  index  perturbation will be 
- ( 1  AI2 - IBI') = 0 
dz (9) treated.  The  exponential-decay  behavior of Fig. 2 will be 

shown in Section VI11 to  correspond  to  the  stopband region 
which is satisfied by (2) if  we take of periodic  optical  media. 

(10) 111. ELECTROMAGNETIC  DERIVATIONS OF THE COUPLED- 

MODE  EQUATIONS 
so that 

A .  TE Modes 
- d A  = K,bBe-iAz dB = K,b*Ae"z 
dz dz (11) Consider  the dielectric  waveguide  sketched  in  Fig. 3. It 

consists  of  a film of  thickness t and  index of refraction n z  

In  this  case we take  the  mode b with an  amplitude B(0) to be  sandwiched  between  media  with  indices n, and n,. Taking 
incident at z = 0 on  the  perturbation  region which  occupies ( a / a y )  = 0, this  guide  can,  in  the general case, support a 
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power  flow  of 1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA I W/m.  The  normalization  condition is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

nl thus 

n2 - propagation 

n3 
x = - t  

where  the  symbol  m  denotes themth confined TE  mode  cor- 
Fig. 3. The basic  configuration  of a slab  dielectric  waveguide. responding  to  mth  eigenvalue of (19). 

Using ( 1  7)  in (20) we determine 
finite  number  of  confined TE modes  with field components zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
E,, H,, and Hz,  andTMmodeswithcomponents H,, E,, and 
E,. The  "radiation"  modes  of  this  structure which are  not zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcM = 2hm y2. (21) 

and will be  ignored. The field component E, of  the  TE 
modes,  as  an  example,  obeys  the wave equation  Since  the  modes  are  orthogonal we have 

confined to  the  inner  layer  are  not  considered in this  paper zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[P . ,  ( t  + - 1 1  + - - ) (hm~ + q m z ) ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
4 m  P m  

We take E,(x, z ,  t )  in the form B. TM Modes 

Ey(x ,z , l )  =&y(x)e"wt- f lz ' .  (16) I 

The field components  are 

The  transverse  function &,,(x) is taken  as H,(x,  z ,  t )  = Xy(x)ei(Wt-iBZ) 

 COS (hx) - ( q / h )  sin (hx ) ] ,  

& " ( X )  = - t < x I O  

which,  applying (15) to regions 1, 2, 3, yields 

The  continuity of H ,  and  E,  at  the  interfaces  requires  that 
From the requirement that and H z  becontinuous at x = thevariouspropagationconstantsobeytheeigenvalueequa- 
and x = -t ,  we obtain' tion 

tan (h t )  = 4 + P  . 
(1 9) 

tan (hi) = htP + 4) 
h( l  - y) ha - (25) 

where 
This  equation in conjunction  with  (18) is used to  obtain  the 
eigenvalues p of the confined TE modes. 2 2 

Theconstant  Cappearingin (17) isarbitrary.  Wechooseit ji G - s p ,  n2 n q -4j 4 .  

in such  a way that  the field &,(x) in (17) corresponds  to  a n3 nl  

power  flow of 1 W (per  unit  width in they direction) in the  The  normalization  constant C is chosen so that  the field 
mode. A mode  whose EN = A& .(x) will thus  correspond  to  a  represented by (23) and (24) carries 1 W per  unit  width in the 

y direction. 
The assumed form of E,  in (17) is such that E ,  and X, = ( i /wp )  

a o , / a x  are  continuous  at x = 0 and  that E ,  is continuous  at x = -I. All 
that is left is to require  continuity  of aE,/ax at x = -I. This  leads to 
( 1  9). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 HUEx* dx = !.- /rn x,"o dx = 1 

2 -m 2u - m  E 
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Multiplying zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(31) by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA&y(m)(x),  and  integrating  and  making 
use of the  orthogonality  relation (22) yields zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

2 W € o  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
dx  = - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Pn 

This  condition  determines  the  value of C ,  as [lo] 

I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

(27) 

C.  The Coupling Equation 

The wave equation obeyed by the  unperturbed  modes is 

a2E zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
at 

V2E(r, t )  = pe -3 . 

We will show below that in most of the  experiments of in- 
terest to us we can  represent  the  perturbation  as  a  distributed 
polarization  source Ppert(r,t), which accounts  for  the  devia- 
tion of the  medium  polarization from that which accompanies 
the unperturbed mode. The wave equation  for  the  perturbed 
case  follows  directly  from  Maxwell's equations if we take D 
= coE + P. 

with similar  equations  for  the  remaining  Cartesian  com- 
ponents of E. 

We may take  theeigenmodes of (28) as  an  orthonormal set 
in which to  expand E, and write 

where 1 extends  over  the  discrete set of confined  modes and 
includes both positive and negative  traveling  waves. The in- 
tegration  over /3 takes in the  continuum of radiation  modes, 
and C.C. denotes complex conjugation.  Our  chiefinterest lies 
in perturbations which couple  only  discrete  modes so that, in 
what follows, we  will neglect the second  term on the  right  side 
of (30). Problems of coupling  to  the  radiation  modes  arise in 
connection with waveguide losses [ 1 11 and  grating  couplers 

Substituting (30) into (29), assuming "slow" variation so 
that d2Am/dz2 << Dm dAm/dz, and recalling that & y c m l  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(x) 

P21. 

e i (w t  - O m z )  obeys the  unperturbed wave equation (28), gives 

where A m ( - j  is the complex normal  mode  amplitude of the 
negative  traveling TE mode while A m ( + )  is that of the positive 
one.  Equation (32) is the  main  starting  point for the follow- 
ing  discussion in which we will consider  a  number of special 
cases. 

