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We derive two systems of coupled-mode equations for spatial gap solitons in one-dimensional s1Dd and

quasi-one-dimensional sQ1Dd photonic lattices induced by two interfering optical beams in a nonlinear pho-

torefractive crystal. The models differ from the ordinary coupled-mode system se.g., for the fiber Bragg

gratingd by saturable nonlinearity and, if expanded to cubic terms, by the presence of four-wave-mixing terms.

In the 1D system, solutions for stationary gap solitons are obtained in an implicit analytical form. For the Q1D

model and for tilted s“moving”d solitons in both models, solutions are found in a numerical form. The existence

of stable tilted solitons in the full underlying model of the photonic lattice in the photorefractive medium is

also shown. The stability of gap solitons is systematically investigated in direct simulations, revealing a

nontrivial border of instability against oscillatory perturbations. In the Q1D model, two disjointed stability

regions are found. The stability border of tilted solitons does not depend on the tilt. Interactions between stable

tilted solitons are investigated too. The collisions are, chiefly, elastic, but they may be inelastic close to the

instability border.

DOI: 10.1103/PhysRevE.71.056616 PACS numberssd: 05.45.Yv, 42.65.Tg, 42.70.Nq

I. INTRODUCTION

It is well known that a periodic modulation of the optical
refractive index not only modifies the spectrum of linear
waves, but also strongly affects the nonlinear propagation
and self-trapping of light f1,2g. Recently, the formation of
spatial solitons in optically induced reconfigurable photonic
lattices created in photorefractive materials was predicted
in Ref. f3g and demonstrated experimentally in one-
dimensional s1Dd f4,5g and two-dimensional s2Dd f6g geom-
etries. In this case, the strong electro-optic anisotropy of a
photorefractive crystal is employed to create the lattice by
two sor mored interfering laser beams in the ordinary polar-
ization, while the solitons are observed in the probe beam,
which is launched in a strongly nonlinear mode with the
extraordinary polarization.

Periodically modulated nonlinear systems can also sup-
port self-trapped localized pulses or beams in the form of
gap solitons sGS’sd, which are hosted by a band gap of the
system’s linear spectrum, induced by the resonant Bragg
coupling between forward- and backward-propagating waves
f2,7g. A notable property of the GS’s is that, unlike ordinary
solitons which require self-focusing nonlinearity, they can
exist in both self-focusing and self-defocusing media.

Traveling temporal-domain GS’s have been observed ex-
perimentally in Bragg gratings written in silica fibers f8g.
The concept of a spatial-domain GS was also proposed
f9,10g and elaborated in more detail f11–13g in various
waveguide settings. Experimentally, spatial GS’s were cre-
ated in waveguide arrays f14g and optically induced photonic

lattices f15g, using a two-beam excitation scheme.

A generic description of the GS’s is provided by the

coupled-mode theory sCMTd, which amounts to the deriva-

tion of a system of coupled equations for interaction of for-

ward and backward waves f7g. The standard CMT system for
media with Kerr scubicd nonlinearity is equivalent to a gen-
eralized massive Thirring model. However, unlike the mas-
sive Thirring model proper that includes only cross-phase-
modulation sXPMd nonlinear terms, its generalized version
fwhich includes self-phase-modulation sSPMd toog is not in-
tegrable. Nevertheless, a family of its GS solutions can be
found in an explicit analytical form f16g. These solutions
depend on two essential parameters, which determine the
soliton’s amplitude and velocity. The stability of the GS’s
was first investigated by means of the variational approxima-
tion in Ref. f17g and then, with the help of rigorous methods,
based on numerical computation of stability eigenvalues
f18g. Both approaches demonstrate that the GS family has a
nontrivial border of stability against oscillatory perturba-
tions, while the entire family is stable against nonoscillatory
perturbations in accordance with the Vakhitov-Kolokolov
sVKd criterion f19g applied to these solitons.

