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Abstract:  We examine the dynamics of stimulated Raman scattering in 
designed high-Q/Vm silicon photonic band gap nanocavities through the 
coupled-mode theory framework towards optically-pumped silicon lasing. 
The interplay of other χ(3) effects such as two-photon absorption and optical 
Kerr, related free-carrier dynamics, thermal effects, as well as linear losses 
such as cavity radiation and linear material absorption are included and 
investigated numerically. Our results clarify the relative contributions and 
evolution of the mechanisms, and demonstrate the lasing and shutdown 
thresholds. Our studies illustrate the conditions for continuous-wave and 
pulsed highly-efficient Raman frequency conversion for practical realization 
in monolithic silicon high-Q/Vm photonic band gap defect cavities. 
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1. Introduction 

Silicon is increasingly being considered as the dominant platform for photonic integrated 
circuits, providing the advantages of dense CMOS electronics integration, transparency in the 
telecommunication C-band, as well as high-index contrast for compact integrated optical 
functionalities. Passive silicon photonic devices have already recently reported remarkable 
progress [1-4]. With strong modal confinement, nonlinear optical properties in silicon are 
enhanced and active functionalities in highly integrated silicon devices have been realized, 
such as all-optical switches [5, 6], and all-silicon Raman amplification and lasing [7-17].  

Photonic crystals (PhC), with periodic modulation in the index of refraction, permit unique 
opportunities in specific studies and applications [18-20]. Two-dimensional (2D) PhC slabs 
confine light by Bragg reflection in-plane and total internal reflection in the third dimension. 
Introduction of point and line defects into 2D PhC slabs create nanocavities and PhC 
waveguides with arbitrary dispersion control that can be designed from first principles. Such 
defect cavities have subwavelength modal volumes, on the order of (λ/n)3, corresponding to 
high field intensities per photon for increased nonlinear interaction. Through k-space design of 
cavity modes [21, 22], recently cavities with remarkable high quality factors (Q) [1, 2, 23-27] 
have been achieved, permitting for long photon lifetimes for light-matter interactions. The 
strong optical confinement and photon lifetimes in these cavities permit fundamental studies 
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and integrated nanophotonics applications [28], such as channel add/drop filters [29], low-
threshold quantum well lasers [30], cavity quantum electrodynamics [31], enhancement of 
optical nonlinearities [32], and ultrasmall nonlinear bistable devices [33, 34]. 

Raman scattering in silica-based high-Q microcavities, such as microspheres [35], 
microdisks and microtoroids [36], have shown remarkable ultra-low lasing thresholds. In 
addition, Raman lasing in silicon waveguides has also been observed [7-17] where the bulk 
Raman gain coefficient gR is 103 to 104 times larger in silicon than in silica and two-photon 
absorption induced free-carrier absorption [37] addressed by pulsed or reversed biased p-i-n 
diode operation. To achieve significant amplification and ultimately lasing, the gain medium 
should be placed in a cavity with sufficiently high-Q, and ultrasmall modal volumes Vm. The 
enhanced stimulated Raman amplification and ultralow threshold Raman lasing in high-Q/Vm 
photonic band gap nanocavities was suggested [38]. Stimulated Raman scattering (SRS) in 
periodic crystals with slow group velocity was theoretically studied with a semiclassical 
model [39], and enhancement in line-defect photonic crystal slow-light waveguides was also 
proposed [40].  

Here we employ a coupled-mode theory framework to study the various contributions on 
Raman scattering and lasing [41, 42]. Coupled-mode equations are widely used in passive 
photonic devices such as optical waveguide direction couplers, channel add-drop filters [43, 
44] and also in the analysis of optical nonlinearities [33, 45-47]. The coupled-mode equations 
for stimulated Raman scattering in silicon-on-insulator waveguides [10, 48-50], fiber Bragg 
grating [51] and silica microsphere [52, 53] have been studied. Following from the work of 
Ref [33, 45, 47], we derive, in this present paper, the coupled-mode equations for stimulated 
Raman scattering in high-Q/Vm silicon photonic band gap nanocavities. The dynamics of 
coupling between the pump cavity mode and the Stokes cavity mode is explored in the 
presence of cavity radiation losses, linear material absorption, two-photon absorption, and 
free-carrier absorption. The refractive index shift from the Kerr effect, free-carrier dispersion, 
and thermal dispersion are also considered in the coupled-mode equations. These equations 
can be numerically integrated to describe the dynamical behavior of the system for the 
designed L5 photonic band gap nanocavities. Specific examples such as lasing threshold, both 
pump and Stokes seed in continuous wave (CW) operation, pulsed pump with CW Stokes 
seed, on-off gain (loss), and the interaction of pump pulse and Stokes pulse are investigated in 
detail. 

