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Abstract. Over the last couple of years, machine learning

parameterizations have emerged as a potential way to im-

prove the representation of subgrid processes in Earth system

models (ESMs). So far, all studies were based on the same

three-step approach: first a training dataset was created from

a high-resolution simulation, then a machine learning algo-

rithm was fitted to this dataset, before the trained algorithm

was implemented in the ESM. The resulting online simu-

lations were frequently plagued by instabilities and biases.

Here, coupled online learning is proposed as a way to combat

these issues. Coupled learning can be seen as a second train-

ing stage in which the pretrained machine learning param-

eterization, specifically a neural network, is run in parallel

with a high-resolution simulation. The high-resolution sim-

ulation is kept in sync with the neural network-driven ESM

through constant nudging. This enables the neural network

to learn from the tendencies that the high-resolution simula-

tion would produce if it experienced the states the neural net-

work creates. The concept is illustrated using the Lorenz 96

model, where coupled learning is able to recover the “true”

parameterizations. Further, detailed algorithms for the imple-

mentation of coupled learning in 3D cloud-resolving models

and the super parameterization framework are presented. Fi-

nally, outstanding challenges and issues not resolved by this

approach are discussed.

1 Introduction

The representation of subgrid processes, especially clouds,

is the main cause of uncertainty in climate projections and

a large error source in weather predictions (Schneider et al.,

2017b). Models that explicitly resolve the most difficult pro-

cesses are now available but are too expensive for opera-

tional forecasting. Machine learning (ML) has emerged as

a potential shortcut which would allow using short-term,

high-resolution simulations in order to improve climate and

weather models. However, two issues have plagued all ap-

proaches so far. First, simulations with neural networks

turned out to be unstable at times. Second, even if stable, the

resulting simulations had biases compared to the reference

model. In pre-ML climate model development, biases were

reduced by manual tuning of a handful of well-known pa-

rameters (Hourdin et al., 2017). With thousands of nonphysi-

cal parameters in a neural network, this is no longer possible.

In this paper, I propose coupled online learning as a potential

mechanism to tackle these two issues and illustrate the prin-

ciple using the two-level Lorenz 96 (L96) model, a common

(but probably too simple) model of multiscale atmospheric

flow (Lorenz, 1995)1.

1Confusingly, even though the paper appears to have been pub-

lished in 1995, most people refer to the model as the Lorenz 96

model.
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2 Review of online machine learning parameterizations

Over the last couple of years, several attempts have been

made to build ML subgrid parameterizations, all of which

followed a similar approach (Fig. 1). The first step is to cre-

ate a training dataset from a reference simulation. In step

two, this dataset is then used to train a ML algorithm. After

training, the predictions of the algorithm can then be com-

pared offline against a validation dataset. Promising offline

results have been obtained for a number of subgrid processes

(Krasnopolsky et al., 2013; Bolton and Zanna, 2019). Step

three is to implement the ML algorithm in the climate model

code where it replaces the traditional subgrid schemes and

is coupled to the dynamical core and non-ML parameter-

izations. These hybrid models are then integrated forward

in what I will call online mode. The first study to imple-

ment an online ML parameterization was done by Chevallier

et al. (2000) who successfully emulated the ECMWF radia-

tion scheme. More recently, three studies have implemented

all three steps for moist convection in the context of an atmo-

spheric model (Brenowitz and Bretherton, 2018; O’Gorman

and Dwyer, 2018; Rasp et al., 2018). Note that all of these

three studies used a simplified aquaplanet world, and the ML

parameterizations only included the most important variables

in their input/output vectors. Cloud water and ice, for exam-

ple, were omitted for the sake of simplicity.

2.1 Rasp et al. (2018) – super-parameterization with a

neural network

The three attempts differ in training data and ML algo-

rithms used. In Rasp et al. (2018, RPG18), we used a

super-parameterized climate model, the Super-Parameterized

Community Atmosphere Model (SPCAM) as our train-

ing model (Khairoutdinov and Randall, 2001). In super-

parameterization (SP), a 2D cloud-resolving model (CRM;

1x = 4 km) is embedded in each global circulation model

(GCM; 1x ≈ 200 km, 1t = 30 min) grid column. The CRM

handles convection, turbulence and microphysics, while ra-

diation2, surface processes and the dynamics are computed

on the GCM grid as usual. Compared to a global 3D CRM,

SP is obviously less realistic but has several conceptual and

technical advantages. First, subgrid- and grid-scale processes

are clearly separated, which makes it easy to define the pa-

rameterization task for a ML algorithm. Second, because the

CRM lives in isolation, it exactly conserves certain quanti-

ties (e.g., energy and mass). A third, very practical advantage

is that SP simulations are significantly cheaper than global

3D CRMs. In our study we trained a deep neural network to

emulate the CRM tendencies. The offline validation scores

were very encouraging (Gentine et al., 2018) even though

the deterministic ML parameterization was unable to repro-

duce the variability in the boundary layer. When we subse-

2In some SPCAM versions radiation is computed on the CRM

grid.