IV. NONLINEAR  INTERACTIONS 

In  this section we consider  the  exchange of power between 
three  modes  of  different  frequencies  brought  about  through 
the  nonlinear  optical  properties of the  guiding or bounding 
layers. The relevant  experimental  situations involve  second- 
narmonic  generation, frequency  up-conversion,  and  optical 
parametric  oscillation. To be specific we consider first the 
case of second-harmonic  generation  from  an  input  mode  at 
w / 2  to  an  output  mode  at w.  The  perturbation  polarization is 
taken  as 

The complex amplitude of the  polarization is 

where dijk("') is an element of the  nonlinear  optical  tensor  and 
summation over  repeated  indices is understood. We  have 
allowed, in (34), for  apossible  dependence  ofdij,ontheposi- 
tion r. 

A .  Case I: TEinpUt-TEoutpUt 

Without  going,  at  this  point,  into  considerations in- 
volving  crystalline  orientation,  let us assume  that  an  optical 
field parallel to  the waveguide y direction will generate  a 
second-harmonic  polarization  along  the  same  direction 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP and E represent  complex  amplitudes,  and d 
corresponds  to  a  linear  combination of dijk which depends 
on the  crystal  orientation. In this  special  case an input  TE 
mode  at w / 2  will generate  an  output TE mode  at w.  Using 
(30) in (35) gives 

We  consider  a  case of a  single mode  input, say n. In that case 
the  double  summation of (36)  collapses to asingle  term n = p .  
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If we then  use zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAPy(r , t )  as zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[Ppert(r, t)Jy in (32) we get 

with 

where we took d(r) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAd ( z ) A x ) ,  
In the  interest of  conciseness let us consider  the case  where 

the  inner layer 2 is nonlinear  and  where  both  the  input  and 
output modes are well confined. We  thus  have qm,pm >> h ,  
and h,d = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT. From (17) and (21) we get 

8- 

The  overlap  integral S(n,n,m) is maximum  for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn = m = 1, i.e., 
fundamental  mode  operation  both  at w and  0/2.  For this 
case  the  overlap  integral becomes 

(39) 

and  where  the, now-superfluous,  .mode-number  subscripts 
have been dropped.  Integrating zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(40) over the  interaction dis- 
tance zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 gives 

The normalization  condition (20) was  chosen so that I A I 
is the power  per unit  width in the  mode. We can  thus  rewrite 
(42) as 

where we used ,P adz, E / € , ,  = n2. Note  that ( P 1 2 / w t )  is 
the intensity  (watts/square  meter) of the  input  mode. Except 
for a  numerical  factor of 1.44, this  expression is similar to 
that'derived  for  the bulk-crystal  case'[ 131. Efficient conver- 

Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4. The  orientation of a 43m crystal for converting  a TM input  at 
w/2 to a TE wave at w. x ,  y ,  z are  thedielectric-waveguide  coordinates, 
while I ,  2, and  3  are  the  crystalline axes. Top surface is (100): 

sion  results  when the  phase-matching  condition 

is satisfied.  In  this  case the  factor  sin2 (Al/2)(A1/2l2 is 
unity.  Phase-matching  techniques will be discussed  later. 

B. Case Ii: TMingut-TEoutput 

The  anisotropy of the  nonlinear  optical  properties  can  be 
used in such  a way that  the  output  at w is polarized 
orthogonally  to  the field of the  input  mode  at w/2. To be 
specific, we co'nsider thecase of an  input TM  mode  and  an 
output  TE  mode. If, as  an example,  theguiding layer (or one 
of the  bounding layers)  belongs to  the 43m  crystal  class 
(GaAs,  CdTe,  InAs),  it is possible to have  a  guide  geometry 
as  shown in Fig. 4. x,y,z is the waveguide coordinate system 
as defined in Fig. 4, while 1,'2,  and 3 are  the  conventional 
crystalline axes. For  input  TM  mode with E I I x we have 

The nonlinear  optical  properties  of  a3m  crystals are 
described by [13] 

so that 

Taking 

and using ( 8 H y / 8 z )  = -iwt E, gives 
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Using (45) and  assuming a single, say m, mode  input  at  tion of d by taking d(z) as zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
w / 2  results in 

d(z) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= -t 
d 

P,(r, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt )  = - Lyv.-, Bm\- , - ,K"\  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA111, - / " I  

t ( " l - 2 O r n * / l Z )  corresponding to a square-wave alternation between 0 andd 
.e + C.C.  

(47) with  a  period A .  Instead of (37) we now  have 

where  We  can  choose  the  period A such that for  some value of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAq 

and 

A = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( P n W ) ~ ~  - ~ ( P I ~ " ~ ) T M .  