In this paper, we study soliton effects in photonic lattices
induced by interfering optical beams in a nonlinear photore-
fractive crystal and derive two CMT models for spatial GS’s,
which correspond to the 1D and quasi-1D sQ1Dd geometries.
Unlike the usual generalized massive Thirring model, these
models feature saturable nonlinearity and, if expanded to cu-
bic terms order, the proper-1D model includes not only XPM
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and SPM terms, but also four-wave mixing sFWMd and
nonlinear-coupling ones.

The paper is organized as follows. In Sec. II we consider,
in a brief form, a generalized model of the photorefractive
medium, which includes a dynamical equation for the pump
wave sthe one which creates the latticed. In the latter case, we
demonstrate that, in the lowest nontrivial approximation, the
probe field does not give rise to a feedback perturbing the
lattice. In the rest of the paper, we chiefly focus on the study
of the properties of gap solitons in our CMT models, as these
models are subjects of interest in their own right, represent-
ing a new class of couple-mode equations. In Sec. III, we
find analytical solutions for GS’s in the 1D model and con-
struct a full family of gap solitons in a numerical form for
both models. In the same section, we report results which
make it possible to identify stability regions of the GS’s
swhich are quite different in the 1D and Q1D models, as two
disjointed stability intervals are found in the latter oned. In
Sec. IV, tilted s“moving”d gap solitons are considered, and
their stability border is identified swe find that it does not
depend on the tiltd. The existence of stable tilted solitons in
the full model of the photorefractive medium with the em-
bedded photonic lattice is shown too. To the best of our
knowledge, this is the first demonstration of stable tilted soli-
tons in this physically important model. In Sec. IV, we also
consider collisions between tilted solitons, which may be
both elastic and inelastic. The paper is concluded by Sec. V.

II. COUPLE-MODE EQUATIONS

Following Refs. f3–5g, we consider the propagation of a
probe beam with the extraordinary polarization through a
periodic structure in an seffectively planard photorefractive
medium. The structure is written by counterpropagating
pump beams launched in the ordinary polarization. The
electro-optic coefficients in the crystal strongly differ for the
two polarizations, the waves in the ordinary polarization be-
ing nearly linear. Therefore, the optically induced grating,
which is created, in the x direction, by the interference pat-
tern of the counterpropagating beams, is essentially har-
monic, with the intensity distribution Igsxd= I0 cos2sKxd,
where

K = 2pn0l−1 cos u , s1d

l is the pump wavelength, u is the angle between wave
vectors of the plane waves and the x axis, and n0 is the
refractive index in the ordinary polarization. Provided that
the intensity of the probe beam, uEu2, is much weaker than
the pump intensity I0, one may neglect feedback action of the
probe beam on the grating sthis point will be substantiated
belowd. Then the evolution of the local amplitude Esx ,zd of

the probe beam in the free direction z obeys a known equa-
tion f3–5g, whose normalized form is

i
]E

]z
+

1

2

]
2E

]x2 −
E

1 + I0 cos2sKxd + uEu2
= 0. s2d

A. One-dimensional model

To derive the coupled-mode equations for the forward and
backward waves, we approximate solutions of Eq. s2d by

Esx,zd = usx,zdeiKx + vsx,zde−iKx, s3d

where u and v are slowly varying fin comparison with the
carrier waves exps±iKxdg envelopes of the forward and back-

ward waves. Substituting the expansion s3d into Eq. s2d, we
perform the Fourier expansion with respect to exps±iKxd
and, in the spirit of the CMT approach, keep only the lowest-
order harmonics. After a straightforward calculation, this
leads to the following equations:

i
]u

]z
+ iK

]u

]x
=

su − vd

ÎI0s1 + uu − vu2d + 1 + 2suuu2 + uvu2d
,

i
]v

]z
− iK

]v

]x
=

sv − ud

ÎI0s1 + uu − vu2d + 1 + 2suuu2 + uvu2d
. s4d

Equations s4d constitute a CMT model with saturable nonlin-
earity. It contains one irreducible parameter I0, while K may
be absorbed into rescaling of x. Note that the expansion of
the saturable nonlinearity in these equations up to the xs3d

scubicd order generates not only XPM and SPM terms, as in
the usual generalized massive Thirring model, but also FWM
sfour-wave-mixingd ones, u2

v
* and v

2u*, which originate
from the terms uu−vu2u and uu−vu2v in the two equations.

