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A set of equations describing pulse propagation in multimode optical fibers in the presence of an intensity-depen-
dent refractive index is derived by taking advantage of the coupled-mode theory usually employed for describing
the influence of fiber imperfections on linear propagation. This approach takes into account in a natural way the
role of the waveguide structure in terms of the propagation constants and the spatial configurations of the propa-
gating modes and can be applied to the most general refractive-index distribution. The conditions under which
soliton propagation and longitudinal self-confinement can be achieved are examined.

INTRODUCTION
The nonlinear response of a dielectric medium to electro-
magnetic radiation includes contributions from quadratic,
cubic, and higher-order terms in the electric field. Some of
the related nonlinear effects can be most conveniently ob-
served at relatively low powers over the long interaction
lengths provided by optical fibers. This circumstance can also
make these processes detrimental for telecommunications
fibers since they influence signal attenuation and dispersion.
Among the effects associated with third-order nonlinearity,
stimulated Raman scattering and stimulated Brillouin scat-
tering limit the maximum input power available for trans-
mission,! whereas self-phase modulation directly influences
dispersion by modifying the pulse shape? and thus can play
a relevant role, together with chromatic dispersion, in deter-
mining the transmission rate attainable in a given fiber.
Self-phase modulation is associated with the intensity-
dependent self-induced changes of the refractive index re-
sulting from the contribution to the third-order polarizability
proportional to the field itself.? These variations of the re-
fractive index, proportional to the instantaneous intensity of
the field, give rise to self-focusing,* an effect negligible in fibers
at the low powers usually employed, and to a phase modula-
tion of the propagating pulse connected with the phase
changes induced by the pulse itself. The frequency broad-
ening associated with this nonlinear self-phase modulation
tends either to narrow or to broaden the pulse according to
whether the so-called group dispersion (that is, the second
derivative with respect to w of the propagation constant
evaluated at the average frequency) is negative (anomalous
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dispersion) or positive (normal dispersion).5 As was first
pointed out by Hasegawa and Tappert,® it is possible, in the
anomalous-dispersion regime, to take advantage of this effect
exactly to balance the broadening that is due to chromatic
dispersion by suitably choosing the intensity and shape of the
pulse, thus achieving propagation of dispersionless pulses
(bright-envelope solitons). The potentiality that the use of
envelope transmission offers for obtaining very-high-trans-
mission rates in actual fiber lines has been discussed.” In
general, self-phase modulation is studied in single-mode fi-
bers,2 and the results of Ref. 6, as well as successive work
putting into evidence the influence on soliton transmission
of the radial dependence of the refractive index and of its
eventual longitudinal dependence,?® apply to this situation.
It is obvious that the description of nonlinear propagation
becomes more involved for a multimode fiber since modal
dispersion, associated with the different group velocities of
the various modes, now comes into play. Also, if it is to be
expected that the possibility of propagating envelope solitons
no longer exists, it is however possible to show that, under
suitable conditions, the various modes interact among
themselves in such a way as to give rise to a self-confinement
mechanism that prevents the pulse from broadening as a
consequence of modal dispersion.1®

It has been shown that the coupled-mode formalism, usually
employed for describing the process of energy exchange among
the modes of a multimode waveguide resulting from the
presence of imperfections,!! turns out to provide a natural
approach for studying nonlinear propagation2!2 in single-
mode and multimode optical fibers.
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In this paper, we present this method in full detail and ex-
amine the nonlinear evolution of a pulse propagating in a fiber
supporting an arbitrary number of modes (for instance, the
two polarization states of a single-mode fiber). This is ac-
complished by writing a general expression for the nonlinear
dielectric-constant tensor, which in particular is specialized
to the cases of polarization-maintaining and polarization-
scrambling optical fibers. The pulse evolution is shown to
obey a set of nonlinear coupled differential equations, whose
structure is given also for the case of two counterpropagating
modes. The problem of the existence of envelope-soliton
solutions is then examined and the relative conditions stated.
The hypotheses leading to the possibility of self-confinement
are rigorously formulated, explicitly taking into account the
influence of the spatial configurations of the various modes
and of their mutual overlap. These theoretical investigations
of self-phase modulation are encouraged by the fact that two
experiments with single-mode fibers have been performed
that successfully verify the predictions of pulse narrowing!4
and pulse broadening,!% respectively, in the anomalous- and
normal-dispersion regimes (that is, at wavelengths respec-
tively longer or shorter than 1.3 um for fused-silica fibers).