For  the special  casem = n = 1 and  for  well-confinedmodes 
we  have,  using (17) and (22), 

This results in a synchronous  term  (i.e,,  onewith  azero expo- 
nent) on  the  right side of (54) so that 

where  the  nonsynchronous  terms  have been neglected.  A 
(50)  comparison  to (37) shows that  the effective nonlinear 

coefficient is now reduced to 

Proceeding as in the  previous section  leads finally to d 
de,, = - 

4.rr 

an  expression  identical to  that  obtained in (43) for  TE-TE 
conversion. We must  recall,  however, that  the  nonlinear 

P" 
~ p w / 2  = 0.72 (:) 

coefficient din (5 1)  is not  necessarily the  same  as  that  appear-  operation  based on = 1 is thus  most efficient,  leading to a 
ing in (43), reflecting the differences in crystalline  orientation  reduction by  a factor of R 2  in the  conversion efficiency, We 
needed to achieve  coupling in each case. note,  however, that  the  factor  ~in~(A1/2)/(A1/2)~ is now 

unity, which makes  it  possible to  take advantage of the l2 
C. Phase Matching  dependence of the conversion efficiency. 

It follows from (43) or (51) that a  necessary  condition  for 
second-harmonic  generation is A1/2 << zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7r so that  the  factor 
sin2 (A1/2) / (~ i1 /2)~ is near  unity.  In  this  case  the  conversion 
efficiency is proportional  to 12. This  phase-matching  condi- 
tion can  be satisfied by using the  dependence of the  propaga- 
tion  constants zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 of the  various  modes  on  the waveguide 
dimensions  [7]. An alternate  approach is to  introduce a 
space-periodic perturbation  into  the waveguide  with  a 
period A satisfying 

V. ELECTROOPTIC MODE COUPLING 

The  electrooptic effect in thin-film configurations can be 
used in a  variety of switching  applications.  Its use as a 
polarization  switch in a GaAs waveguide at 1.15 p has been 
demonstrated [6]. In  contrast  to  the  conventional bulk [15] 
treatment of the  electrooptic effect which relies heavily on 
the  concept of induced  retardation, we view the process as 
that of coupling  between TE and  TM modes  brought  about 
by the  applied low-frequency  electric  field. 

The linear-electrooptic effect is conventionally defined 
[16] in terms of a third-rank  tensor r i jk  which relates  the 
changes in the  constants of the index  ellipsoid to  the  applied 

Schemes  based  on  waveguide  corrugation  and on field according to 
modulating  the  nonlinear coefficient d have been proposed 
[14].  In  this  section wewillconsiderthecaseofdmodulation. 
We  go back to (37) but allow  explicitly for a  spatial  modula- *(+) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi? = rijicEk. ( 5 8 )  
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It follows  from (58) that  an  alternativeand  equivalent defini- 
tion would  be to specify thechanges of the dielectric  tensor zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAciJ 
as zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA925 

where  the (0) superscript  denotes  a "low" frequency,  i.e.,  a 
frequency well below the crystal's  Reststrahl  band.  Using 
the  relations 

and  choosing  a  principal  coordinate system so that 

where we used the  convention c i  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= c i i .  The  perturbation 
polarization to  be used in (32) is that  part  of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAPicw1 which is 
proportional  to  the "low"-frequency electric field, i.e., 

To bespecific, weassume  that  theinput  isaTM  modewith 
E(W1 I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa, which is coupled  by  the  electrooptic  properties of 
the  bounding  media  or  theguiding layer to  theTEmodewith 
ElW) 1 1 aY., The  starting  point is again (32) where  the  modem 
corresponds  to  the  output  TEand  [PpertIyis  they  component 
of the  polarization  (61)  induced by the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx (and z*) electric- 
field components of the  input TM mode.  Using (61) weget 

p y ( w )  = e . t . y . .  z zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAr1k  I .  t v  1 .  1 2  Ek(0) 

€0 

where  the I's are direction  cosines.  Defining 

(62) becomes 

where Py(W) is the complex amplitude of the  polarization. 
In  most  cases  of  practical  interest  the  choice of crystal 
orientation  and  the field is such as  to simplify  (63) to 
a  simple  form  resembling (64); an  example is provided at 
the  end of  Section  VI.  In any case, the definition of (63) 
applies to  the  most  general case. 

The E, component of a TM mode can also cause  coupling  but  this will 
typically be a  smaller effect, since E, << E,. 

Using (22) the E, component of  a  single forward- 
traveling TM  mode is given by 

where  the  normalization  (26) is such that I B1l is the  power 
per  unit  width in the  mode.  From (64) and (65) we obtain 

Substitution  of  (66)  into  the  wave  equation (32) leads to 

Equation (67) is general  enough to  apply  to a  large  variety 
of cases. The dependence  of E'"' and ~ ( x ,  2 )  on x allows for 
coupling by electrooptic  material in the  guiding or in  the 
bounding layers. The z dependence  allows  for  situations 
where E'O' or Y depend on position. To be specific, we con- 
sider  first the  case where the  guiding layer - t  < x < 0 is 
uniformly  electrooptic  and  where E o )  is uniform  over  the 
same region, so that  the integration in (67) is from - t  to 0. 
In that case, the  overlap  integral of (67) is maximum  when 
the  TE(m)  and TM(I)  modes are well confined  and  of  the 
same  order so that I = m. Under well-confined conditions 
p ,  q >> h and  the expressions ( 1  7) for E ~ ( ~ ) ( X )  and (24) for 
X $"'(x) in the  guiding  layer  become 

where  for well-confined mode PLTM = OmTE P = kn,. In 
this case the  overlap  integral becomes 

lt X!,'"'(x)&,'"'(x) dx = -- 
4w d i g  m m  

dx = 2 

Having  chosen the  case of a  uniform E'O' and Y ,  the 
only z dependence  on  the  right  side of (67) is that of the 
exp ( - iPITMz) factor.  Since DmTM = PmTE ( I  = rn) we  may 
neglect the  term involving A m - .  The coupling  thus involves 
only  the  forward TE and TM modes.  Using (69), (67) 
becomes 

