
528 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 50, NO. 2, FEBRUARY 2012

Coupled Nonnegative Matrix Factorization Unmixing
for Hyperspectral and Multispectral Data Fusion
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Abstract—Coupled nonnegative matrix factorization (CNMF)
unmixing is proposed for the fusion of low-spatial-resolution hy-
perspectral and high-spatial-resolution multispectral data to pro-
duce fused data with high spatial and spectral resolutions. Both
hyperspectral and multispectral data are alternately unmixed into
endmember and abundance matrices by the CNMF algorithm
based on a linear spectral mixture model. Sensor observation mod-
els that relate the two data are built into the initialization matrix
of each NMF unmixing procedure. This algorithm is physically
straightforward and easy to implement owing to its simple update
rules. Simulations with various image data sets demonstrate that
the CNMF algorithm can produce high-quality fused data both in
terms of spatial and spectral domains, which contributes to the
accurate identification and classification of materials observed at
a high spatial resolution.

Index Terms—Data fusion, nonnegative matrix factorization,
unmixing.

I. INTRODUCTION

HYPERSPECTRAL imaging sensors collect about 200

spectral band images in the visible and infrared wave-

length regions (400–2500 nm). Owing to its high spectral res-

olution, hyperspectral data are useful for the accurate detection

and identification of minerals, vegetation, and man-made ma-

terials. The spatial resolution of hyperspectral sensors is often

lower than that of multispectral sensors with a low spectral

resolution. The fusion of hyperspectral and multispectral data

has a possibility to produce fused data with high spatial and

spectral resolutions, which contributes to the accurate identifi-

cation and classification of an area observed at a fine spatial

resolution.

There are multiple studies on sharpening algorithms for

multispectral data [1]–[10]. Many of these algorithms are de-

signed to fuse multispectral data with a high-spatial-resolution

panchromatic image, commonly called pan sharpening. In

2006, the data fusion committee of the IEEE Geoscience and

Remote Sensing Society held a public competition for pan

sharpening algorithms [9]. The multiresolution methods based

on an undecimated discrete wavelet transform or Laplacian

pyramid [6] showed the best results. Since the enhancement of

the spatial resolution was often limited to the first component,

the intensity component, or the low-pass component, a certain

amount of spectral distortion occurred [9], [10].
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The first algorithm proposed for hyperspectral and multi-

spectral data fusion was a wavelet-based technique that in-

herited the pan sharpening algorithm [11], [12]. However, its

performance highly depended on the spectral resampling

method, which caused difficulty in enhancing the spatial resolu-

tions of all hyperspectral band images. A maximum a posteriori

(MAP) estimation method was developed to enhance the spatial

resolution of hyperspectral data using higher spatial resolution

data from an auxiliary sensor [13]–[16]. This approach used a

stochastic mixing model (SMM), which estimates the under-

lying spectral scene characteristics, to develop a cost function

that optimizes the estimated hyperspectral data relative to the

observed hyperspectral and multispectral data. In the actual

implementation, low-spatial-resolution hyperspectral data were

processed after principal component (PC) transform [16]. The

MAP/SMM method showed a better performance than those

based on least-squares estimation [1], [7] and PC substitution

[3]. Although the MAP/SMM method with wavelet transforms

demonstrated a high noise resistance [17], the experiments were

limited to enhancing the low-spatial-resolution hyperspectral

band images only in the multispectral wavelength regions.

Another approach for hyperspectral resolution enhancement

uses spectral mixture analysis [18], [19]. In this approach,

low-spatial-resolution hyperspectral data are unmixed into the

endmember spectra and abundances. Next, the abundance maps

are fused with high-spatial-resolution panchromatic data using

constrained optimization techniques. The results are limited to

the synthetic data where the endmembers are known a priori.

Although this approach did not focus on the estimation of

high-spatial-resolution hyperspectral data, the idea of using

unmixing for data fusion is physically reasonable and effective

for hyperspectral and multispectral data fusion.

In recent decades, many hyperspectral unmixing techniques

based on a linear spectral mixture model have been developed

[20]–[30]. Unmixing mainly consists of two steps: extracting

endmember spectra and calculating their abundance maps.