quently implemented the ML parameterization in the climate

model and ran it prognostically (online), we managed to en-

gineer a stable model that produced results close to the orig-

inal SP-GCM. However, small changes, either to the train-

ing dataset or in the input and output vectors, quickly led

to unpredictable blow-ups. In these cases the network would

output increasingly unrealistic tendencies at individual grid

columns. Further, some biases to the reference model were

evident (Fig. 1 in RPG18).

2.2 Brenowitz and Bretherton (2018) – Global 3D

CRM with a neural network

Brenowitz and Bretherton (2018, BB18) (extended in

Brenowitz and Bretherton, 2019) used a 3D CRM (1x =

4 km, 1t = 10 s) to create their reference simulation. This re-

quires an additional spatial and temporal coarse-graining step

to generate the training data for a ML parameterization for

a coarser-resolution model (in their case 1x = 160 km and

1t = 3 h). The challenge is to find the apparent subgrid ten-

dencies. BB18 computed the subgrid tendency
(

∂φ/∂t
)

sg
of

an arbitrary variable φ (e.g., temperature or humidity) as the

residual of the total coarse-grained tendency and the coarse-

grained advection term as follows:

∂φ

∂t
︸︷︷︸

Total coarse-grained
tendency

+ v · ∇ φ
︸ ︷︷ ︸

Coarse-grained
advection

=

(

∂φ

∂t

)

sg

, (1)

where v is the 3D wind vector. This coarse-graining proce-

dure assumes that the coarse-grained advection term closely

resembles the dynamics of the coarse-grid GCM. This as-

sumption might not be true in many cases. Further, the resid-

ual “sub-grid” terms do not obey any conservation con-

straints.

BB18 then fitted a neural network to the coarse-grained

data, which produces good results in offline mode. In on-

line mode, however, they also experienced instabilities.

Brenowitz and Bretherton (2019) identified unphysical cor-

relations learned by the network as the cause for the instabil-

ities and used two fixes to produce stable longer-term sim-

ulations. The first fix is to cut off upper levels from the in-

put vector. The second fix involves a multi-time-step loss

function that integrates the network predictions forward in

a single-column model setup. This essentially penalizes un-

stable feedback loops. Despite these improvements, the sim-

ulation drifts, potentially as a result of the coarse-graining

issues mentioned in the previous paragraph. For a further ex-

ploration of the instabilities see Brenowitz et al. (2020).

2.3 O’Gorman and Dwyer (2018) – traditional

parameterization with a random forest

The third online parameterization by O’Gorman and Dwyer

(2018) uses a traditional parameterization as reference. For
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Figure 1. Schematic overview of ML parameterization workflow with and without coupled online learning.

cloud parameterizations, this is mainly a proof of con-

cept. For other, computationally expensive parameteriza-

tions, such as line-by-line radiation parameterizations, pure

ML emulation is a promising target. As with our super-

parameterization, this way the parameterization task is

clearly defined. The main difference between O’Gorman and

Dwyer (2018) and RPG18 and BB18 is the ML method: a

random forest (Breiman, 2001). Rather than learning a re-

gression, as neural networks do, random forests essentially

learn a multidimensional lookup table. Advantages of this

approach are as follows. (1) The predictions of a random for-

est are limited by what it has seen in the training dataset.

This means it cannot produce “unphysical” tendencies which

could lead to model blow-ups. (2) Since the training data

obey physical constraints, so will the random forest predic-

tions by default3. Comparing the results of O’Gorman and

Dwyer (2018) to RPG18 or BB18, it also seems like ran-

dom forests are competitive with neural networks for the

parameterization problem. Note also a recently published

follow-up paper (Yuval and O’Gorman, 2020) in which the

authors trained a random forest from coarse-grained CRM

data. Their coarse training procedure differs from that in

BB18 since it makes direct use of the parameterized tenden-

cies. Here, I will not further discuss random forests, since

they do not lend themselves to incremental online learning

in their most common implementations. Note, however, that

there are online learning algorithms for random forests (Saf-

fari et al., 2009).