__ - - - i d ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAexp [- i@m'rM - 6 ,  "')z] (70) 
dz 
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while  from (4) 
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r~,~krE" '  

2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAK =  

The  form  of (70) will apply  to  the  general  case involving 
arbitrary  spatial  dependence of r and  E''). In that case we 
need to  perform  the  integration in (67) to evaluate  the 
coupling coefficient zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAK .  

The form of (70) is identical to  that of (2). The  solution 
of (70) is thus given by (6)  with 

The  transfer of power  between the  modes  for  the  phase- 
matched zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(A zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 0) and A # 0 case are  as  shown in  Fig. 1. A 
complete  transfer of power  between the  modes  thus re- 
quires  that A = 0, i.e., phase  matching.  Means  for  phase 
matching will be discussed in Section  VI. For  the 
meantime let us, assume  that K >> A so that,  according  to 
(6),. the effects of phase  mismatch  can  be  neglected.  A  com- 
plete  power  transfer in this  case  occurs in a  distance zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 such 
that 

for  the  coupling  constant  and  the  power-exchange 
distance,  respectively. 

VI. PHASE  MATCHING IN ELECTROOPTIC  COUPLING 

with 
or using (7 1) 

In  general, pTM # pTE even  for the same-order  mode so 
that  the  fraction  of  the  power  exchanged  in  the 
electrooptic-coupling  case  described  previously  does  not 
exceed, according to (6), K' / (K '  + A,). If A>> K ,  the COU- 

pling is negligible. To appreciate  the  importance  ofthis  fact, 
let us use the numerical data of the example  considered at 
the  end of Section  V.  We  have K = 1.85 cm-'  and p n,k 
= 2.2 X lo5  cm-'.  The exchange  factor K'/(K'  + A,) is thus 
reduced to 0.5 when A/p = [(BTE - &&&E] - 
The critical importance of phase  matching is thus 
manifest.  Since the dispersion  due to  the waveguide will in 
general  be  such  as to make A >> K ,  some  means  for  phase 
matching  are necessary. We  start by considering  again  the 
coupled-mode  equations (70), reintroducing  the possible  z 
dependence of K 

(74) 

(73) 

where A, = 27r/k. The  product 1E is identical to  the "half- 
wave" voltage of bulk  electrooptic  modulators [15]. The 
"half-voltage'' in the  bulk case, we recall,  is the field- 
length  product which  causes a 90" rotation in the  plane of 
polarization of a  wave  incident on an  electrooptic  crystal. 

Unlike  the  bulk case, the  coupling between the  two 
guided  modes  can take place  even  when the  electrooptic 
perturbation is limited to  an  arbitrarily  small  portion of 
the transverse  dimensions  [6] or when the  two  modes  are 
of different order (1 # m). 

To  appreciate  the  order of magnitude of the  coupling, 
consider  a  case  where the guiding  layer is GaAs  and X, = 1 
pm.  In  this  case [15] 

Taking  an  applied field E = loe  V/m we obtain  from (7 1) 

K = 1.85 cm-' 

1 = - = 0.85 cm 
x 

2K 

K ( Z )  = n: kr(z) Co'(z) .  

As in the case  of  second-harmonic  generation, we can use  a 
spatial  modulation of Y or  the field E',' for  phase  matching. 
Consider,  for  example,  the  case  where  the field E"'(z) 
reverses  its  direction  periodically as with the  electrode 
arrangement of Fig. 5 .  Approximating  theelectric field in the 
guiding  layer by 

(75) 

corresponding  to  afieldreversal between  E,and - E,every A 
meters, we can  take K(Z)  in (74) as 

If  we substitute (76) in (74) we obtain on the  right-side 
terms with  exponential  dependence of the  type 

One  can  choose A such  that,  for  some q,  ( 2 q / A )  = A .  This 
results in a  synchronous  driving  term (Le., one with azero ex- 
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Pijklisthephotoelastictensor.Comparing(79)to(58)wecan 
apply  the results of Section V directly. Taking  the  strain field 
in the  form of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

w zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAguiding layer 

we obtain in a manner  similar to (61) 

Fig. 5. An interdigital-electrode  structure  for  applying  a  spatially 
modulated  electric field in electrooptic  phase  matching. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAy ,  and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz are 
the  waveguide  coordinates,  while 1, 2, and 3 refer to  the  cubic [IOO] 
axes of a $3171 crystal. 

ponent). To be specific, let  us  choose 

(77) 

and keeping  only the  synchronous  term,  obtain  from (74) 

This  corresponds  to  phase-matched  operation  with  an effec- 
tive  coupling coefficient reduced by ~ / 2  relative to phase- 
matched  operation with a  uniform field zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE(O)(z) = Eo. The 
solution  of (78) is given by (7). 