COUPLED-MODE-THEORY APPROACH TO
NONLINEAR PROPAGATION

Let us briefly recall the formalism of coupled-mode theory
developed for describing time-dependent propagation in the
presence of fiber imperfections.11:16 Denoting by E,, and H,,
the time-Fourier transforms at the angular frequency w of the
electric and magnetic fields and by e(x, y, 2, w) the dielectric
constant pertaining to the perturbed fiber, one has to find the
solutions of Maxwell’s equations

v X H, = iwek,,

1
v X E, = —iopoH,, ()

where g is the magnetic permeability of vacuum. To this end
E_ and H,, are expressed as linear combinations of the modes
E, (w)exp[—iB,(w)z] and H,,(w)exp[—iB,(w)z] pertaining to
the ideal waveguide characterized by a dielectric constant €;(x,
y, w) with z-dependent expansion coefficients. Following this
procedure (normal mode-expansion technique), one obtains
a set of linear coupled differential equations for the expansion
coefficients, which are equivalent to Maxwell’s equations and
generate solutions automatically satisfying the boundary
conditions for the unperturbed fiber. More specifically, if one
writes the forward-traveling transverse part of the electric
field in the form

Er,2,0) =% [ Bur(no)n(, o)

X expliwt — iy, (w)z]dw, (2)

where r = (x, ¥) indicates the transverse coordinates and
E.(r, w) = Epp(r, w) + Ep, (v, w), (3
the expansion coefficients ¢, can be shown to obey the set of

equationsit

fz‘cm(z, w) = 3 Kpn (2, )expli[Bm (w) — Bn(w)]zen (z, w),

m=12..., 4)
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with
+
Knn = @/4P) {§ " (¢ = @)[Bnr(r, @) - Bur(x, ©)

+ (e1/€)Epm.*(x, w) - Ep; (r, w)]dxdy (5)

and
p=wp ff e« Emr(r, ) X Hug(r, 0)dzdy, (6)

e, being a unit vector in the positive z direction. The nor-
malization constant P does not depend on the mode, and the
transverse parts of E,, and H,, are assumed to be real, the
relative longitudinal parts then being purely imaginary
quantities.

The above formalism can be applied to describe situations
in which the departure of the fiber from ideal behavior is as-
sociated with the presence of the nonlinear intensity-depen-
dent contribution to the dielectric constant. More precisely,
by assuming the fiber material to be isotropic and the non-
linear response to be dominated by the fast-responding elec-
tronic processes, one can approximate the third-order non-
linear electric polarization by its dispersionless form3:

P® = ¢x¥E - EE, Q)

where ¢ is the electric permeability of vacuum and x® is the
nonlinear susceptibility. After introduction of the analytic
representation B of the electric field satisfying the relation
E = (& + £%)/2, the terms on the right-hand side of Eq. (7)
that are vibrating at (approximately) the positive frequency
w are given by

P,® = ed B, (8)

where the nonlinear tensor €@ can be expressed by the ma-
trix

€B) = on(3)/2

E . E* + 1/2' Exl 2 l/zEyEx* I/ZEZEJC*
1/2ExEy* E * E* + 1/2|Ey| 2 1/2E2Ey*
I/ZEsz* l/ZEyEz* E ¢ E* + 1/2IE2l2

9)

According to Eq. (8), the relation between the electric dis-
placement vector D and E becomes

Dw = GOE“, + Pﬁ,
= (W)E, + e®:E,=¢:E,, (10)

€1(w) being the linear dielectric constant of the medium, and
thus it exhibits a tensorial character that does not allow for
a straightforward application of the results of the coupled-
mode theory, in which the dielectric constant has been as-
sumed to be a scalar quantity [see Egs. (1)]. This difficulty
can be circumvented as follows.

In most practical situations, one employs weakly guiding
structures for which the longitudinal part of the electric field
can be neglected with respect to the transversal part (E, «
Ep). This allows us to neglect the terms containing E, inthe
matrix given in Eq. (9) so that

D, = e(0)E + e7®: B, + ¢, E,,, (11)
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with
@ = X2 | B Br 1B BBEx |
2 [RB:Ey* E-B* + 8,2
(12)
&® = Thegx R - B, (13)

and E-E* = [E,|2+]£,|2. It is now possible to repeat the
derivation leading from Eqgs. (1) to Eq. (5) and show that the
contribution arising from the last term on the right-hand side
of Eq. (11) affects only the part of the coupling coefficients
Kun containing E,,,*E,.; since for weakly guiding fibers this
term can be neglected, we can drop the last term in Eq. (11),
and the problem needs to be treated only in the transverse
plane x, y.