2. Design concept and coupled-mode theory 

Stimulated Raman scattering is an inelastic two-photon process, where an incident photon 
interacts with an excited state of the material (the LO and TO phonons of single-crystal 
silicon). The strongest Stokes peak arises from single first-order Raman phonon (three-fold 
degenerate) at the Brillouin zone center. We have proposed a photonic band gap cavity with 
five linearly aligned missing air holes (L5) in an air-bridge triangular lattice photonic crystal 
slab with thickness of 0.6a and the radius of air holes is 0.29a, where the lattice period a = 420 
nm [38]. The designed cavity supports two even modes, pump mode and Stokes mode, with 
spacing 15.6 THz, corresponding to the optical phonon frequency in monolithic silicon. 
Figure 1 shows the scanning electron micrograph (SEM) of the designed and fabricated L5 
cavity coupled with photonic crystal waveguide. Figure 2(a) and 2(b) show the electric field 
profile (Ey) at the middle of the slab for pump mode and Stokes mode calculated from 3D 
FDTD method. 

Coupling between pump and Stokes cavity mode in SRS can be understood classically 

with nonlinear polarizations 
)3(

NLP . The dynamics of SRS is governed through a set of time-
dependent coupled nonlinear equations (in MKS) [54], 
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Fig. 1. SEM picture of L5 cavity coupled with photonic crystal waveguide. 
 

   
 

Fig. 2. The electric field profile (Ey) of pump mode (a) and Stokes mode (b). 
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Then the third-order nonlinear polarization,  
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Then multiply the equations by the operator 
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where the Raman gain coefficient in the photonic band gap nanocavities, 
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where np,S are the refractive indices at the pump and Stokes wavelengths λp and λS 

respectively, and 0,
2

, εε SpSpn =
. The Raman gain is assumed constant, without saturation or 

parametric instability. The effective modal volume VR for Raman scattering indicates the 
spatial overlap between the pump mode and the Stokes mode,  
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Note that in this classical formulation, the Raman gain coefficient in the photonic band gap 

nanocavities 
c
Sg  is still equivalent to the bulk Raman gain coefficient

B
Rg , since possible 

cavity quantum electrodynamics enhancements are not yet considered. 
The electric field of input pump wave and input Stokes wave in the waveguide are,   

ti

ini

i
iini

ie
N

tst ω−=
,

,

)(
)(),(

rS
rE                                                (19) 

where the field amplitude is normalized by ∫= rdcnN iiniini
22

0,, )()(
2

1
rSr ε  (i = p, S), to represent 

the input power ∫== rdtcnsP iniiniiini
22

,0,

2

, ),()(
2

1
rEr ε . Now, considering the in-plane 

waveguide coupling loss ini,1 τ  and the vertical radiation loss vi ,1 τ  [41], the coupled-mode 

rate equations are 

pppS
c
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p
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SSSp
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S saaga
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da κ
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2

2

1                                           (21) 

where viinii ,, 111 τττ += , and 
viniivini Q /,/,1 ωτ = , iii Qωτ =1 , (i = p, S). ini,1 τ  and 

vi ,1 τ are the loss rates into waveguide (in-plane) and into freespace (vertical). iκ  is the 

coupling coefficient of input pump wave sp(t) or Stokes wave sS(t) coupled to the pump mode 
ap(t) or the Stokes mode aS(t) of the cavity, and 

inii ,1 τκ = . The threshold pump power for 

the stimulated Raman lasing is obtained from Equations (20) and (21), 

⎟
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=

Sp

inp

B
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Sp

Sp
thin QQ
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g

Vnn
P 2

,
2

, λλ
π                                                 (22) 

The lasing threshold scales with VR/QpQS as illustrated in Equation (22). This therefore 
suggests the motivation for small VR cavities with high-Q factors. 