Equations s4d can be combined into a system in which one
equation is linear,

i
]

]z
su − vd + iK

]

]x
su + vd s5d

−
2su − vd

ÎI0s1 + uu − vu2d + 1 + 2suuu2 + uvu2d
= 0, s6d

i
]

]z
su + vd + iK

]

]x
su − vd = 0. s7d

In the physically relevant case, the photonic-lattice inten-
sity is large—i.e., I0@1, uuu2 , uvu2; hence, the square root in
Eq. s6d may be approximated by ÎI0s1+ uu−vu2d, except for a

vicinity of pointssd where w;u−v vanishes. Using this ap-
proximation and eliminating su+vd by means of Eq. s7d, we

reduce Eq. s6d to a single equation for wsz ,xd,

]
2w

]z2 − K2
]

2w

]x2 +
2i

ÎI0

]

]z
S w

Îs1 + uwu2d
D = 0. s8d

We have checked the accuracy of the simplified equation s8d,
comparing its analytical solutions for solitons ssee belowd
and their stability with direct numerical solutions of Eqs. s6d
and s7d. As will be shown in Sec. III, a conspicuous differ-
ence appears only in the region of I0&3, where the CMT
does not adequately approximate Eq. s2d anyway.

Linearization of Eq. s8d and substitution of linear-wave
solutions in the form of w,expsiqz+ ipxd yields the disper-

sion relation ÎI0q=−1±Î1+ I0K2p2, according to which the
band gap which may host GS’s is
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0 , − q , 2/ÎI0 ; Q s9d

fwithout the above simplification which led to Eq. s8d, the
linearization of Eqs. s4d yields the band gap which differs
from Eq. s9d by the substitution I0→ I0+1g. In comparison
with the first exact finite gap in the underlying equation s2d,
where we will compare the solitons found from Eqs. s2d and
s4d for large I0 ssee Fig. 1 belowd, the band gap s9d is
broader, roughly, by a factor .1.6.

B. Quasi-one-dimensional model

Another physically relevant possibility is to consider a
two-dimensional sactually, Q1Dd situation, with the angle be-
tween the wave vectors k1,2 of the probe waves and the axis
z essentially different from 90°, while the spatial evolution is
still in the direction of z scf. a similar configuration, but for a
model with quadratic nonlinearity, introduced in Ref. f20gd.
In this case, the difference from the above derivation for-
mally amounts to the fact that, in the expression uu−vu2

;uuu2+ uvu2− suv
*+u*

vd, the wave-mixing terms sthe last two

onesd must be dropped, as they correspond to the combina-
tions ±sk1−k2d of the wave vectors, which, if later added to

the basic wave vectors k1,2, generate new ones, 2k1,2+k2,1.
In the 1D model proper, with k2=−k1, one has 2k1,2+k2,1

;k1,2; hence, the wave-mixing terms contribute to the
coupled-mode equations that are derived by dropping all the
harmonics but the two basic ones. However, in the Q1D
situation, the wave vectors 2k1,2+k2,1 generate different
harmonics. Thus, with regard to the underlying assumption

I0@1, the Q1D version of the CMT equations takes the form

i
]u

]z
+ iK

]u

]x
=

su − vd

ÎI0s1 + uuu2 + uvu2d
,

i
]v

]z
− iK

]v

]x
=

sv − ud

ÎI0s1 + uuu2 + uvu2d
; s10d

cf. Eqs. s4d. Note that the band gap generated by the linear-
ized version of these equations coincides with Eq. s9d. As
well as in the case of the 1D version proper, Eqs. s10d can be
combined into the linear equation s7d, but the remaining non-
linear equation cannot be reduced to a relatively simple
equation for the single function w, unlike Eq. s6d.