Convex-geometry-based approaches, which assume the pres-

ence of at least one pure pixel for each endmember, are com-

monly used for endmember extraction [24]–[26]. Over the last

decade, nonnegative matrix factorization (NMF) [31], [32] has

emerged as a useful unmixing method [27]–[30]. Factorizing

a nonnegative hyperspectral data matrix into two nonnegative

matrices, this method can identify the endmember spectra

and can estimate the corresponding abundances simultaneously

without pure pixel assumption.

In this paper, we propose a coupled NMF (CNMF) algo-

rithm for hyperspectral and multispectral data fusion based on

unsupervised unmixing. Low-spatial-resolution hyperspectral
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and high-spatial-resolution multispectral data are alternately

unmixed by NMF, taking into account sensor observation mod-

els. By combining the hyperspectral endmember matrix and the

high-spatial-resolution abundance matrix obtained from mul-

tispectral data, high-spatial-resolution hyperspectral data can

be generated. Both spatial and spectral reconstruction qualities

are evaluated by three simulations using synthetic data sets

generated from real airborne hyperspectral data. Comparison

results with the MAP/SMM method are also demonstrated.

CNMF is applicable to a visible-near-infrared radiometer data

set of hyperspectral imager suite (HISUI) [33], which is the

Japanese next-generation spaceborne radiometer composed of a

hyperspectral radiometer with 30-m ground sampling distance

(GSD) and a multispectral radiometer with 5-m GSD. HISUI

will provide both hyperspectral and multispectral data obtained

over the same region with identical atmospheric and illumina-

tion conditions.

This paper is organized as follows. Section II describes the

CNMF algorithm for the hyperspectral and multispectral data

fusion. Section III presents the characteristics of the simulation

data sets and the quantitative criteria for evaluating the perfor-

mance of the fused data. Experimental results and discussion

are presented in Section IV, and the conclusion is given in

Section V.

II. CNMF UNMIXING FOR DATA FUSION

The aim of hyperspectral and multispectral data fusion is

to estimate unobservable high-spatial-resolution hyperspectral

data (Z ∈ R
λh×Lm) from observable low-spatial-resolution

hyperspectral data (X ∈ R
λh×Lh) and high-spatial-resolution

multispectral data (Y ∈ R
λm×Lm). λh and λm denote the

number of spectral channels of hyperspectral and multispectral

sensors, respectively. Lh and Lm denote the number of pixels

of hyperspectral and multispectral images, respectively. All

data are expressed in a matrix form, with each column vector

representing a spectrum at each pixel. λh > λm and Lh <
Lm are satisfied by the tradeoff between spectral and spatial

resolutions of two sensors. We assume that the observed two

data are obtained under the same atmospheric and illumination

conditions and are geometrically coregistered with radiometric

correction.

A. Sensor Observation Model

The spatial domain of the low-spatial-resolution hyperspec-

tral data is degraded from that of the multispectral data. On the

other hand, the multispectral data is a spectrally degraded form

of the high-spatial-resolution hyperspectral data. Therefore, X

and Y are modeled as

X =ZS+Es (1)

Y =RZ+Er. (2)

Here, S ∈ R
Lm×Lh is the spatial spread transform matrix,

with each column vector {sk′}Lh

k′=1
∈ R

Lm representing the

transform of the point spread function (PSF) from the mul-

tispectral image to the hyperspectral k′th pixel value. Each

PSF is assumed to be normalized, i.e.,
∑Lm

k=1
skk′ = 1. R ∈

R
λm×λh is the spectral response transform matrix, with each

row vector {ri}
λm

i=1
∈ R

λh representing the transform of the

spectral response function from the hyperspectral sensor to the

multispectral ith band detector. S and R are sparse matrices

composed of nonnegative components. Es and Er are the

residuals. In the simulation of this paper, S and R are given.

When applied to real data, S is determined by the image reg-

istration and estimation of the PSF. R is derived by radiometric

calibration to obtain spectral response functions.