Now, considering the total loss rate totali,1 τ  and the shifted resonant frequency iωΔ  of 

pump mode and Stokes mode, the coupled-mode rate equations are therefore [45, 47] 
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This framework has been reported earlier in Johnson et al. [45] and Uesugi et al. [47] for a 
single frequency in cavities, as well as in Kippenberg et al. [36] for Raman scattering in 
cascaded microspheres and microtoroids. We further advance these investigations for the 
pump-Stokes interactions in photonic crystal cavities, as well as studying the lasing thresholds 
and dynamics under various specific conditions. The total loss rate for each cavity mode is: 

FCAiTPAiliniviinitotali ,,,,,, 111111 ττττττ ++++=                                (25) 

The linear material absorption linτ1 is assumed small since operation is within the bandgap 

of the silicon material. TPAτ1  and FCAτ1 are the loss rates due to two-photon absorption 

(TPA) and free-carrier absorption (FCA) respectively. The modal-averaged TPA loss rates are 
[33], 
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where the first terms represent the TPA due to two pump photons or two Stokes photons. The 
second terms represent that one pump photon and one Stokes photon are absorbed 

simultaneously. Siβ  is the TPA coefficient of bulk silicon. The effective mode volume for 

TPA, 
TPAiV ,

, is 
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TPAoV ,
 indicates the spatial overlap between the pump mode and the Stokes mode, and 

RTPAo VV =,
. We note that the (βSi/Vi,TPA) TPA term is the effective silicon-air contribution, 

summing over the cavity modal distributions within the solid and negligible contribution from 
air, and neglecting crystal anisotropy. The bulk TPA coefficient is also assumed to be 
frequency-independent [55], and without surface modification for simplicity. The modal-
averaged FCA loss rates are, 

)()(
1

,,,
,

tN
n

c

n

c
hiei

i
FCAi

iFCAi

σσα
τ

+==                                    (29) 

From the Drude model [56], the absorption cross-sections for electrons and holes, hei /,σ , is 

herelaxheii
hei mcn

e

/,
*

/0
2

2

/, τεω
σ =                                                (30) 

#76657 - $15.00 USD Received 1 Nov 2006; revised 18 Dec 2006; accepted 18 Dec 2006; published 4 Apr 2007

(C) 2007 OSA 16 Apr 2007 / Vol. 15,  No. 8 / OPTICS EXPRESS  4770



Here e  is the electron charge, herelax /,τ  the relaxation time of carriers, and *
/ hem  the 

effective mass of carriers. The mode-averaged free carriers density (electron-hole pairs) 
generated by TPA is )(tN , which is governed by the rate equation [45], 

G
N

dt

dN

fc

+−=
τ

                                                         (31) 

The mode-averaged generation rate of free-carriers G can be calculated from the mode-
averaged TPA loss rate. 
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The expressions of effective mode volume for FCA, FCAV , are  
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fcτ  is the effective free-carrier lifetime accounting for both recombination and diffusion. 

Time constants of radiative and Auger recombination, as well as from bulk defects and 
impurities, are assumed to be significantly slower than the free-carrier recombination and 
diffusion lifetime [55]. We note that while free-carrier lifetime can vary with carrier density 
and carrier density can vary spatially with intensity in the cavity, an effective lifetime is used 
here for simplicity. A quiescent carrier density of N0 = 1022 m-3 is used in the initial condition 
for silicon. 

In equations (23) and (24), iωΔ  is the detuning of the resonance frequency of the cavity 

from the input light frequency due to the Kerr effect, free-carrier dispersion (FCD), and 

thermal dispersion. iii ωωω −=Δ ' , '
iω  is the shifted resonant frequency of the cavity and 

iω  is the input light frequency in the waveguide. Under first-order perturbation, the detuning 

of the resonance frequency can be expressed as [33] 
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The detuning due to Kerr effect is 
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where the effective modal volume for Kerr effects 
TPAiKerri VV ,, =  and 

TPAoKerro VV ,, = . The first 

terms represent self-phase modulation and the second terms represent cross-phase modulation.  
The detuning due to free-carrier dispersion is related by 
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From the Drude model [56], the material parameter with units of volume, 
hei /,ζ , is 

*
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The mode-averaged temperature difference between the photonic crystal cavity and its 
environment TΔ  is governed by [45, 47] 

cavitySipSi

abs

th Vc

PT

dt

Td

,ρτ
+Δ−=Δ                                                  (42) 

where Siρ , Sipc ,  and cavityV  are the density of silicon, the constant-pressure specific heat 

capacity of silicon and the volume of cavity respectively. The temperature decay life-time thτ  

is determined by the thermal resistance R  of the air-bridge silicon photonic crystal cavities. 

