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Abstract

With the increase in signal speed and the development of

process technology, distributed RC line model is found to

be more suitable for on-chip interconnects than lumped RC

model, especially for interconnects around and below 0.25�m.

In this paper, we �rst describe a new explicit form for crosstalk

approximation for coupled RC lines. Then we introduce a

novel passive model order reduction technique for distributed

RC lines. These two parts serve as two steps in static noise

analysis of full on-chip interconnect networks which are called

pruning process and static analysis process.

1 Introduction

As processor cycle times become shorter and chips become
larger and more complex, noise analysis and crosstalk avoid-
ance become more important. Various transient analysis
techniques based on linear model reduction techniques [1][2]
have been used to estimate noise[3]. These model reduction
techniques help in reducing the computational cost, however
they are only suitable for lumped RC or RLC interconnect
model. It is shown in [4] that due to the fast rise time and
narrow line width, distributed properties of on-chip wiring
need to be taken into account. The traditional lumped-
circuit RC representation is no longer adequate since it sub-
stantially underestimates both crosstalk and delay.
This paper is organized as follows. In section 2, we provide
an explicit form of coupled RC lines. In section 3, we intro-
duce the new model order reduction technique. In section 4,
we give some examples and make conclusions, repectively.

2 Explicit Form for Crosstalk Estimation of RC lines

2.1 A Moment-based Single RC line Model

With the assumption of TEM mode of wave propagation,
the distribution of voltages and currents along m parallel
uniform RC lines can be described in the frequency domain
by the Telegraph equations:

@V (z; s)

@z
= �RI(z; s) (1)

@I(z; s)

@z
= �sCV (z; s) (2)

where R is the per unit length (p.u.l) resistance matrix and
C is the p.u.l capacitance matrix. For two capacitively cou-
pled RC lines, rewriting (1) and (2) in the time domain
yields
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where r1(r2) and c1(c2) are p.u.l resistance and capacitance
of line 1 (2) respectively. cc denotes the p.u.l coupling ca-
pacitance between the two RC lines. v1(v2) represents the
voltage along line 1 (2). From (3) and (4), the distribution
of voltage along a single RC line without coupling in the
time domain can be written as:
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where r and c are per unit length resistance and capacitance
of the line. Suppose Rs is the applied voltage source resis-
tance and Cload is the load capacitance. By using Taylor
series expansion at s = 0 and comparing the coe�cients of
the same s terms, we result in a recursive moment genera-
tion process. For the ith moments,
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If the input of the RC line is a unit �(t) function, it is obvious
that V 1(0; 0) and V 1(d; 0) are negative. And it can be shown
easily that V 2(d; 0) is positive. Thus, the transfer function
of the line can be written as:

H(s) =
V (d; s)

Vin(s)
= V

0(d; 0) + V
1(d; 0)s+ V

2(d; 0)s2 + � � �

�
a1s+ a0

s+ b0



By Pade approximation, we have

b0 = �
V
1(d; 0)

V 2(d; 0)
(6)

while a0 = V
0(d; 0)b0 and a1 = V

0(d; 0)� V
1(d; 0)b0.

Theorem 1 This moment-based model is stable .
proof:
Since V 1(d; 0) < 0 and V 2(d; 0) > 0, b0 is nonnegative. Thus
the single pole s1 = �b0 � 0 shows that the model is stable.
2

In the time domain, if the input is a normalized step func-
tion,

v(d; t) =
a0

b0
+K1e

�b0t (7)

where

K1 = �
a0 � a1b0

b0
(8)

2.2 Explicit Form for Crosstalk Estimation

Assume we have two identical coulped RC lines. By intro-
ducing new variables v+ and v

�, from equation ( 3) and (4),
we have two decoupled equations:
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In the case the source resistance and the load capacitance
of line 1 and 2 are the same, after decoupling, the source

resistance and the load capacitance of line 1
0

and 2
0

are still
the same and equal to those before decoupling. Moreover,
each of equations (9) and (10) has the same form as ( 5).
Thus, we can get the explicit expression of v+ and v� by
the similar recursive moment derivation process. Changing
back into v1 and v2 yields

v1(d; t) = E1 + 1=2(K11(E1 +E2)exp(�b01t)

+K12(E1 � E2)exp(�b02t)) (11)

v2(d; t) = E2 + 1=2(K11(E1 +E2)exp(�b01t)