Furthermore, the matrix appearing in Eq. (12) can be put
in diagonal form whenever E'y*E'x can be assumed to be zero.
This is obviously the case for nonideal circularly symmetrical
fibers in which the polarization of an initially linearly polar-
ized field becomes random over short propagation lengths
because of minor perturbations along the fiber so that, on the
average, |E,|2 = |E,|2, E,E,* = 0, and

D, = ¢E,, (14)

where
€= e+ e B2, (15)
with €3 = 5eox®/4. Other situations in which B,E,* = 0 are

those pertaining to a circularly symmetrical ideal fiber (no °

imperfections) and to a polarization-maintaining birefringent
fiber (either single-mode!” or multimode!8) with principal axes
£ and J, provided that the input field is linearly polarized
along a generic direction in the first case and along £ or § in
the second one. In fact, the structure of e7® in Eq. (12)
implies that if Ey (E,) is initially zero it remains zero for every
value of z. Thus Eqs. (14} and (15) still apply when €3 =
3eox®/4. Accordingly, we have a scalar dielectric constant
and, correspondingly, a refractive index of the form

n = (e/eg) 2 ~ ny + ng )2, (16)
with

1
g = —— €9/ €Q.
2 2n1 2/0

We can now apply the results of the coupled-mode for-
malism [Eqs. (1)-(6)] by writing ¢ in the form furnished by Eq.
(15), provided that the characteristic time variations of the
instantaneous intensity |E,|2 are slow compared with the
period of the field, that is,

bw «1, 17)

Wo
where dw is the bandwidth and wy is the average frequency of
the field. Usually the field is supposed to consist of a mono-
chromatic carrier wave of frequency wy whose amplitude
modulation is entirely responsible for the bandwidth dw; an
attempt to include the effects of the source fluctuations on
nonlinear propagation hag been made in Rof. 19. Proceeding
in this way, we obtain the following set of nonlinear coupled
equations describing the evolution of the mode amplitude
pertaining to a given state of polarization:

Crosignani et al.

dem(z, @) _

p ==4i 3 cp(z, wexp fi [Bm(w) = B (@]} X T
VA n b q

+x
X fj; RE}(w, o, w’)eplz, o)eg*(z, )

X expli{w’ — w”)tlexp{~i{B, (@) — By (w”)])}dwdw”,
m=12,..., (18)

where

Wig
R'g;(w: o, w") = —_C-

+
f f_ Epr(r, ©)Epp(r, ) Epp(r, o)Epp(r, o )dxdy

b

X

+
f Epr?(r, w)dxdy

(19)
having taken advantage on the approximate relation
e, X Hpp = (€o/po)?n1Epr (20)

valid for weakly guiding fibers.

If we now observe that E, (r, w) are smoothly varying
functions of w, and if we assume, in full generality, that the
field is the superposition of the various modes, each centered
at its own frequency w,,, then

EmT = Z Em(r7 wm)x‘
m

X f_ﬂ cm(z, w)expli[wt — B (w)]eldw, (21)

where % is a unit vector in the direction of one of the principal
axes if the fiber is birefringent or in an arbitrary direction
otherwise, and Eqgs. (18) become

dcm(ﬁ: 2 =-iy cnlz, w)exp{i[Bm(w) - Bn(w)]z}

XX 3 Ry} (wp, wp, wq)t,?/p(z, t)qu*(z, t),
m=12,..., (22)

where

A +o
Ymlz, t) =2 J; cmlz, wlexpliwt — ify, (w)z]dw.  (23)

By multiplying both sides of Eq. (21) by exp[—iB (w)z +
iwt] and integrating over w in the interval (0, 4+ ), we obtain
for the slowly varying amplitudes ¢,, (2, t) defined through
the relation

‘Zm = eXp[iwmt - iﬁm(w)zlim(tz’ t)
= 2 expliomt — iBn(@2] (- cmlz, w)
expliwm 183, (w)z J; emiz,w
X expli(w = wm)(t — 2/vm)
= (W= w,)%2/24,, = i(w=0,)"3B,Jde  (24)

a set of nonlinear coupled equations in the time domain that
reads
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Lindm(z,t) = =i ¥ ¥ ¥ RPN wn, @p, wq)

npg
X expli(w, — wm + wp — wg)t]
X .exp{_i[ﬂn(wn) = Bmlwm) + ﬁp(wp) it Bg(‘?q)]z}
X ¢ndpdq*, (25)

where we have introduced the differential operator

Lm=£+;£—mﬁ—gﬁ;at—3+... (26)
and the group velocity vn, of the mth mode,
U = (dBm/dw);L,,., 27
together with the group dispersion
Ay = (d28,/dw?) Y =0, (28)
and the second-order group dispersion
Bn = (d38n/dw?) Yu=up - (29)