B. Linear Spectral Mixture Model

A linear spectral mixture model is commonly used for un-

mixing problems owing to its physical effectiveness and math-

ematical simplicity. A spectrum at each pixel is assumed to be

a linear combination of several endmember spectra. Therefore,

Z is formulated as

Z = WH+N (3)

where W ∈ R
λh×D is the spectral signature matrix, with each

column vector {wj}
D
j=1 ∈ R

λh representing the endmember

spectrum and D being the number of endmembers. H ∈
R

D×Lm is the abundance matrix, with each column vector

{hk}
Lm

k=1
∈ R

D denoting the abundance fractions of all end-

members at the pixel, and N ∈ R
λh×Lm is the residual. The

endmember spectra and abundances are nonnegative: W ≥ 0
and H ≥ 0. In addition, the sum of the abundances for each

pixel can be assumed to be unity, i.e.,
∑D

j=1
hjk = 1(k =

1, 2, . . . , Lm). When we deal with radiance data, the spectral

signatures vary in amplitude owing to the illumination effect

caused by the surface topography, buildings, and vegetation.

Therefore, with the abundance sum-to-one constraint, the end-

member matrix contains several shading endmembers.

By substituting (3) into (1) and (2), X and Y can be approx-

imated as

X ≈ WHh (4)

Y ≈ WmH. (5)

Here, we define the spatially degraded abundance matrix Hh ∈
R

D×Lh and the spectrally degraded endmember matrix Wm ∈
R

λm×D given by

Hh ≈HS (6)

Wm ≈RW. (7)

Equations (4) and (5) appear as the approximated forms of

the linear spectral mixture models degraded in the spatial and

spectral domains, respectively. Since the sum of abundances at

each pixel in H is unity and the PSF in S is normalized, the sum

of abundances at each pixel in Hh is also unity. In addition,

owing to the nonnegative characteristics of S, R, W, and H,

all components of Hh and Wm are also nonnegative. When S

and R are accurately obtained, the approximations of (6) and

(7) become exact.
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Fig. 1. Illustration of CNMF unmixing for hyperspectral and multispectral
data fusion.

C. CNMF Unmixing

Hyperspectral and multispectral data fusion based on unmix-

ing is achieved by the estimation of the high-spectral-resolution

endmember spectra and the high-spatial-resolution abundance

maps from the two data. The CNMF alternately unmixes X and

Y by NMF to estimate W and H, with the constraints (6) and

(7) used for the initialization steps. Fig. 1 shows the simplified

illustration of the CNMF. Other unmixing and endmember

detection algorithms are also applicable to these two unmixing

procedures. However, in order to minimize the residual errors

in the linear spectral mixture models while considering sensor

properties, NMF is straightforward to formulate and easy to

implement.

NMF attempts to decompose a nonnegative data matrix into

a product of nonnegative matrices [31], [32]. In the case of

applying it to a hyperspectral unmixing problem, a squared

Frobenius norm of a residual matrix in a linear spectral mix-

ture model is commonly used for a cost function. For the

NMF unmixings of X and Y, these cost functions are defined

by ‖X−WHh‖
2
F and ‖Y −WmH‖2F , respectively, where

‖ · ‖F denotes the Frobenius norm. Some researchers showed

that additional physical constraints to the cost function as

penalty terms were effective for hyperspectral unmixing [27]–

[31]. However, since the additional penalty functions did not

markedly affect the data fusion performance in our experiment,

we adopt the simple cost function. To minimize it, Lee and

Seung developed multiplicative update rules that are guaranteed

to converge to local optima under the nonnegativity constraints

of two factorized matrices [31], [32]. We use the multiplicative

update rules for the NMF unmixings of X and Y, which are

given as

W ←W. ∗
(

XH
T
h

)

./
(

WHhH
T
h

)

(8)

Hh ←Hh. ∗ (W
T
X)./(WT

WHh) (9)

Wm ←Wm. ∗ (YH
T )./(WmHH

T ) (10)

H ←H. ∗
(

W
T
mY

)

./
(

W
T
mWmH

)

(11)

where (·)T denotes the transposition of the matrix and .∗ and

./ denote elementwise multiplication and division, respectively.