RVc cavitySipSith ,ρτ =                                                       (43) 

The total absorbed power is given by 

absRabsSabspabs PPPP ,,, ++=                                                (44) 

( ) 2

,,,, 111 iFCAiTPAiliniabsi aP τττ ++=                                            (45) 

Absorbed power due to Raman scattering generated optical phonon,
absRP ,

, is 

( ) 22

, 12 Sp
c
SSpabsR aagP −= ωω                                              (46) 

Equations (23-25), (31), (36), and (42) therefore describe the dynamic behavior of SRS in 
photonic crystal nanocavities, and is numerically integrated in our work to describe the 
dynamical behavior of pump-Stokes interactions in our L5 photonic crystal cavity system that 
supports the desired two-mode frequencies at the appropriate LO/TO phonon spacing. 
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3. Numerical analysis 

3.1 Lasing threshold 

We now consider the case of lasing threshold. Around the lasing threshold, the Stokes gain 

equals the losses, and the Stokes mode energy 2

Sa  is much smaller than the pump mode 

energy 2

pa , equation (24) is simplified to 

totalS
thp

c
S ag

,

2

2

1

τ
=                                                             (47) 

The loss rate due to TPA of pump mode is 
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,
2

2

,

2
1

thp
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a
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=                                                        (48) 

The free carriers generated by TPA of pump mode is 

GN fcτ=                                                                    (49) 

4

2
,

2

2

2 thp
FCAppp

Si a
Vn

c
G

ω
β

�
=                                                        (50) 

Figure 3 shows the threshold pump mode energy 2

thpa  as a function of QS for different 

free-carrier lifetimes fcτ . All the parameters used in calculation are presented in Table 1. By 

comparing the curve in the absence of TPA and FCA ( 0=Siβ ) and the curve with TPA but 

without FCA ( 0=fcτ ), it is observed that TPA increases the threshold pump mode energy 

but the effect of TPA is relatively weak. The effect of TPA-induced FCA is much more 
dramatic as shown for different free-carrier lifetimes fcτ . The lasing threshold increases when 

fcτ  is larger. There is a minimum Stokes QS required for lasing, as seen in the solutions 

plotted in Figure 3. If QS is lower than a critical value for certain fcτ , there is no solution 

numerically and physically this translates to an absence of a lasing threshold regardless of the 
pump intensity. For increasing fcτ , the critical value of QS increases monotonically as can be 

seen in Figure 3. The solid and dotted curves show the lasing and shutdown thresholds, 
respectively [49]. The shutdown threshold is the pump power in which the lasing output 
power returns to zero due to increasing TPA and FCA. For the L5 cavity studied in the present 
paper, QS = 21,000, the maximum fcτ  is around 0.175 ns, and the threshold pump mode 

energy is 29 fJ. For air-bridged silicon photonic band gap nanocavities, fcτ = 0.5 ns [47], 

which is much higher than the maximum fcτ . In order to get lasing for this cavity, instead of 

using CW pump signal, pulse pump signal can be used to reduce the TPA-induced FCA for 
loss reduction. 

We now solve for the input-output characteristics of photonic band gap defect cavity laser 
by considering equation (24) in steady state. Figure 4 shows the laser input-output 

characteristics with different free-carrier lifetimes fcτ . QS = 30,000 and QS = 60,000 are 

considered for comparison. Cavities with higher QS have higher output Stokes signals, lower 
lasing threshold pump mode energies and higher shutdown thresholds. The required 

#76657 - $15.00 USD Received 1 Nov 2006; revised 18 Dec 2006; accepted 18 Dec 2006; published 4 Apr 2007

(C) 2007 OSA 16 Apr 2007 / Vol. 15,  No. 8 / OPTICS EXPRESS  4773



corresponding pump power in the input waveguide can also be calculated based on equation 
(23) in steady state. 