C. Feedback of the probe waves onto the photonic lattice

To conclude the consideration of the models, it is relevant
to briefly address the issue of the reciprocal effect of the
probe waves in the extraordinary polarization on the pump
waves, which form the photonic lattice in the ordinary polar-
ization. To this end, we assume that the strong field F which
builds the grating and the weaker signal field E obey a sys-
tem of coupled equations

L̂F −
F

1 + uFu2 + uEu2
= 0, s11d

iEz +
1

2
¹

2E −
F

1 + uFu2 + uEu2
= 0; s12d

cf. Eq. s2d. Here, L̂ is a linear operator governing the propa-
gation of the strong field sits exact form is not essential; see

belowd whose eigenmode F
k

s0d
, which gives rise to the grat-

ing, is such that

uFk
s0du2 = I0 cos2skxd , s13d

as was assumed above. The only essential conjecture about
Eqs. s11d and s12d is that the interaction terms in both equa-
tions are derived from the single term in the system’s La-
grangian density, which is Lint=−lns1+ uFu2+ uEu2d.

As before, we assume a signal field in the form of Eq. s3d.
Now, we also assume that the feedback from the E field will
affect the F field, so that the solution for the latter field
should be looked for, instead of the “frozen” form s13d, as

uFku
2 = Isz,xdcos2fkx + fsz,xdg , s14d

where I and f are slowly varying functions. To take the
feedback into regard, we substitute expressions s3d and s14d
into Eqs. s12d and s11d and perform the calculation in the
first nontrivial approximation with respect to the small pa-
rameter I−1/2. In fact, for Eq. s12d this was done before, lead-
ing to Eqs. s4d. In the proper-1D model, the approximation
leads to a Fourier expansion in the form

1

1 + uFu2 + uEu2
=

1 − 2 coss2kx + 2fd

ÎIÎ1 + uu − vu2
+ h.o.h., s15d

where “h.o.h.” stands for higher-order harmonic terms. After
the substitution of this in Eq. s11d and taking into regard that

FIG. 1. The integral power of the soliton vs the propagation

constant, in the first finite band gap of Eq. s2d sthe shaded areas are

the Bloch bands which confine the band gapd. The parameters are

I0=25.5 and K=0.5. The solid and dashed lines show, respectively,

a direct numerical solution of the stationary version of Eq. s2d and

the analytical one, as obtained from Eqs. s18d, s17d, and s3d. Ex-

amples of numerical sad and analytical sbd profiles of the soliton,

taken close to the edge of the band gap sat q=0.39, point Ad, are

shown in the bottom part of the figure.
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the strong field F is carried by the harmonic cosskx+fd
fsee Eq. s14dg, we conclude that, in the present approxima-
tion, source terms that would drive slow evolution of Isz ,xd
and fsz ,xd cancel out to be zero. This result actually

amounts to an elementary fact: the expression cosskx+fdf1
−2 coss2kx+2fdg;−coss3kx+3fd does not contain a term

,cosskx+fd.
With straightforward modifications, the same result can be

obtained for the Q1D model. Thus, for both models consid-
ered here, the conjecture of the frozen lattice field, which
was tacitly adopted above, is definitely justified for the large
background intensity I0.

III. STATIONARY GAP SOLITONS

A. One-dimensional model

Proceeding to soliton solutions of the CMT systems intro-
duced above, we start with the simplified version of the 1D
model, Eq. s8d. The solution is sought for as wsx ,zd
=eiqzWsxd, where q is a real propagation constant and a real

function W obeys the equation d2W /dx2=−dPeff /dW, with
an effective potential

PeffsWd =
q2

2K2W2 +
2q

K2ÎI0

sÎ1 + W2 − 1d . s16d

Equation s7d shows that, for the stationary solutions, the un-
derlying fields u and v can be expressed in terms of Wsxd,

hu,vj =
1

2
eisqz+f0dS iK

q

dW

dx
± WD , s17d

where f0 is an arbitrary phase shift.
It is easy to check that, if the propagation constant q be-

longs to the interval s9d, the effective potential s16d has two
symmetric minima, giving rise to GS solutions that can be
written in an implicit analytical form,

K2SdW

dx
D2

= − sqWd2 +
4uqu

ÎI0

sÎ1 + W2 − 1d . s18d

As follows from Eq. s18d, the squared amplitude of the
soliton’s wave field, which is attained at a point where
dW /dx vanishes, is

Wmax
2 =

8

q2I0

s2 − ÎI0uqud .