To satisfy the abundance sum-to-one constraint, we adopted a

method given in [35].
The CNMF algorithm starts from NMF unmixing for the

low-spatial-resolution hyperspectral data owing to its spectral
advantage. As the initialization phase, we set the number of
endmembers D and calculate the initial endmember matrix W

by vertex component analysis (VCA) [26], which is one of the
most advanced convex-geometry-based endmember extraction
methods with the pure pixel assumption. Hh is set as the
constant value 1/D and is updated by (9) until convergence
with W is fixed. As the optimization phase, both W and Hh are
alternately updated by (8) and (9) until the next convergence.
The subsequent round of NMF unmixing for X differs from
the first round described previously only by the initialization
phase. Hh is initialized by (6), and W is updated by (8) until
convergence with Hh is fixed to inherit the reliable information
of abundance maps obtained from multispectral data.

As an alternate step, we apply NMF unmixing to the high-
spatial-resolution multispectral data. As the initialization phase,
Wm is set by (7). H is initialized as the constant value 1/D
and is updated by (11) until convergence with Wm is fixed.
This process is important in inheriting the reliable information
of endmember spectra obtained from hyperspectral data. As the
optimization phase, both Wm and H are alternately updated by
(10) and (11) until the next convergence.

The two NMF unmixing steps are repeated alternately until

convergence. The CNMF alternately takes advantages of the

spectral information of the low-spatial-resolution hyperspectral

data and the spatial information of the multispectral data to

find an initialization that results in better local optima. Finally,

we can produce the high-spatial-resolution hyperspectral data

by multiplying W with H. We refer to the alternate NMF

unmixings as the outer loop and the iterative update in each

NMF as the inner loop. As a convergence condition, we use the

condition that the change ratio of cost function C achieves a

value below a given threshold ε

∣

∣

∣

∣

Cl − Cl+1

Cl

∣

∣

∣

∣

≤ ε (12)

where l is an index of iteration. For a practical utility, the

condition that the number of iterations exceeds a predefined

maximum number of iterations is added to the stopping criteria

together with the convergence condition. The maximum num-

ber of iterations is set as different values between the inner and

outer loops, referred to as Iin and Iout, respectively.
Iin is a parameter that determines the constraint strength for

the sensor properties given by (6) and (7). When we set Iin
as one and Iout as a large value and when there is no update
in the initialization phase after the first NMF unmixings for
the two data, the subsequent optimization procedures can be
simplified as the iterations of (6), (9), (8), (7), (10), and (11)
until convergence. In this case, the CNMF algorithm appears
to be a projected gradient NMF [36], with the projection steps
being (6) and (7), which is mathematically clear and simple to
implement. This approach uses tight constraints on the sensor
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properties. In contrast, when Iin is set as a large value, the
CNMF uses loose constraints for the initialization of the NMF
unmixing to find better local optima. The CNMF algorithm for
hyperspectral and multispectral data fusion is summarized as
follows.

Algorithm: CNMF unmixing for hyperspectral and multi-
spectral data fusion
Input: Hyperspectral data X ∈ R

λh×Lh and multispectral
data Y ∈ R

λm×Lm .
Output: Two matrices W ∈ R

λh×D and H ∈ R
D×Lm .

Step 1. First NMF of X
1a) Initialize W by VCA, and update Hh by (9), with

W fixed.
1b) Optimize W and Hh by (8) and (9).

Step 2. NMF of Y
2a) Initialize Wm by (7), and update H by (11), with

Wm fixed.
2b) Optimize Wm and H by (10) and (11).

Step 3. Subsequent NMF of X
3a) Initialize Hh by (6), and update W by (8), with

Hh fixed.
3b) Optimize W and Hh by (8) and (9).

Step 4. Repeat Steps 2 and 3.

III. DATA AND EVALUATION

A. Test Data

The proposed hyperspectral and multispectral data fusion
technique is applied to three synthetic data sets generated from
real airborne hyperspectral data. The first image was taken
over Indian Pine by the Airborne Visible/Infrared Imaging
Spectrometer (AVIRIS) [37] sensor in 1996, with 224 spectral
bands in the 400–2500-nm region. The second image was also
collected by AVIRIS, taken over Cuprite, NV, in 1997. The third
image was taken over Washington DC by the Hyperspectral
Digital Imagery Collection Experiment (HYDICE) [38] sensor
in 1995, with 191 spectral bands in the 400–2500-nm region.
We selected these various scenes to evaluate the general effec-
tiveness of CNMF for spectral divergence.