�K12(E1 � E2)exp(�b02t)) (12)

where E1 and E2 are steady states of voltage sources at
the near ends of both RC lines, K11 and K12 are obtained
by equation (8), and b01 and b02 by (6). If E2 = 0, then
the peak value of v2(d; t) is the maximum noise induced
by the capacitive coupling which can be evaluated by vp =
v2(d; tp) =

1
2 (K11E1exp(�b01tp)�K12E1exp(�b02tp) where

tp = 1
b01�b02

log( b01
b02

). This moment-based model is simple
and e�cient. It only depends on the �rst three moments of
the voltages along the RC lines. Moreover, it can be easily
extended to cases with ramp input functions and for cases
with di�erent RC lines coupled together as well as with dif-
ferent source resistors or load capacitors[8]. In our pruning
engine, this model serves as "watchman" that can identify
dangerous clusters which have high coupled noise. These
clusters will then be sent to static noise analysis process for
detailed checking. At the end of static noise analysis process,
noise report and timing deterioration report for a certain
cluster will be generated. However, due to its simplicity, for

cases when a victim couples with several aggressors, shift-
ing and superposition techniques are applied to sum up the
maximum noise value caused by each aggressor. In this way,
we obtain a rough estimation of the worst case coupled noise
for each victim. And the estimation thus generated can be
too pessimistic. A more accurate model is needed for static
noise analysis process. In the next section, a new model is
presented to meet this requirement.

3 Passive Model Order Reduction Technique for RC Lines

In this section, we introduce a novel model for distributed
RC lines. This model is proved to be passive and preserves
moments. Furthermore, it shows very good accuracy and
e�ciency from the experiment results. We adopt this model
in our static noise analysis process.
The basic di�erential equations governing m coupled RC
lines are ( 1) and (2). According to [6], C matrix in ( 2) is
positive de�nite.
Let

~V (z; s) = R
�

1

2 V (z; s) (13)

~I(z; s) = R
1

2 I(z; s) (14)

Substituting (13) and (14) into (1) and (2), we obtain
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= �~I(z; s) (15)

@ ~I(z; s)
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= �sA ~V (z; s) (16)
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A = R

1

2CR
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~V (z; s) is a continuous function with z varying from 0 to d,
and s from 0 to 1.
Theorem 2We can construct a transform U(z) so that V̂ (z; s)
can be approximated as

~V (z; s) � V̂ (z; s) = U(z)x(s) (18)

where U(z) only depends on z and x(s) is a function vector
which only depends on s.
proof: Since ~V (z; s) can be expanded as Taylor series near
any point s0,

~V (z; s) = ~V 0(z; s0) + ~V 1(z; s0)(s� s0) + :::

+
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where
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@
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@s
js=s0

We useHb(z) to denote the �rst n-moment subspace spanf ~V 0(z; s0);
~V 1(z; s0); :::; ~V

n�1(z; s0)g. Suppose a basis of Hb(z) sub-
pace is fu0(z);u1(z); :::; uk�1(z)g. Let Hb1(z) be de�ned

as spanf ~V 0(z; s0); ~V 1(z; s0); :::; ~V
n�1(z; s0); ~V

n(z; s0); � � �g
which is an in�nite-dimensional space. Suppose a basis for
this space is fu0(z); u1(z); :::; uk�1(z); � � � ; uk(z)g where k is
the total number of orthogonormal vectors and it can be as



large as 1. Then we have two scenarios:

when 0 � i � n � 1, ~V i(z; s0) =
Pk�1

j=0
aijuj(z)

when i � n, ~V i(z; s0) =
Pk�1

j=0
aijuj(z) +

Pk

j=k
aijuj(z)

hence, if we only consider the terms depending on the basis
fu0(z); u1(z); :::; uk�1(z)g, we can approximate ~V (z; s) as
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Rearranging the terms, we have ~V (z; s) � V̂ (z; s) = U(z)x(s)
where U(z) = [u0(z); u1(z); :::; uk�1(z)]

x(s) =2
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Since k << k, we manage to reduce the original in�nite
dimension system to a k-dimension system. 2
It can be shown by the de�nition from [7] that U(z) repre-
sents an L