In the small-amplitude limit—i.e., for

0 , e ; 2s2 − uquÎI0d ! 1 s19d

fwhich implies proximity to the right edge of the band gap
s9dg—the GS asymptotically coincides with the conventional
nonlinear-Schrödinger soliton,

Wsxd = ÎesechSÎeuqu

2

x

KI0
1/4D . s20d

Note that, in this case, expressions s17d can be cast in a
closed form,

hu,vj < ±
Îe

2
eiqz sechSÎeuqu

2

x ± iK/q

KI0
1/4 D , s21d

which mimics the exact form of the GS solution in the gen-
eralized massive Thirring model f16g; however, in the
present model it is only an approximation valid for small e.

In the other limit, uqu→0 fclose to the left edge of the
band gap s9dg, the soliton assumes the shape of a broad
“compacton” with a large amplitude,

Wsxd =
4

uquÎI0

cos2S uqux

KI0
1/4D, if uxu ,

pKI0
1/4

2uqu
, s22d

and Wsxd=0, if uxu.pKI0
1/4 / s2uqud. However, the conditions

under which Eqs. s4d were derived from Eq. s2d do not hold
in the latter case, and as will be shown below, the compacton
belongs to an unstable part of the soliton family.

To verify the validity of the CMT approximation for the
description of solitons in the underlying photorefractive
model s2d, in Fig. 1 we compare the family of analytical
solutions based on Eq. s18d and the ones found numerically
from Eq. s2d. The comparison is presented in terms of a
global characteristic of the soliton family—viz., the integral
power, N=e−`

+`uEsxdu2dx—vs the propagation constant q. The

approximation s3d, which assumes that the amplitudes u and
v are slowly varying functions of x in comparison with
exps±iKxd, yields the integral power in terms of the CMT

description:

N = E
−`

+`

suuu2 + uvu2ddx . s23d

An example of direct comparison of the soliton’s shapes is
also included in Fig. 1. Naturally, the approximation is ap-
propriate sufficiently close to the band gap’s edge, when both
models yield broad solitons. We also note that the negative
slope of the Nsqd curve suggests stability of the entire soliton

family as per the VK criterion—i.e., the absence of real ei-
genvalues in the spectrum of small perturbations around the
soliton f19g. However, the solitons may be subject to oscil-
latory instabilities corresponding to complex eigenvalues;
see below.

Although Fig. 1 shows that the direct applicability of the
CMT approximation is limited to a rather narrow interval of
values of the propagation constant q, we find it relevant to
study the solitons generated by the two new CMT systems in
a systematic way, as the topic is of interest in its own right,
representing GS’s of a new type. Results of the consideration
are reported below.

Stationary solutions to the CMT equations s4d fwithout
the simplification leading to Eq. s8dg were looked for as

husz,xd,vsz,xdj = eiqzhUsxd,Vsxdj , s24d

applying the shooting method to the resulting equations for
Usxd and Vsxd. A typical example of a stable GS found near

the edge of the band gap s9d is displayed in Fig. 2 sthe
soliton stability is considered in detail belowd. It features the
symmetry Us−xd=−Vsxd, which is obviously compatible
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with Eqs. s4d and is the same as in the generalized massive
Thirring system.