We selected 240 × 240 pixel size images for all three test

data and generated the multispectral and low-spatial-resolution

hyperspectral data by downsampling the original hyperspec-

tral data in the spectral and spatial domains, respectively.

The multispectral data were produced with uniform spectral

response functions corresponding to Landsat TM bands 1–5

and 7, which cover the 450–520-, 520–600-, 630–690-, 760–

900-, 1550–1750-, and 2080–2350-nm regions, respectively

[15]. The low-spatial-resolution hyperspectral data were gener-

ated by a Gaussian PSF with full-width at half maximum, cor-

responding to six pixels in the original high-spatial-resolution

hyperspectral image, which results in a sixfold difference in

spatial resolution between two sensors. Therefore, R and S are

given as sparse matrices, with each row vector corresponding

to a uniform spectral response function and with each column

vector representing a Gaussian PSF, respectively. In addition,

Gaussian noise was added to the two data, supposing that the

signal-to-noise ratios (SNRs) of multispectral and hyperspec-

tral sensors are 200 and 300, respectively. The larger spatial-

resolution difference and the smaller SNR make the problem of

data fusion more difficult. We determined the spatial-resolution

difference and SNR of two sensors by considering the specifi-

cation of HISUI [33]. In this simulation, we assume that two

data are obtained under completely identical atmospheric and

illumination conditions and are geometrically coregistered.

B. Performance Evaluation

The performance of hyperspectral and multispectral data

fusion was evaluated by comparing the estimated high-spatial-

resolution hyperspectral data with the original data from two

viewpoints: the spatial reconstruction quality of each spectral

band image and the spectral reconstruction quality of each

spectrum at a single pixel. To evaluate the spatial reconstruction

quality, we adopted the peak SNR (PSNR), which is easily

defined via the mean square error (MSE). The MSE of the ith
spectral band image is defined as

MSEi =
1

N

N
∑

k=1

(Z−WH)2i,k (13)

where the index (i, k) indicates the kth pixel in the ith band.

The PSNR of the ith band is defined as

PSNRi = 10 · log10

(

MAX2
i

MSEi

)

(14)

where MAXi is the maximum pixel value in the ith band

image. A larger PSNR value indicates a higher quality spatial

reconstruction. To evaluate the spectral reconstruction quality,

we used the spectral angle in the λ-dimensional space between

the estimated and actual spectra. A smaller angle indicates a

higher quality spectral reconstruction. We refer to this angle as

the spectral angle error (SAE).

C. MAP/SMM Method

The MAP/SMM method is one of the most advanced data

fusion techniques that can improve the spatial resolution of

all hyperspectral band images using high-spatial-resolution

multispectral data. The average spectrum, covariance matrix,

and abundance map of each endmember are estimated by the

SMM. Next, by maximizing the conditional probability density

function of Z given by X and Y, the high-spatial-resolution

hyperspectral data can be calculated. The details of the process

are explained, and the MATLAB code is introduced in [16].

In the SMM and MAP processes, the low-spatial-resolution

hyperspectral data are transformed into the PCs, and the low-

rank PCs are mainly processed, which differs greatly from

the proposed method. We use the first six PCs, which have

a variance of more than 99.9% for an entire data cube for

all test images. Several parameters, such as the number of

endmembers, the allowable number of components for a mixed

class, and the discrete mixture level, are necessary for the

SMM. If the number of endmembers is large, the number of

sample spectra for a certain endmember decreases. This results
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TABLE I
COMPARISON OF AVERAGE PSNR (IN DECIBELS) AND SAE (IN DEGREES) VALUES, AND COMPUTATIONAL COSTS (IN SECONDS)

Fig. 2. Effect of endmember number on CNMF fusion quality for the (a) Indian Pine, (b) Cuprite, and (c) Washington DC data.
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Fig. 3. Comparisons of PSNRs between MAP/SMM and CNMF (left graphs), and typical endmember spectra estimated by CNMF (right graphs) for the
(a) Indian Pine, (b) Cuprite, and (c) Washington DC data.

in a nonsingular endmember covariance matrix, which makes

the SMM process impossible. Therefore, in this paper, we adopt

the SMM with four endmembers and 35 mixture classes that are

experimentally set as proper numbers.