3 Coupled online learning – the general concept

Coupled online learning is essentially a second training step

after the first offline training on a reference dataset. The basic

3That is, at least to a good degree of approximation. Predictions

of decision trees and therefore also random forests are averages over

several training targets. Each target will perfectly obey constraints.

Since the conservation constraints are likely nonlinear, an average

does not necessarily keep this property but probably comes close.

idea of coupled learning is to run the low-resolution model

with the machine learning parameterization (ML-LR) model

in parallel with the high-resolution (HR) model and train the

network every or every few time steps (3b in Fig. 1)4. The HR

model is continuously nudged towards the LR model state,

keeping the two simulations close to each other. How close

the two runs are depends on the nudging timescale τnudging.

A small nudging timescale forces the models closer together,

but the HR model might respond unrealistically or eventually

blow up if the nudging is too strong. Assuming that the HR

and LR model state are close together, this method allows the

ML parameterization to see what the HR model would do if

it lived in the ML-LR model world. This should help in re-

ducing biases and preventing instabilities. Take as an exam-

ple a neural network parameterization that develops an un-

stable feedback loop and starts producing highly unrealistic

tendencies. With offline learning only, the model will even-

tually blow up. In coupled learning, such unrealistic predic-

tions would result in large losses. In the next gradient descent

step the network will learn not to produce such tendencies

any more. The hope is that during this coupled learning phase

the errors of the network will become smaller and smaller, so

that eventually the ML-LR model can be run without super-

vision. Ideally, one could intermittently turn on the “super-

vising” HR model for cases where the ML parameterization

starts to produce undesired tendencies. However, one has to

consider that HR models require a spin-up phase, which pro-

hibits immediate deployment from a cold start. This problem

might be less pronounced in the case of an embedded HR

model (as in SP) but nevertheless motivates the approach in

this paper of continuously running the two models in parallel.

The instability issues in previous studies can also be seen

as a consequence of overfitting to the reference simulation

4A note on the terminology: I will use the terms HR (high-

resolution) and LR (low-resolution) here when speaking about the

general algorithm. When talking specifically about atmospheric sci-

ence applications, I will use the more common terms CRM and

GCM.
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Figure 2. Evolution of a tracer φ during one LR model time step.

This schematic applies the L96 and 3D HR model case.

used for training. Once the ML parameterization is coupled

to the LR model it will create its own climate, which likely

lies somewhat outside the training manifold. This can easily

lead to problems because neural networks struggle to extrap-

olate beyond what they have seen during training. Coupled

learning combats this problem by extending the training with

HR targets for each state that the ML-LR model produces.

The algorithmic details of coupled learning differ depend-

ing on the exact model setup. The main contribution of this

paper will be to describe coupled learning algorithms for

the simple L96 model as well as global 3D HR models

and SP models. To understand how coupled learning ac-

tually works it is helpful to draw diagrams for the evolu-

tion of a tracer φ (e.g., temperature) at one grid point dur-

ing one LR model time step. I will start with the case of

the 3D HR setup, which also applies to the L96 model (see

Fig. 2 for notation; for more technical details refer to Algo-

rithms 1 and 2). At the beginning of the time step, φ will

generally have different values in the LR and HR model

(the HR values are coarse-grained to the LR model grid).

The difference 1φ = LR−HR is used to compute the nudg-

ing tendency5 1φ/τnudging, which is constant during the HR

model integration. The total increment from nudging then is

1φnudging = 1φ/τnudging · 1tLR. In addition to the nudging

increment, the HR model also evolves on its own. Assum-

ing that during this short time interval the nudging and the

HR-internal evolution (i.e., the HR increment that would be

in the absence of nudging) are independent, the state of the

HR model at the end of the LR model time step (HR′) is a

linear superposition6. The “assumed” HR-internal increment

can be computed as 1φHR-internal = HR′−HR−1φnudging. In

the meantime, the LR model will first execute its dynamical

5Note that “tendencies” are defined per unit of time, while “in-

crements” are tendencies multiplied by a time step.
6I will call this the linear superposition assumption in the rest

of the paper.

core and any other parameterizations that are not represented

by a ML algorithm7. The resulting state is LR′. Then the ML

parameterization will be called, and the resulting tendencies

will be added to give LR′′ = LR′ +P(LR). One open ques-

tion is whether the input to the ML parameterization should

be LR or LR′. In this study LR is used, but the differences are

small. If the ML-LR model was a perfect emulation of the

HR model, the total LR increment LR′′−LR should be equal

to the HR increment 1φHR-internal. Therefore, the target for

the parameterization is y = 1φHR-internal − (LR′ − LR). And

the mean squared error loss is L =
1
N

∑

i(y −P(LR))2. The

ML parameterization is then optimized every few time steps.