 
Table 1. Parameters used in coupled-mode theory 

 
Parameter Symbol Value Source 

Refractive index of silicon in  3.485 [57] 

Wavelength of pump mode pλ  1496.7 nm FDTD 

Wavelength of Stokes mode Sλ  1623.1 nm FDTD 

Pump mode in-plane Q Qp,in 960 FDTD 
Pump mode vertical Q Qp,v 960 FDTD 

Stokes mode in-plane Q QS,in 42,000 FDTD 
Stokes mode vertical Q QS,v 42,000 FDTD 

Linear material absorption loss linτ1  0.86 GHz [45] 

Raman mode volume RV  0.544868 x 10-18 m3 FDTD 
TPA mode volume of  

pump mode TPApV ,
 0.258387 x 10-18 m3 FDTD 

TPA mode volume of  
Stokes mode TPASV ,

 0.396806 x 10-18 m3 FDTD 

FCA mode volume of  
pump mode FCApV ,

 0.202601 x 10-18 m3 FDTD 

FCA mode volume of  
Stokes mode FCASV ,

 0.299289 x 10-18 m3 FDTD 

FCA mode volume FCASpV ,
 0.337575 x 10-18 m3 FDTD 

FCA mode volume FCApSV ,
 0.368572 x 10-18 m3 FDTD 

Bulk Raman gain coefficient B
Rg  2.9 x 10-10 m/W [8] 

TPA coefficient Siβ  4.4 x 10-12 m/W [7] 

Kerr coefficient 2n  4.4 x 10-18 m2/W [58] 

Free-carrier lifetime fcτ  0.5 ns [33, 47] 

Absorption cross-sections  
for electrons ei ,σ  8.5 x 10-22 m2 [56, 59] 

Absorption cross-sections  
for holes hi ,σ  6.0 x 10-22 m2 [56, 59] 

FCD parameter for electrons ei ,ζ  8.8 x 10-28 m3 [56, 59] 

FCD parameter for holes hi ,ζ  4.6 x 10-28 m3 [56, 59] 

Density of silicon Siρ  2.33 x 103 kg/m3 [60] 

Constant-pressure specific heat 
capacity of silicon Sipc ,  0.7 x 103 J·kg-1·K-1 [60] 

Volume of cavity cavityV  0.462 x 10-18 m3 ~ L x W x H 

Thermal resistance R 50 K/mW [47, 61] 
Temperature dependence of 

refractive index 
dTdni

 1.85 x 10-4 K-1 [62] 
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Fig. 3. Threshold pump mode energy versus QS of L5 cavity for different values of free-carrier 

lifetimes
fcτ , the solid curve and dotted curve show the lasing and shutdown thresholds, 

respectively. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4. Input-output characteristics of photonic band gap defect cavity laser for different values 

of free-carrier lifetimes fcτ , the solid curve and dashed curve correspond to QS = 30,000 and 

QS = 60,000, respectively. 
 

3.2 Lasing dynamics 

We now consider the dynamics of the Raman lasing interactions. Equations (23-25), (31), 
(36), and (42) are numerically integrated with a variable order Adams-Bashforth-Moulton 
predictor-corrector method (Matlab® ode113 solver). All the parameters used in calculation 
are presented in Table 1. 

Figure 5 shows the dynamics of Raman amplification with 60 mW CW pump wave and 10 
μW CW Stokes seed signal, free carrier lifetime is 0.5 ns. In the beginning when free carrier 
density is low, Raman gain is greater than loss and there is amplification. When free carrier 
density increases, FCA dominates the loss and Stokes signal is suppressed. The temperature 
difference then increases significantly. The cavity resonance is red shifted and the pump mode 
energy goes down. From the numerical results, the Kerr effect is predominantly weak. The 
FCD effect dominates at first when the temperature difference is low, with a resulting blue 
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shift. Eventually thermal effect dominates, with a resulting red shift. Consider the case of a 
different carrier lifetime at 0.1 ns. Figure 6 shows the calculated results with free carrier 
lifetime of 0.1 ns. With lower free carrier lifetime, the free carrier density and the temperature 
difference are lower, so that the net Raman gain is greater than zero. The oscillation of Stokes 
mode energy near t = 0.5 ns is due to the dispersion induced Stokes resonance frequency shift.  