We  close this section by considering,  again,  the  use  of43m 
crystals  for the phase-matching  scheme  just discussed. The 
nonvanishing  elements  of  the i i j k  tensor are [ 151 raZ1 = rslz = 

r123. From (61) it follows  directly that  a43m crystal  oriented, 
as in Fig. 5,  so that its  cubic 1,2,3 axescoincide, respectively, 
with thex,y,zdirectionsofthewaveguide,isoptimalsincein 
this  case 

thus  coupling theTE mode(E,'"') to  theTM (Ex(")), andvice 
versa, in the presence of a  longitudinal  dc field E,('). 

for  the  polarization wave arising from  the  nonlinear mixing 
of an electric field 

and a sound  strain wave (80). 
To be specific, we will assume  again  that  the  input  optical 

field is a TM mode  and will derive the  equation  governing  the 
evolution of the T E  mode  due  to  the coupling.  In a manner 
similar to (63) we abbreviate  the  information  relating  to 
crystal  symmetry  and  orientation by defining 

and  instead of (81) use 

VII. PHOTOELASTIC COUPLING 
A few comments  may  be in order  here.  Each of the  two 

The possibility Of dielectric-waveguide Optical terms on  the right-hand  side of (84) represents  a  traveling 
modes through the intermediary Of sound  has been polarization wave. Both  input waves, i.e., S(0) and Ex(@),  we 
demonstrated [ 171. In  thissectionwewill  treat  thisclassofin-  recall, are taken as traveling in the +z direction. Or- 
teractions using the  coupled-mode  formalism. 

dinarily, PTE is close to,  but slightly  larger than, PTM. In 
The photoelastic effect is defined by  relating  the effect of this the coupling is via the first term on the  right side 

on  theconstants  oftheindexellipsoid  through [I81 of (84) and the  wavelength of the  sound wave is adjusted 

so that 

(79) 
PTE = PTM + K 
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which is similar to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAK of (71) except that  the photoelastic 
constant zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp replaces r, the  electrooptic  constant,  and  a fac- 
tor  of 2 appears in the  denominator.  The  latter is due  to 
the  fact  that  the  sound  strain was taken  as  a time-har- 
monic field while, in  the  electrooptic case, the  modulation 
field E o '  was  taken  as  a dc field. The solution of (89) is 
given by (6) and  illustrated  by  Fig. 1 .  Complete power 
transfer  can  take place  only  when A zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 0, i.e., when 

and  the resulting TE  mode is shifted up in frequency  to3 

UTE zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= ' w  + R. 

Since  the sign of PTE and PTM is the  same,  the  coupling is 
codirectional.  This is the case  which we consider in detail 
below.  Since zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAK/P = (c/v,)(?/w), where us is the  sound 
velocity,  it is possible for  reasonable values of the  sound 
frequency Q to have K 2p. In this  case the  second  term 
on the  right side of (84) represents  a  polarization  wave 
traveling in the -z direction  with  a  phase velocity - w / ( K  
- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0) = ( - w / P ) .  This wave is capable of  coupling to  the 
backward TE (or  TM)  mode.  In  this case we have 

Another possibility exists when the  sound wave  travels  op- 
positely to  the  input  TM  mode. In this case we merely 
reverse the sign of K in (84). Codirectional  coupling is now 
provided by the  second  term  on  the  right side  of (84) with 

where the fact that  now wTE < w can  be understood by 
noting that for  each  photon  removed by the  interaction 
from  the  input TM  mode  one new (negative  traveling) 
phonon  and  one new TE  photon  are generated.  Con- 
tradirectional  coupling  can  take  place  due to  the first term 
when 

Returning  to  the  codirectional-coupling case  represented 
by (85), we obtain, following the  same  steps  leading  to 
(70), 

where  we  assumed w >> Q.  In  the case  of well-confined 
modes  and of a  photoelastic  medium filling uniformly  the 
guiding  region 2, the  coupling  constant, following the 
procedure  leading  to (71), is found  to  be zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

A qua,ntum  mechanical  analysis of this  phenomenon 1191 shows  that 
in the section of the waveguide in which the TE mode grows, phonons 
combine with T M  photons on a one  to  one basis to  generate TE photons 

Since K = Q/vs ,  this  condition  can  be fulfilled by adjusting 
the  sound frequency s2. Under  phase-matched  conditions 
we have,  according to (6) 

with  complete  power  exchange in a  distance 

It is of  interest to estimate  the  acoustic power  needed to 
satisfy the switching condition (93). Solving (93) for  the 
strain using (90) gives 

The  corresponding  acoustic intensity I (W/mz)  can  be  ob- 
tained using the  relation I = [(pvS3S2)/2] where p is the 
mass  density. The result is 

where M = n6pz/pvs3 is the  acoustic  figure of merit [18]. 

In  a GaAs crystal, as  an  example, using the following 
data: M = 1O-I3, I = 5 mm,  and an optical  wavelength X, 
= 1 pm, we get 

The  corresponding  strain  amplitude is 

S(R' zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAY 2.3 x 

where we used 

p = 5.34 g/cmS and us = 5.15 x los m/s. 