IV. RESULTS AND DISCUSSION

We applied the CNMF to the three test data sets. For each

data set, we first examined the effects of the maximum number

of iterations for inner loops (Iin) and the number of endmem-

bers (D). The CNMF method depends on the initial conditions,

and VCA produces a slightly different result for each trial.

Therefore, we repeated the test ten times for each condition.

Next, we evaluated the spatial and spectral performance char-

acteristics of the fused data obtained by the CNMF in detail,

comparing the CNMF with the MAP/SMM using the best

results of the ten trials for both algorithms.

A. Constraint Strength

First, the effect of the constraint strength for the sensor

properties is examined, setting the number of iterations to two

extreme cases. To use tight constraints, the first approach sets

Iin = 1 and Iout = 1000 without update in the initialization

phase after the first NMF unmixings of the two data. The second

approach empirically sets Iin = 300 and Iout = 5 to use loose

constraints. For the first NMF unmixings of the two data, the

former adopts the same procedure with the latter. For these two

approaches, the thresholds (ε) for the convergence condition

and the number of endmembers (D) are set the same at 0.0001
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Fig. 4. Band images in the (a) 815- and (b) 1650-nm regions of low spatial resolution, original high spatial resolution, MAP/SMM, and CNMF, and the difference
between hybrid and original images from left to right for three data, i.e., (top) Indian Pine, (middle) Cuprite, and (bottom) Washington DC.

and 40, respectively. The CPU used is Intel(R) Core(TM) i7

CPU 2.80 GHz, with a memory capacity of 16 GB.

Table I shows the average PSNR and SAE values, and the

computational cost of the CNMF compared with those of the

MAP/SMM. The PSNR and SAE values are the averages of

all band images and pixels, respectively. The CNMF methods

with two different parameters show similar performance char-

acteristics in both spatial and spectral domains, outperforming

the MAP/SMM but taking a longer time. In particular, in the

former approach, the computational cost is high owing to the

large spatial transform matrix (S ∈ R
Lm×Lh). When applied to

real data, S and R contain errors since it is a challenging issue

to estimate the relationship of two sensor properties. Therefore,

the latter approach, which uses (6) and (7) fewer times, is

practically effective. Hereafter, we adopt the CNMF algorithm

of setting Iin = 300 and Iout = 5 to examine the effect of D,

and we compare its performance in more detail with that of the

MAP/SMM.

B. Number of Endmembers

Fig. 2 shows the changes in PSNR and SAE relative to the

number of endmembers for three data sets. The error bars show

one standard deviation error. As a common tendency, the per-

formance of CNMF improves with an increase in the number of

endmembers and finally saturates. This is reasonable because a

linear combination of more varying endmember spectra enables

a more accurate expression of all pixel spectra in the data until
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the endmember variety becomes sufficient. The optimum D can

be larger than the actual number of pure materials in the scene

because the endmember matrix W contains shade and mixed

material endmember spectra owing to the abundance sum-to-

one constraint. The simulation of the Indian Pine data shows

a convergence at approximately D = 40 in two criteria. In the

case of the Cuprite data, both criteria show a faster convergence,

and the SAE value is small. In contrast, for the Washington DC

data, both criteria converge slowly, and the SAE value is large.

These results indicate that the number of endmembers and

the final performance depend on scene complexity. The larger

the number of endmembers is, the higher is the computational

cost. In this paper, we set D = 40 as a sufficient number that

demonstrates the performance of the CNMF compared with the

MAP/SMM in reducing the computational cost.

C. Spatial Performance

The left graphs in Fig. 3 show the PSNR values for all

hyperspectral wavelength regions, with the multispectral obser-

vation region indicated above the graphs. The right graphs in

Fig. 3 show the typical endmember spectra of all of the data

sets. For all of the data sets, the CNMF shows comparable or

better results than the MAP/SMM in many spectral regions. In

most multispectral wavelength regions, the CNMF outperforms

the MAP/SMM. This proves that the CNMF can accurately

estimate the endmember spectra W and the abundance

fractions H simultaneously. The difference between the two

methods is particularly significant in the short-wave infrared

wavelength regions that correspond to Landsat TM bands 5 and

7, which contribute less to the low-rank PCs transformed from

the low-spatial-resolution hyperspectral data, owing to a rela-

tively low radiance for all of the data sets. The MAP/SMM is

limited in improving the spatial resolution of these wavelength

regions because this method enhances only the low-rank PCs. In

contrast, since the CNMF is processed in the original data space

based on unmixing, it enables the improvement of the spatial

resolution in all spectral regions. In the wavelength regions not

covered by the multispectral data, the PSNR values for the two

methods are relatively low and show no significant difference.