Global characteristics of the soliton families are shown, in
terms of the Nsqd dependence, in Fig. 3. This figure, which

shows the soliton families as found from both the CMT sys-
tem s4d and its simplified version s8d, in which the solitons
are available in the implicit analytical form s18d, demon-
strates that a tangible difference between the CMT model
and its simplified version appears only at small values of I0,
for which, actually, the CMT equations cannot be derived
from Eq. s2d. We notice that all the Nsqd curves satisfy the

VK criterion, dN /dq,0.
The stability of the GS’s was tested by direct simulations,

which used the filtered pseudospectral method in x, and the

fourth-order Runge-Kutta algorithm for advancing in z. As a
result, an intrinsic stability border, which is shown in Fig. 4,
was identified inside the GS family. When the GS’s are un-
stable, their instability is only oscillatory, in accordance with
the above findings showing that all the GS solutions are VK
stable. An example of onset of the instability is shown in Fig.
5. Eventually, the unstable solitons get completely destroyed
by the growing perturbations srather than rearranging them-
selves into stable solitonsd.

We have also tested robustness of the GS’s against diverse
large perturbations. Generally, the stable solitons survive
large disturbances; an example is shown in Fig. 6, where the
soliton was perturbed by suddenly introducing a phase shift
of <0.4p between its u and v components.

FIG. 2. A gap soliton found in the full CMT system s4d, at the

same values of the parameters, I0=25.5 and K=0.5, which were

used in Fig. 1. Here, q=−0.2 fcf. the value Q<0.4 at the edge of

the corresponding band gap s9dg. In fact, this soliton is quite accu-

rately approximated by the analytical expressions s17d swith f0

=−3p /4d and s20d. The lower panel illustrates the dynamical sta-

bility of the soliton.

FIG. 3. The dependences Nsqd for the stationary solitons, found

in a numerical form from the full system of the the 1D coupled-

mode equations s4d and for the analytical solutions of the simplified

system, which are given, in an implicit form, by Eqs. s18d and s17d.

FIG. 4. The dashed and dotted lines are, respectively, stability

borders of the gap solitons in the full coupled-mode system s4d and

in its simplified version which amounts to Eq. s8d. The upper solid

border is the band gap’s edge, q=2/ÎI0; see Eq. s9d.

FIG. 5. The lower panel shows an example of the spontaneous

onset of oscillatory instability in the u component of the gap soliton

in the case of I0=25.5, K=0.5, and q=−0.05 sthe initial profile of

the soliton is shown in the upper paneld. The instability grows from

a very small numerical noise. In this figure and below, the dynamics

is shown only in the u component if the picture in the v component

turns out to be very similar.
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B. Quasi-one-dimensional model

Searching for stationary solutions to Eqs. s10d of the Q1D

model in the form of Eq. s24d, it is easy to derive a single

equation for Wsxd;Usxd−Vsxd:

d2W

dx2 +
q2

K2W +
2q

K2ÎI0

W

Î1 + W2 + sdW/dxd2
= 0, s25d

the fields Usxd and Vsxd being expressed in terms of W the

same way as in Eq. s17d. Equation s25d does not admit exact
analytical solutions. However, close to the right edge of the
gap s9d—i.e., when e, defined as per Eq. s19d, is small—an
approximate solution takes the form of Eq. s20d, with an
additional factor of Î2.

As mentioned above, both parameters K and I0 can be
scaled out from the Q1D model; therefore, to present further
results, we will fix K=0.5 sas aboved and I0;1. The band
gap swhich is 0,−q,2, in the notation adopted hered is
entirely filled with numerically found soliton solutions. Even
not very close to the right edge of the gap, the solutions,
whose typical examples are shown in Fig. 7, are quite similar
to those found above in the proper-1D model; cf. Fig. 2.
However, stability properties of the GS’s in the Q1D model,
which were inferred from direct numerical simulations, turn
out to be very different in comparison with those reported
above for the 1D model proper. Namely, Eqs. s10d generate
two disjointed stability regions inside the band gap: a narrow
one, 1.100,−q,1.125, and a broader region, 1.6,−q,2,
which, as well as its counterpart in the proper-1D model,
abuts on the right edge of the band gap snote, however, that

FIG. 7. Typical examples of stationary solitons found in the

quasi-1D model based on Eqs. s10d and s24d with K=0.5 and I0

=1: sad q=−1.125 and sbd q=−1.4.

FIG. 8. Instability of the soliton in the quasi-1D model, whose

stationary form is shown in Fig. 7sbd.