VIII. COUPLING BY A SURFACE CORRUGATION 

Consider an  idealized  dielectric  waveguide  such  as that 
in Fig. 3. Let us next perturb  the  spatial  distribution of n2 
slightly  from that  shown in the figure. If the  perturbation 

so that wTE = uTM + 0. is small  it is useful to consider  its effect in terms  of COU- 
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\nZ2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- n I 2 ,  --a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 x 5 o 

An2(x) = 

10, elsewhere 

7 = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2a/A. (99) 

z=o 
I 

z=L 
I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

"2 

x=-t 

"3 

Fig. 6 .  A corrugated  dielectric waveguide. 

pling of the  modes of the  unperturbed system [ l l ] .   In 
this  section we will consider  a  perturbation  due  to a 
mechanical  corrugation of the  interface  as  shown in Fig. 6. 
Using the relation 

P = [c(r) - e,] E 

we get 

P,,,, = A 4 r )  E(r, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 )  = Anz(r) eo E(r, t )  (95) 

where e(r) = n2(r)e0 so that coupling is only  between TE  or 
TM modes  but  not  from  TE  to  TM.  To  be specific, con- 
sider the case of a TE  mode of order zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAm propagating in the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
+z direction in a smooth waveguide. At z = 0 it  en- 
counters a corrugated region, as  shown  in  Fig. 6, ex- 
tending to z = L. 

Using (30) for Ey and limiting the  summation  to a  single 
term 1 = rn gives upon  substitution in (95) 

.e + c.c. ] .  (96) 
i ( w t - O m 2 )  

We  anticipate  that  the  period A will be  chosen so that 
2n/h = 2@,  and  the  coupling will thus  take place 
predominantly between the  forward  and  backward  modes 
of order rn. Substituting (96) in (32) and limiting the left 
side  of the  latter  to  the  backward A , ( - )  term gives 

(97) 

From Fig. 6 we have 

Coupling  from A , ( + )  to A , ( - )  occurs  when,  for  some 1, 

In  this  case,  keeping  only the  synchronous  term, we obtain 
from (97) and (98) 

The next task is to evaluate  the  integral in (100). Using 
(99), the  integral  can  be  written  as 

. la [cos @,x) - hm sin (h,x) 1' dx .  (1 02)  

Although  the  integral in (102) can  be  calculated  exactly us- 
ing  (19) and (21), an especially simple  result  ensues if we 
consider that  operation is sufficiently above  the  propaga- 
tion cutoff, so that q ,  >> h,.4 Performing  the  integration 
and  assuming ha << 1 results  in 

In the well-confined regime, qm, p m  >> h ,  so that (21) 
becomes 

Using P, 3 n2k, h ,  + r / t ,  and (104) in (103) leads to 

An12(x ,  z )  (98) 
1 

where 'Well  above  threshold q, /h ,  + (nzz - n,z)l/z (2 t /X , ) .  
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which upon  substitution  into (100) gives zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
d zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA:-) 

dz zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACorrugation Helght: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 =0.3pm 

Thlckness zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof wave  guide: t = 3 p m  = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAK 1  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA,(+)eiAz (105) 

and using (IO) 
Refroctlve  index of substrole: 

Periodicity: A arbitrary 

( - )  - i A z  - 
dz 

0.900 - 

K L  = 3 1  n2 

(106) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
3.15 3.20 

where 1, we recall, is the  order of the  (corrugation  func- 
tion)  harmonic  responsible for the  coupling,  and X, = 
27r/k. 

R e  ( B A )  

Fig. 7. A plot of the dispersion ( k b  versus PA) diagram  in  the  vicinity of 
the  optical  gap. 

The behavior of the  incident  and reflected waves A m ( + )  
and A m ( - ]  is given by (14) and is illustrated by Fig. 2 [in 
which the reflected wave is A(z) and  the  incident  wave B(z)]. .......................................... 

The exponential  decay  behavior  occurs only for a narrow 
range of  frequencies which satisfy,  according to (I3), the 
condition 

U 

- - D I % l Z  I *  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
A Q - 2 p ( W )  7 2 K  (107) IWl2- 

where 7 = 2n/A and we consider the case I = 1 only.  This 0 L L  

behavior is formally analogous to Bragg  scattering  of Fig. 8. A theoretical  plot of the  transmission  characteristics (12) of a 

Bloch  electron waves in a  crystal  from  one  edge of the periodic  waveguide  near  the  Bragg  (optical-gap)  regime. 
Brillouin zone  to  the  other by the  crystal periodicity [20]. 

The  latter  phenomenon is responsible  for  the  appearance  where mu and w L  are  the  upper-  and lower-gap  frequencies, 
of  forbidden  energy  gaps. The behavior of the  corre- respectively. 
sponding  optical  gap  can  be  elucidated by considering  the The behavior of p‘ at w > mu and w < w1 is likewise 
total  propagation  constant  of,  say,  the  incident  waveB(z)  of  derivable  from (108). It is given for w > wu, as an  example, 
(12) [ A  +(z) in the  notation of this section]. From (8) and( 12) by 
we can  write  it  as 

A S  S 
2 2 2  2 

p’(w> = ~ ( w )  - - i - = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA9 i - 

S == 4 4 K 2  - A’. 