This indicates that resolution enhancement is limited without

high-spatial-resolution information.

The four column images at the left side of Fig. 4(a) and

(b) show the comparisons of band images, respectively, in the

815- and 1650-nm regions between the low-spatial-resolution

hyperspectral image, the original high-spatial-resolution hy-

perspectral image, and the hybrid images estimated by the

MAP/SMM and CNMF. We choose these spectral regions as

representative regions where the difference in PSNR between

the two methods is small and large, respectively. It is difficult

to determine the differences between the original image and

most of the CNMF and MAP/SMM images with the naked eye.

Therefore, we show the radiance difference images between the

original images and two hybrid images in the two columns at

the right side of Fig. 4. For each datum, the difference images

are stretched to the same range. The difference images of the

MAP/SMM seem to be random noise images, and the noise

variance is larger than that of the CNMF. In the MAP/SMM,

Fig. 5. Histograms of SAE with SAE distribution maps for the (a) Indian Pine,
(b) Cuprite, and (c) Washington DC data.

the high-rank PCs of the low-spatial-resolution hyperspectral

data, which can be approximated as the random noises, are

not processed. Therefore, it is not possible to increase their

resolution, and they remain in the fused data and appear in

the difference images. In contrast, the image texture is often

reflected in the difference images of the CNMF. The accuracy

of the estimated endmember spectra affects the reconstruction

error of unmixing at each pixel. Therefore, the estimation errors

of the CNMF fused data depend on the observed materials, and

the image textures appear in the difference images.

D. Spectral Performance

Fig. 5 shows the histograms of SAE [14], [39] and the SAE

distribution maps [39]. In these histograms, the CNMF shows

comparable or lower spectral errors than the MAP/SMM. As

summarized in Table I, while enhancing the spatial resolution

of all of the hyperspectral band images, both methods achieve

an accuracy of approximately one degree, which allows the

accurate identification and classification of an observed area
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[39]. The CNMF causes a small spectral distortion owing to

the unmixing-based algorithm that is clearly different from

pan sharpening algorithms [9], [10]. Since the CNMF en-

ables the increase in the number of endmembers compared

with the MAP/SMM, it can deal with spectrally more varied

scenes.

The SAE distribution maps demonstrate the property differ-

ence between the two fused data. The image textures appear

in the CNMF SAE maps owing to the approximation error of

NMF unmixing that depends on the radiance value, which is

also demonstrated in the spatial performance evaluation. The

MAP/SMM SAE maps relatively show a slightly high value

but are less affected by the radiance information owing to the

probabilistic approach with the Gaussian noise assumption.

V. CONCLUSION

In this paper, we have proposed the CNMF algorithm for

hyperspectral and multispectral data fusion. By alternately ap-

plying NMF unmixing to low-spatial-resolution hyperspectral

and high-spatial-resolution multispectral data, the hyperspectral

endmember and high-spatial-resolution abundance matrices are

obtained. By combining these two matrices, fused data with

both high spatial and spectral resolutions can be obtained. The

sensor observation models that relate the two different data

are used for the initialization of each NMF step. Therefore,

for a practical utility, it is important to determine the sensor

properties, such as the PSF and spectral response function. The

CNMF is physically straightforward and easy to implement

owing to its simple update rules. In addition, it can deal

with spectrally varying scenes by setting a large number of

endmembers. In the simulations with various image data sets,

such as those of vegetation, mineral, and urban with vegetation

and water, the CNMF showed comparable or better results than

the MAP/SMM, which is one of the most advanced existing

algorithms. The high qualities of the CNMF fused data in both

the spatial and spectral domains can contribute to the accurate

identification and classification of materials observed at a high

spatial resolution.
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