FIG. 9. A typical example of a stable tilted soliton in the 1D

model s4d, found for K=0.5 and I0=25.5. The soliton corresponds

to q=−0.3 and c=0.3 in Eq. s26d.

FIG. 6. A result of sudden multiplication of the u and v compo-

nents of the stable soliton shown in Fig. 2 by phase-shifting factors

0.8±0.6i. The parameters are I0=25.5, K=0.5, and q=−0.2.
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the relative width of this region, in comparison with the en-
tire band gap, is much smaller than in the proper-1D model;
cf. Fig. 4d. In particular, the soliton shown in Fig. 7sad, which
is located just at the edge of the narrower stability region, is
completely stable, while the one shown in Fig. 7sbd is un-
stable, as illustrated by Fig. 8.

IV. TILTED GAP SOLITONS

A. Coupled-mode equations

The CMT approximation opens a way to investigate
novel phenomena which may be difficult to study directly
within the framework of the underlying models. An issue
of obvious interest are tilted smovingd GS’s, of the form
su ,vd=eiqz(Usx−czd ,Vsx−czd). We will consider them only

for the 1D model based on Eqs. s4d; however, results for
tilted solitons in the Q1D model s10d are quite similar.

Straightforward analysis, in the coordinate system sz ,x

−czd finstead of the original system sz ,xdg, shows that, if the

solutions are sought for as

hu,vj = eiqzhUsx8d,Vsx8dj, x8 ; x − cz s26d

FIG. 10. The stability region for titlted solitons in the

proper-1D model with K=0.5 and I0=25.5. Up to the accu-

racy of the numerical results, the border does not depend on the

tilt c.

FIG. 11. The application of the initial shove, in the form of the multiplication by expsikxd, to a stationary soliton in the underlying

equation s2d with K=0.5 and I0=25.5. The results are presented by dint of contour plots of the local power, uusz ,xdu2+ uvsz ,xdu2. The initial

stable soliton, taken with q=−0.388, is shown in sad swith its profile in the insetd. The shove with k=0.05 sbd and k=0.2 scd generates stable

titled solitons, after some loss; the shove with k=0.4 sdd destroys the soliton.
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fcf. Eq. s24dg, the band gap s9d shrinks to

0 , − q , Q8 ; QÎ1 − sc/Kd2, s27d

and it does not exist for ucu.cmax
sCMTd;K.

Numerical solution of equations obtained by the substitu-
tion of the ansatz s26d into Eqs. s4d demonstrates that the
reduced gap s27d is completely filled with tilted GS’s. An
example of a stable tilted soliton is shown in Fig. 9.

The stability of the tilted solitons was also tested in direct
simulations. As a result, it has been found that, up to the
available numerical accuracy, the stability border si.e., the
value qcr separating stable and unstable solitonsd does not
depend on the tilt s“velocity”d c. An example of this is shown
in Fig. 10. Following the pattern of this figure, the stability
region in the sc ,−qd plane for any fixed I0 can be identified

by simply drawing the horizontal line at the value q=qcr

taken, for the same I0, from Fig. 4. The fact that the stability
border does not depend on c resembles a known feature of
the GS family in the conventional generalized massive
Thirring model, where the dependence of the stability border
on the soliton’s velocity is extremely weak f18g.

B. Tilted solitons in the full photonic-lattice model

The existence of tilted solitons in the CMT system sug-
gests that they may also be found in the underlying equation
s2d, which is the model of the photorefractive medium with
the induced photonic lattice. To check this possibility, we
simulated Eq. s2d, multiplying numerically exact untilted
solitons by expsikxd, in order to “shove” them. Gradually

increasing k, we observed an increase of the tilt c in the
resulting stable soliton, up to some value cmax at k=kmax,
beyond which the soliton was destroyed by the shove. An
example of this sequence of results, together with the origi-
nal soliton, is shown in Fig. 11. Note that the maximum tilt
cmax achievable in the simulations of Eq. s2d in this example
is quite close to 0.5; on the other hand, Eq. s27d shows that,

within the framework of the CMT system, cmax
sCMTd

=K=0.5.
The latter demonstrates that sfor I0 sufficiently larged the
CMT approximation provides good accuracy for the tilted
solitons as well.