The imaginary  part of p‘ is then given by 

--- 
‘v $2 - 32 

C2 
(W - WO)’ (109) 

where w,, the  midgap  frequency, is defined by p(w0) = 17/2; 
and  to get the  second  equality we approximated  the  unper- 
turbed  behavior of p by p(w) N (w/c)neff . The height of the 
energy gap is thus  the  frequency region  over which ,8’ is 
complex.  Using (109) it is given by 

Equations (109) and (1  11) are valid  for any  coupling 
between the  forward  and  backward  modes of a  waveguide 
which is describable by a set of equations  such as (105), 
regardless of the physical  mechanism  responsible for  the 
coupling. As an  illustration of the  above ideas we chose to 
plot  the w - @‘ diagram in the vicinity of the  optical  gap 
using the  case of  coupling by a  surface  corrugation. 
Referring to Fig. 7 we used d = 3 pm, A = 0.143 pm, a = 
0.3 pm, n, = 3.6, n3 = 3.4, n1 = 1, and  took neff = nz. The 
midgap wavelength is X,[= (2ac/wo)] = 1 pm.  The  plot 
corresponding to (109) and (1 11) is  dashed.  The  solid 
curves are  the result of an  “exact” analysis [21]. 

The filtering  properties [22] described above  are il- 
lustrated in Fig. 8 which is a plot of the intensity  transmis- 
sion /B+(L)/B(O)I and  reflection I A-(0)/B(O)12 as  ob- 
tained  from (12). The curves are  plotted  for KL = 1.84. The 
abscissa AL can  also  be  approximated as above by AL = 
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a  function of frequency  (filtering) or, alternatively,  as  a 
function of the  index zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAnz. The  latter  can  be  tuned  electroop- 
tically, by temperature,  photoelastically, or, in anisotropic 
media, by varying  the  propagation  direction,  thus  offering 
some new possibilities  for  modulation  and  control. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

93 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 

IX.  MODE  COUPLING BY WAVEGUIDE 
ANISOTROPY-MAGNETOOPTIC  COUPLING 

If  we examine  the  treatment of mode  coupling by the 
electrooptic of photoelastic effects in Sections V and  VII, 
we  find that  the  coupling between TE  and  TM  modes 
takes  place  whenever  the  dielectric  tensor,  expressed in 
terms of the  waveguide-coordinate  system zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx, y ,  z, has off- 
diagonal  elements c r y  and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAczy .  These  off-diagonal  elements 
can be induced by an  external  agency  such  as  a  sound 
wave or applied field. They  can,  however,  be  due  to 
deviations of the waveguide  material or its orientation 
from  that which was assumed in deriving  the  behavior of 
the  uncoupled TE and TM modes.  In  this case we can  still 
describe  the  propagation in terms of coupling  between  the 
unperturbed TE or TM modes.  This  point of view is fruit- 
ful when  the  initial  conditions  correspond  to  either E, = 0 
(TE) or E, = 0 (TM). We can,  alternatively,  find  the  eigen- 
modes of the  “perturbed” system  as will be  discussed in 
Section  X. 

As a  demonstration of this  point of  view  we consider  the 
propagation in a  dielectric  waveguide  where  one or more 
of the  three  layers is magnetic, if the  direction of 
magnetization is parallel to  the z direction.  The  dielectric 
tensor in the  magnetized  material is of the  form [23] 

- Ex zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- i s  0 1  
5 =  eo 

i s  E, 01 (1 12) 0 0 E, 

Considering the off-diagonal  elements of (1 12) as  a  pertur- 
bation we have 

so that  a TM input will generate  a  perturbation  polariza- 
tion 

E,‘”’ 
(P,,,,), = E,, -- exp [ i (wt - PTMz)] + C.C. 

E* (w)  

2 

= i s  exp [ i (wt - &,@)I + C.C. (114) 
2 

Using (46) to  expand E, in terms of the  normal  modes 
Bz Xy(z)(x),5 and  substituting  into  the  coupled-mode  equa- 

We only keep one term  in the  expansion (46). This is the term for 
PTMIf) N &‘m’ 

tion (32) results in 

* exp [[(PTE - P T M ) Z l  (1 15) 

where A is the  normal  modk  amplitude of the with TE 
mode, wh,ile B is that of the Ith TM  mode.  The off- 
diagonal  element 6 is shown  as  an  explicit  function of posi- 
tion.  Defining 

K = -- PTM X u ( L ) ( x ) & , ( m ) ( ~ )  S(x, z )  dx (116) 

the  coupled-mode  equations  become 

A PTE - PTM. (1 17) 

The  solutions of (1 17) correspond to the tiy now  familiar 
case of codirectional  exchange  as given by (6). 

As an  example, we calculate K for  the  case  where  the 
guiding  layer is paramagnetic,  and  where  the  two  coupled 
modes  are  similar ( I  = rn) and  are well above  cutoff. 

In  a  paramagnetic  material  the  element 6 is proportional 
to  the  applied  magnetic field H 1221 

6 = -  Xon  V 
H 

7r 

where V is the  Verdet  constant of the  material  and  where, 
in order  to  limit  our  attention to the  magnetic effect, we 
take cx  = c y  = c z  3 e,,rz2. Well above  cutoff we use  (69) to 
evaluate  the  integral  inside  the  square  brackets of (1 15). 

[ 3 C u ( z ) ( x ) & u ( L ) ( ~ )  6(x, z )  dx W 6 1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3Cy(z)&y(t) dx = 26.  