Equation (25) can be substantially simplified if 8,, = 8,
for allm = n. Infact, one can in this case neglect the terms
on the right-hand side of Eq. (25) containing an exponential
factor oscillating with z, thus obtaining

Lm%m = —i(‘i’m Z R:’r{”(wmy wn’ wn)|$nl 2
n

+ Z R%‘;(“’m ‘-'-’m’ wn)l$n|2 ’

n=m

m=12.... (30)

Equations (30) describe in full generality the longitudinal
evolution of a pulse in a multimode optical fiber in the pres-
ence of an intensity-dependent dielectric constant whenever
all the modes propagate in the same direction, but the calcu-
lations can easily be extended to include counterpropagating
modes. We limit ourselves to reporting here the case of two
counterpropagating modes of a single-mode fiber that is de-
scribed by the two coupled equations

Li*éit = —id*RH( 2 + 2171,
Li=¢1~ = id R d172 + 26149, (31)

where ¢;* and ¢;~ are the slowly varying amplitudes of the
modes propagating, respectively, in the positive and negative
z directions and

; 2 3
Ll(i)=_‘2_i.];_a_ ! _8_ 1 é_

F— F— v 32
9z v18t 21A.6t2 3By at3 (32)

SOLITON PROPAGATION AND SELF-
CONFINEMENT

The structure of the set of Eqs. (30) [or of Egs. (31)] implies
the constancy of the energy carried by each mode across the
whole fiber section as a function of z, which is expressed by
the relation

ad; f_ " | dmiz, 1)[2ds = 0. (33)

Equation (33) can easily be proved by considering each
equation of the set and its complex conjugate, by multiplying
them, respectively, by ¢n* and ¢, and by adding the re-
sulting relations. In particular, according to Eq. (33), amode
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initially not excited cannot gain energy from the other ones
through the nonlinear coupling that we are considering.

Let us now consider the situation in which higher-order
group dispersion can be neglected so that in the differential
operators L, it is possible to keep only the terms up to the
second derivative in t.

Equations (30) can admit of particular solutions in the form
of envelope solitons, provided that all the modes are made to
travel with a common group velocity, that is, if their excitation
frequencies w; and ws are chosen in such a way that

(dB1/dw)ymu, = (ABo/dw)umey = ... = 1/v.  (34)

Under this circumstance, it can be immediately verified that
solutions of Egs. (30) in the form of distortionless propagating
pulses (so-called envelope solitons) are given by
$m(z,t) = Gomexp(iz/2An7Hsech[(t — 2/v)/7],

m=12,..., (35

provided that the following relations between the temporal
width 7 and the amplitudes ¢,n, of the pulses

1 N
A, 72 = %: R (wm, wp, wn)l¢on‘ 2

+ Z R%’:(wm wmy wn)laﬁ'onl 27

n=*m

m=12... (36)

are satisfied. Since all the R}:? are positive quantities, Eqgs.
(36) imply, as a necessary condition for the existence of soli-
tons, that all the A,, are negative (anomalous chromatic dis-
persion), that is, that

d2Bm/dw? = < 0,

Equations (36) furnish in a natural way the existence con-
dition for soliton propagation in terms of the superposition
integrals R™* and the propagation constants (3, of the various
modes. In particular, the influence of the waveguide on the
existence region of bright solitons (in its absence, bright-sol-
iton propagation is possible only for anomalous material
dispersion) is expressed by Eqgs. (37), in which d%83,,/dw?
contains both material and waveguide dispersion, which is
valid for any refractive-index profile.

In particular, in the case of a single-mode fiber, the soli-
ton-existence condition takes the form

m=1,2,.... 37)

- 23_75 = % n2a] $o1l? (38)
with
oo
ff E4r)dxdy
a="" . (39)

+o
f E?(r)dxdy

For single-mode fibers, E{(r) can be approximated by a
Gaussian law,

E(r) = exp(—Yor?/r¢?), (40)

the spot size ro being a function of the refractive-index profile
ni(r, w) and of the fiber-normalized frequency.?® By inserting
Eq. (40) into Eq. (39), we obtain &« = Yy, so that Eq. (38) can
be rewritten as
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R 2
|dotl? = = ——— (d261/dw?) ym
T W1iNg
2 A2
~- wléfz (d2n1/dNB)r=n, (41)

[the last equality following from the assumption, valid in many
practical cases, that d28,,/dw? =~ d2(wn,/c)/dw?], which
coincides with the expression given in Ref. 7 apart from a
factor .