C. Soliton collisions

The stability of the tilted solitons suggests a possibility to
consider collisions sintersectionsd between them. The most
important characteristic of soliton collisions is elasticity. Di-
rect simulations of the 1D model s4d demonstrate that the
interaction between the solitons is quite elastic, unless they
are taken close to the instability border sthe border is shown
in Fig. 10d. Examples of elastic and inelastic collisions are
displayed in Fig. 12. Note that, in this example, the two cases
are identical, except for the phase difference Df between the
solitons. In the case of the elastic collision, they have Df
=p; hence, they repel each other, thus avoid strong overlap-
ping, which explains the elastic character of the collision. In
the opposite case, they have Df=0 and therefore attract each
other. As a result, they strongly overlap during the collision
sactually passing through each otherd, thus generating strong
mutual disturbances. However, it should be stressed that,
even in the case of the inelastic collision, neither soliton gets
completely destroyed snot only in this example, but also in
the generic cased.

Note that proximity of the solitons to the stability border
is determined by their propagation constants q1,2, but not the
initial tilts c1,2, as the stability border does not depend on c.
However, the elasticity of the collision strongly depends, in
this case, on c1 and c2, as shown in Fig. 13. The form of the
elasticity region displayed in this figure is quite typical for a
soliton pair taken close to the instability border. The lack of
symmetry relative to the diagonal, c1=−c2, is due to the fact
that, below and above the diagonal, the colliding solitons
were taken, respectively, with Df=p and Df=p, similar to
the two different cases displayed in Fig. 12.

FIG. 12. Typical examples of elastic and inelastic collisions

between titled solitons in the 1D model s4d. In this case, I0=25.5,

K=0.5, both solitons have q=−0.2, and their velocities are c1=0.3,

c2=−0.1. The difference is that, in the case of the elastic collision

supper paneld, the phase difference between the solitons is Df=p,

while in the case of the inelastic collision, Df=0.

FIG. 13. Regions of elastic and inelastic head-on collisions be-

tween two solitons, with tilts c1.0 and c2,0, and q1=q2=−0.2

sclose to the instability border, which is at q<−0.19, in this cased,
in the 1D model s4d with I0=25.5 and K=0.5.
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V. CONCLUSIONS

In this paper, we have derived two forms of the coupled-
mode theory for spatial gap solitons in photonic lattices op-
tically written in a photorefractive medium. One model per-
tains to the 1D case proper and the other one to the Q1D
case. The models differ substantially from the ordinary
coupled-mode system sthe generalized massive Thirring
modeld by a saturable character of the nonlinearity and the
presence of FWM terms if the nonlinearity is expanded up to
cubic order. Besides the application to photorefractive media,
these models represent a novel type of CMT systems; there-
fore, they are of considerable interest by themselves. Station-
ary solitons in the 1D model have been found in an implicit
analytical form, and in the Q1D model they have been found
numerically. Stability of the solitons has been tested by
means of direct numerical simulations, revealing a nontrivial
intrinsic border of instability against oscillatory perturba-
tions. In the Q1D model, two disjointed stability regions
have been found.

The soliton family has been extended to include tilted
smovingd solitons. Their stability region has been identified
too, with the conclusion that the stability border does not
depend on the tilt. Stable tilted solitons have also been found
in direct simulations of the full model of the photonic lattice

in the photorefractive medium. The CMT correctly predicts
the maximum tilt up to which the stable solitons can be
found in the full model. As far as we know, this is the first
demonstration of the existence of stable tilted solitons in the
model of the photorefractive crystal with the embedded pho-
tonic lattice.

Collisions between tilted solitons have been investigated
too, showing that they are chiefly elastic, except close to the
instability border. In the latter case, the elastic or inelastic
character of the collision also depends on the phase shift
between the solitons. The theoretical results reported in this
work suggest new experiments with spatial solitons in opti-
cally induced lattices in photorefractive media.
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