Using  this  result  in (1 16) 

--I 

K = - = V H .  
n6 

nXn 

In case  of,phase-matched  operation (A = 0) with pure 
TM  input,  the  solution  of (1 17) is 

A = Bo sin KZ 

B = Bo COS K Z .  (120) 

Since A( = PTE - PTM) is usually  different  from  zero,  some 
means  for  phase  matching is necessary.  One  solution [24] 
is to reverse  periodically the direction of H with  a  period 
2a/A. This  method, which is analogous  to  that  described 



932 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI E E E  JOURNAL zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAOF QUANTUM ELECTRONICS, SEPTEMBER 1973 

in Section VI, gives rise to a  phase-matched  operation  with 
an effective coupling  constant which,  under  square-wave 
variation of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAH ,  is smaller by a factor of 2/7r than  that given 
by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(1 19). 

X. THE EIGENMODES OF A PERTURBED  WAVEGUIDE 

Up  to this  point we adopted  the  point of view  of a  per- 
turbation  that  couples  the  otherwise  uncoupled TE and 
TM modes  of  a  waveguide.  This  coupling,  in  the  codirec- 
tional  case,  was  shown on a number of occasions 
throughout  this  paper to lead to  equations of the  form 

We recall that A and B are  the  normalized  mode 
amplitudes  and  that  the  corresponding field variables  vary 
as 

An  alternative  point of view is to find the  eigenmodes of 
the-perturbed system,  i.e., those  linear  combinations of 
A ( z )  and B(z] which,  except for a propagation  factor exp 
(iyz), are  independent of z. 

We define  a  column  vector  as 

The evolution of B(z)  is obtained  from (121) and is 
described by 

with 

An  eigenmode of the waveguide will have  a  solution  of  the 
form 

Substituting  this  form  in (124) leads to  two  homogeneous 
equations  for  E,  and E2 

- i(Pb -k y)E1 - K * E ~  = 0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
KE, - i(p, -I- y)E2 = 0. (1 26) 

The solution of the resulting determinantal  equation is 

I 2iK* I 

Note  that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA8, .E:,* and i?,.l?,* are  the  mode powers and 
that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAEl .E,* = 0. The  two  components  2i~*/(A zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf S) and 1 
of  each  eigenvector  represent the  normalized  amplitudes 
of the  TE  and  TM  components of  each  mode, so that  the 
amount of admixture, i.e., the  ratio of the powers in the 
two  polarizations, is 4?/(A f S),. In  the limit of K / A  -+ 0, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
I?, and  become 

3 ~ ~ ~ e - ~ ~ a z  

to within  a  multiplicative  constant,  and  the eigenvectors 
become  the  uncoupled TE  and TM modes.  Another im- 
portant  consequence is that when A = 0, S = 2~ and  the 
admixture is 50-50 percent,  regardless of K. Even a more 
unconventional  consequence is the fact that  the  two  com- 
ponents E,  and  E, of each  eigenvector do  not, according to 
(122), correspond necessarily to fields of  the same fre- 
quency. It is thus possible,  as an example,  when  theperturba- 
tion is time  periodic, to have an eigenmode  traveling in a 
waveguide  with 

while 

This is the case in photoelastic  coupling by a  traveling 
sound wave discussed in Section VII. What  makes  these 
strange bedfellows into a mode is the fact that they  travel 
with  the same phase  factor, exp [-i(P - (S/2))z]. This 
phenomenon may  be important in a  laser  oscillator  which 
contains in its  optical  path a  time-modulated  coupling sec- 
tion. 

Let us, as  an  example,  apply (129) to  the case of 
magnetooptic  coupling  as discussed in Section IX. For this 
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case we have  from zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( 1  19) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAK zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 

in the case A = 0 become 
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E,(z)  = 

VH,  and  the  eigenmodes (1 29) Microwarje Theory  Tech. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(1968 Symposium  Issue), vol.  MTT-16,  pp. 
1048-1054, Dec. 1968. 

[4] S. E. Miller, “Integrated  optics,  an  introduction,” Bell Syst.  Tech. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAJ .  
vol. 48, p. 2059, 1969. 

[5] D. F. Nelson  and  R.  K.  Rinehart,  “Light  modulation by the elec- 
trooptic effect in reversed-biased GaP functions,” Appl. Phys.  Lett., 

161 D. Hall, A. Yariv. and E. Garmire.  “Ootical  auidine  and  electrooo- 
1 vol. 5, p. 148, 1964. 

$(z) = l ~ i l e - i ; O + V H I *  (131) 

i.e., the well-known [22] circularly  polarized  modes. The 
angle of Faraday  rotation in a  distance z is 

B(z) = VHZ. (132) 

XI. SUMMARY 

We have  applied  the  formalism of coupled  modes to 
describe  a  wide  range  of  experimental  situations  en- 
countered in guided-wave  optics.  Explicit  expressions  for 
the coupling coefficients, which  play  a  central  role in this 
theory,  are given. The formalism  treats  the case  of  slab 
dielectric  waveguides, thus  assuming  no  variation in one 
(y) direction. The extension to guides  where the confine- 
ment is in both  the x and y directions  principally  involves 
replacing  the  integration over  all x in the expressions  for 
the  coupling coefficients by an  integration  over  both x and 
y .  For cases  where the  modes  are very well confined in the 
y direction, the numerical  correction is small. 

We have  not discussed the  applications of the  coupled- 
mode  formalism  to  the  distributed feedback  laser [25], [26] 
and  to directional  coupling [27] since the original 
treatments  are  already  cast  in  this  form. 
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