In general, Egs. (30), with L,, truncated to include the term
containing the second derivative with respect to time, do not
admit of soliton solutions if, as usually happens, all the modes
have a common excitation frequency and consequently dif-
ferent group velocities. In other words, the effect of the
nonlinearity is not sufficient to balance modal dispersion
exactly in a multimode fiber, as it does for chromatic disper-
sion in a monomode fiber. It has been pointed out,!9 however,
that, in the case of anomalous dispersion, the nonlinear in-
teraction among the various modes is capable, under suitable
conditions for the mode amplitudes, of giving rise to a mutual
attraction that prevents the modes from spreading too much,
giving rise to a self-confinement mechanism.

In order to understand this mechanism, let us consider Egs.
(30) specialized to the case in which all the w, coincide with
the central frequency of the carrier wy. The result is that

9,19 i az] \
82 vmdt 24n 0t

nxm

= —2ipm ( z an"%np + YRl <?>m|2 , (42)
where we have taken advantage of the fact that

R (wo, wo, wo) = R (wo, wo, wo) = Rnp. (43)

By recalling Eq. (33), we can set

+o
f_ bz, D)2t = p (44)

and define

- 1 +o
n@) == [ ddntz, 01%de, 45)

which represents the average time of arrival, at a given posi-
tion 2, of the power carried by the mth mode. With a proce-
dure completely analogous to that leading to Ehrenfest’s
theorem,?! it is possible to show, starting from Eq. (42),
that

d - 1 1 to . 9 .
—tpy == = *— o, dt 4
dz ™ Um  PmAm j‘—w Om ot P (46)
and
d2 - 2 +o 0,
[ t = — R 2— 2 t. 4
G T T Ran [ 1al? bl (47
Furthermore, whenever a single mode is present,
d2 -
d_z—2 tm =0, (48)

so that dt,,/dz does not depend on z (note in particular that
for a soliton solution it coincides, as is to be expected, with
1/v;). For a multimode fiber, the £, of a mode is influenced
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by the presence of the other modes in a way that lends itself
naturally to a mechanical analogy, provided that the roles of
z and ¢ are interchanged. In fact, after introduction of the
potential (which is attractive for 4,, < 0),

Vim(z,t) = L Rumldnlz, t)|2, (49)

PmOm n=m
and, by supposing that | ¢, (z, t)|2 varies, for every fixed z, on
a time interval short compared with the typical variation time
of Vm)(z, t), one can rewrite Eq. (47) as
dz -

i)
5z b = — % V2, £))e=zn (50)

If we now define
£= X Aupnitn [ % Anbr
m m
~ 3 szm/Z Pm, (51)
m m
which represents the center of mass of the packet traveling

in the fiber and resulting from the superposition of the various
modes, it is possible to show, with the help of Eq. (47), that

dz _
—t=0. 2
dz2 (52)
"This fact allows us to rewrite Eq. (50) in the form
dz d
=™ e Vimd(z,,), (53)

where Tp, = tp, — t and V) {(7,,,) = V)2, 7, + t) can be
considered approximately independent of z in the center-
of-mass reference system to which Eq. (53) refers. By iden-
tifying Eq. (563) with the equation of motion of the center of
mass of the mth mode, the condition for its trapping inside
the packet can be immediately obtained by imposing the
condition that its initial velocity be smaller than the escape
velocity of the potential V™), that is, that

Yo(1/vm — 1/00)2 < — > Rumln(0,0)2, (54)

PmAm n=m
where

d - 1

—lm|z=0 = — 55

dz mlz 0 Um ( )
d - 1

— =g = 56
dz Iz 0 bo ( )

and we have assumed that the amplitude of each mode is
centered approximately around ¢t =0 atz = 0. Equation (52)
represents a more sophisticated version of the corresponding
one worked out in Ref. 10 as it takes into account the relative
weights of the various modes.

CONCLUSIONS

We have examined the effects of the intensity-dependent
contribution to the refractive index on pulse propagation in
a multimode optical fiber. By relying on the coupled-mode
theory, we have developed a formalism that allows us to de-
scribe the evolution of the amplitudes of the various modes
propagating along the fiber by means of a coupled system of
nonlinear differential equations whose coefficients contain



Crosignani et al.

the overlap integrals of the mode spatial configurations. The
formalism has then been employed to establish the existence
condition for soliton propagation in multimode fibers and to
recover the hypotheses under which longitudinal self-con-
finement can give rise, in competition with modal dispersion,
to a compression mechanism that prevents pulse spreading.

* Also at Fondazione Ugo Bordoni.
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