In order to get lasing from this cavity, instead of using CW pump signal, pulse pump 
signal with pulse width narrower than the free carrier lifetime is used to reduce the TPA-
induced FCA, so as to reduce loss and increase net gain. Figure 7 shows the dynamics of 
Raman amplification with pump pulse of 60 mW peak power, pulse width TFWHM = 50 ps and 
10 μW CW Stokes signal. The free carrier density and the temperature difference are 
significantly reduced, and a strong Stokes pulse is generated by the pump pulse. The 
resonance frequency shift is also significantly reduced by the pump pulse operation. 

Consider now the case of on-off gain and loss in our cavity system, where the probe signal 
changes between the pump pulse on and off when the probe frequency is on- (off-) resonance 
with the Stokes frequency [10]. Pulsed pump beam with 60 mW peak power and TFWHM = 50 
ps, and CW probe beam with 1 mW power are used. Figure 8 shows the on-off gain and on-
off loss. When the probe is on the Stokes frequency, an increase in the probe signal due to the 
SRS is observed, and the on-off gain is around 8 dB. When the probe frequency is detuned 
from the Stokes frequency (no Raman gain), the loss in the probe signal due to the pump pulse 
generated free carriers is observed, and the on-off loss is around 20 dB. Figure 9 and Figure 
10 show the dynamics of the system. 

We also consider the interaction of both pump and Stokes pulses with comparable peak 
power, with numerical results shown in Figure 11. Pump peak power is 60 mW and Stokes 
peak power is 20 mW. Both pump pulse and Stokes pulse have TFWHM = 50 ps. The Stokes 
pulse is amplified by the pump pulse. Due to the high free carrier density induced FCD effect 
and high QS, there is an observed oscillation in the amplified Stokes pulse. 
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Fig. 5. Dynamics of Raman amplification with 60 mW CW pump wave and 10 μW CW Stokes 

seed signal, fcτ is 0.5 ns. 
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Fig. 6. Dynamics of Raman amplification with 60 mW CW pump wave and 10 μW CW Stokes 

seed signal, fcτ is 0.1 ns. 
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Fig. 7. Dynamics of Raman amplification with pulse pump of 60 mW peak power, TFWHM = 50 

ps and 10 μW CW Stokes signal, fcτ is 0.5 ns. 
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Fig. 8. Raman on-off gain and on-off loss with pump pulse of 60 mW peak power, TFWHM = 50 

ps and 1 mW CW probe signal, fcτ is 0.5 ns. 
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Fig. 9. Dynamics of Raman on-off gain with pump pulse of 60 mW peak power, TFWHM = 50 ps 

and 1 mW CW probe signal, fcτ is 0.5 ns. 
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Fig. 10. Dynamics of Raman on-off loss with pulse pump of 60 mW peak power, TFWHM = 50 

ps and 1 mW CW probe signal, fcτ is 0.5 ns. 
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Fig. 11. Dynamics of Raman interaction of pump pulse with 60 mW peak power and Stokes 

pulse with 20 mW peak power, TFWHM = 50 ps, fcτ is 0.5 ns. 
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4. Conclusions 

In this work we have derived the coupled-mode equations for stimulated Raman scattering in 
high-Q/Vm silicon photonic band gap nanocavities towards optically-pumped silicon lasing. 
Both the lasing threshold and the lasing dynamics are numerically studied in the presence of 
cavity radiation losses, linear material absorption, two-photon absorption, and free-carrier 
absorption, together with the refractive index shift from the Kerr effect, free-carrier 
dispersion, and thermal dispersion. With increasing the cavity Q factors and decreasing the 
free carrier lifetimes, the reduction in the threshold pump energy is solved numerically, 
considering all mechanisms and realistic conditions. With CW pump operation, the Stokes 
signal is suppressed due to strong TPA-induced FCA. With pulse pump operation, the TPA-
induced FCA is significantly reduced and Stokes net gain increases, which shows that 
compact Raman amplifiers and lasers based on high-Q/Vm silicon photonic band gap 
nanocavities are feasible. 
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