2 Hilbert space. The construction of U(z) is in-
cluded in section 3.1. Here, we assume that U(z) is known.

Replacing V̂ (z; s) in (15) with (18) yields

@V̂ (z; s)

@z
= �Î(z; s) (19)

@Î(z; s)

@z
= �sAV̂ (z; s) (20)

It is quite easy to show that Î(z; s) matches the �rst n mo-

ments of ~I(z; s). So, we have
Theorem 3This reduced-order model preserves the moments.
Since

Î(z; s) = �
dU(z)

dz
x(s) (21)

di�erentiating both sides of (21) with respect to variable z

and substituting (21) into (16) give

d
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x(s) = sAU(z)x(s) (22)

Multiplying UT (z) on both sides of (22) and integrating with
respect to z from 0 to d, it follows
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(23)
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U
T (z)AU(z)dz (24)

where M is positive de�nite provided that U(z) is of full
rank.
By using integration by parts, the l.h.s. of (23) becomes:
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It is obvious that N is nonnegative de�nite. Moreover, if
there exits a nonzero length region [z1; z2] 2 [0; d] such that

matrix dU(z)

dz
is of full rank, than N is positive de�nite. We

combine the �rst term on the r.h.s. of (25) with the bound-

ary conditions. Note that from (21), dU(z)
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jz=0 x(s) =

�Î(0; s) and dU(z)
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jz=d x(s) = �Î(d; s) Therefore,
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Îs(s)

where Îs =

�
Î(0; s)

�Î(d; s)

�
. Thus, the state equations of the

reduced order model can be written in the freqency domain
as

(sM +N)x(s) = ~BÎs (27)

where

~B =

�
U(0)
U(d)

�T
(28)

Assume the output equations of the system are

y =

�
V̂ (0)

V̂ (d)

�
=

�
U(0)
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�
x(s) = ~BT

x(s) (29)

Then, the input impedance matrix of the system will be

Z(s) = ~BT (sM +N)�1 ~B (30)

Theorem 4 This reduced-order model preserves passivity.
proof:
For all complex s,

Z(s�) = Z
�(s) (31)

where � is the complex conjugate operator.
For any column vector x,

x
�T (Z(s) + Z

�(s)T )x = x
�T ~BT (sM +N)�1[(sM +N)

+ (s�M +N)T ](sM +N)�T ~Bx (32)

Let
x̂ = (sM +N)�T ~Bx (33)

and s = � + j!. Inserting (33) in (32) results in

x
�T (Z(s)+Z

�(s)T )x = x̂
�T [N +N

T +�(M +M
T )]x̂ (34)

From (24) and (26), M,N are positive de�nite matrices.
Therefore, if � > 0,

x
�T (Z(s) + Z

�(s)T )x > 0 (35)

2

This idea can be easily extended to general RLGC transmis-
sion line cases[8]. Note that in RC line cases both matrices
M and N are symmetric. This fact allows us to lower the
matching order by half compared with general RLCG trans-
mission line cases when achieving the same level accuracy.



3.1 Moments and U(z) Generation

Unlike Lanczos and Arnoldi algorithms, in our method, mo-
ments construct an L2[0; d] Hilbert space. By applying Mod-
i�ed Gram-Schmit algorithm, a basis for this Hilbert space
is found which in turn forms the column vectors in U(z).

Expanding V̂ (z; s) and Î(z; s) as Taylor series near s = sk,
we get

V̂ (z; s) = V̂
0(z; sk)+ V̂

1(z; sk)(s�sk)+ V̂
2(z; sk)(s�sk)

2
:::

(36)

Î(z; s) = Î
0(z; sk) + Î

1(z; sk)(s� sk) + Î
2(z; sk)(s� sk)

2
:::

(37)
Combined with (15) and (16), it gives
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where B =

�
0 �I

�s0A 0

�
and i = 1; 2:::.

By recursively using ( 40), we can get higher order moments

for V̂ (z; s) and Î(z; s). It is easy to see that

�
V̂

i(z; sk)

Î
i(z; sk)

�

can be expressed as the sum of exponential functions of
z, which in turn can be easily expanded into polynomials.
Hence, though we have integral operator in our formulation,
we use explicit calculation to evaluate the integral instead of
using traperzoidal or other numerical integration methods.
As shown in section 4, for each expansion point, the moment
matching order can be as low as two, which we have found
to be adequate for accurate results.
Now the question left in this section is to show how to
construct U(z). Generally, for n multiple expansion point
cases, if we calculate up to kj moments at jth point, where
j = 0; 1; :::;n, the L2 Hilbert space can be written as:

Hb(z) = spanfV̂
0(z; s0); V̂

1(z; s0); :::; V̂
k0(z; s0);

V̂
0(z; s1); V̂

1(z; s1); :::; V̂
k1 (z; s1); :::;

V̂
0(z; sn); V̂

1(z; sn); :::; V̂
kn (z; sn)g

An orthogonal basis can be found by the Modi�ed Gram-
Schmidt algorithm for L2 Hilbert space as follows:

for i = 1 to m

/* m is the total number of columns in Hb(z)*/

qi = Vi /*the ith column vector in V(z) */

for j = 1 to i� 1

/* substract component in qj

direction from Vi */

rij =
R d

0
qj(z)T qi(z)dz

qi = qi � rijqj

end for

rii =

qR
d

0
q
T
i
(z)qi(z)dz

if rii = 0 /* de
ation happens */

quit

end if

qi = qi=rii

end for

In cases when si is complex, the above algorithm should be
implemented twice for the real and imaginary part of the
vector qi respectively so that we can obtain a real transfor-
mation matrix U(z).

4 Experiment Results

In Example 1, we have a single RC line with driver resistance
much bigger than the line resistance. Fig. 1 shows the wave-
form at the far end of the line. It is easy to see that SPICE,
Sakurai's method[5] and our new explicit form match well.
Example 2 has driver resistance smaller than the line resis-
tance. In Fig. 2, SPICE and our new explicit form have very
close results, whereas Sakurai's method has an error as high
as 50%. Under 0:45�m technology, we have three coupled
RC lines as in Fig.3. The middle one is victim. In Exam-
ple 3, the victim has no input signal while two aggressors
have pulse input signals with the same switching direction.
Referring to Fig.4, we can see that our result matches well
with distributed model by SPICE, but the lumped RC model
has lower noise peak and smaller noise width and produces
an error around 20%. In Example 4, under similar circum-
tances as in Example 3, if 0:25�m lines are used, the victim
tends to have higher noise peak and wider noise width (refer
to Fig. 5). In Example 3 and 4, we select two expansion
points: 1x10�7 as the one near s = 0 and 3x109 as the one
near in�nity. At each expansion point, we match the mo-
ments to the 2nd order. According to the line parameters
under di�erent technologies based on SIA National Technol-
ogy Roadmap, Table 1. lists the noise peak (column 3) and
noise width (column 4) generated by the new passive model
with di�erent technology generation (column 1) and di�er-
ent line length (column 2). The error rate in column 5 is
the error of noise peak with respect to the results by SPICE,
and in column 6 the error rate is of noise width with respect
to SPICE. As shown in the Table, with the decreasing of
the technology generation and increasing of the line length,
we have higher noise peak and wider noise width. As we
know, from 0:25�m to 0:07�m, the driver resistance and
Vdd have the trend to decrease, thus we have more serious
noise problem with smaller line widths. Furthermore, notice
the changing of the line length and noise, it seems that lines
with length � 1mm are more likely to be "noisy" lines than
shorter ones.

5 Conclusions

We have presented a new explicit form for coupled RC lines
and a novel algorithm for passive model order reduction with
multipoint moment matching for distributed interconnect
networks. They are used in static noise analysis for on-chip
interconnect networks. Moreover, these models can also be
useful to general RLGC interconnect networks.
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Table 1: Noise Report

Tech d peak width PErr WErr
(�m) (mm) (v) (ns) (%) (%)
0.25 0.1 0.058 0.6 3.1 2.4

1 0.198 0.79 0.8 1.3
10 0.247 1.42 0.5 3.2

0.18 0.1 0.078 0.5 2.9 5.3
1 0.213 1.21 0.3 4.7
10 0.351 1.78 2.2 1.5

0.13 0.1 0.134 1.18 0.9 1.3
1 0.679 1.80 1.7 0.9
10 0.933 2.40 0.1 4.0

0.07 0.1 0.337 1.09 2.7 2.1
1 0.781 3.45 3.2 3.7
10 0.823 5.31 1.5 5.5