4 Parameterization experiments using the Lorenz 96

model

4.1 The L96 model

The L96 model (Lorenz, 1995) is an idealized model of

atmospheric circulation that, in its two-level variant, has

been extensively used for parameterization research (Wilks,

2005; Crommelin and Vanden-Eijnden, 2008). Here, I use

the model as described in Schneider et al. (2017a). Briefly,

the model consists of a slow variable Xk (k = 1, . . .,K) and

a coupled fast variable Yj,k (j = 1, . . .,J ).

dXk

dt
= −Xk−1(Xk−2 − Xk+1)
︸ ︷︷ ︸

Advection

−Xk
︸︷︷︸

Diffusion

+F
︸︷︷︸

Forcing

−hcY k
︸ ︷︷ ︸

Coupling

(2)

1

c

dYj,k

dt
= −bYj+1,k(Yj+2,k − Yj−1,k)
︸ ︷︷ ︸

Advection

−Yj,k
︸ ︷︷ ︸

Diffusion

+
h

J
Xk

︸ ︷︷ ︸

Coupling

(3)

Here, the overbar denotes an average over all J fast variables

for a given K . Both, X and Y are periodic. K = 36, J = 10,

h = 1 and F = c = b = 10. These parameters indicate that

the fast variable evolves 10 times faster than the slow variable

and has one-tenth of the amplitude. A Runge–Kutta fourth-

order scheme with a time step of 0.001 is used to integrate

these equations. The one-level model consists only of Eq. (2)

without the coupling term on the righthand side8.

For parameterization research, X represents the large-

scale, resolved variables, whereas Y represents the small-

scale, unresolved variables. The job of a parameterization P

is to approximate the coupling term in the X equation:

−hcY k := Bk ≈ P(Xk). (4)

The parameterization task is shown in Fig. 3. Here, I only

consider deterministic parameterizations that are local in

7Typically, in a LR model time step the physics is run before the

dynamics. But where the time step starts and ends is arbitrary, so

the two can be switched without problems.
8For animations of the L96 system, see https://raspstephan.

github.io/blog/lorenz-96-is-too-easy/, last access: 6 May 2020.
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Figure 3. Blue dots are data points from a reference simulation with

the real L96 parameters. The solid orange and green lines are the

linear regression and neural network parameterization fitted to this

data. The red dots are data points from the L96 simulations with

“wrong” parameter values used for pretraining. The dashed lines

are the parameterization fits for these wrong values, which serve as

a starting point for the coupled learning experiments.

space and time. Studies (Wilks, 2005; Dueben and Bauer,

2018; Pathak et al., 2018; Bocquet et al., 2019) suggest that

nonlocal and stochastic parameterizations achieve better re-

sults. However, the focus here is on developing a learning

algorithm rather than achieving building the best parameter-

ization, which is why I opted for the simplest setup.

4.2 Machine learning parameterizations

Two parameterizations will be considered: a linear regression

and a neural network. The linear regression case is easily

interpretable and helps to illustrate the learning procedure,

while the neural network is a more realistic case.

The linear regression parameterization looks as follows:

Bk = aXk + b. (5)

When fitted to the points shown in Fig. 3, a = −0.31 and

b = −0.20.

Neural networks consist of one or multiple layers of

linearly connected nodes, modified by nonlinear activation

functions9. Here, I use a neural network with two hidden

layers of 32 nodes in between the input and output layer,

which both have size 1. The total number of parameters is

1153. The hidden layers are passed through an exponential

linear unit (ELU) activation function. A neural network fit to

real data is also shown in Fig. 3.

9For a great introduction to neural networks, see Nielsen (2015).

4.3 Coupled online learning

To mimic the situation in a real climate model where the

parameterization would first be pretrained offline on a tra-

ditional parameterization, super-parameterization or coarse-

grained dataset, a training dataset using the full L96 equa-

tions but with different parameters was created as follows:

F = 7, h = 2 and c = b = 5. The resulting, “wrong” data

points along with the linear regression and neural network

parameterizations are also shown in Fig. 3.10

Algorithm 1 outlines the workflow for coupled learning

in the L96 framework. There are several hyper-parameters.

First, we have the time steps 1tHR and 1tLR. In the easiest

case, they are the same. However, more realistically, the HR

model has a finer time step than the ML-LR model. For the

experiments here, I used N = 10, i.e., 1tML = 0.01.

10All experiments were done in a Jupyter notebook that can be

launched via Binder from the GitHub repository at https://github.

com/raspstephan/Lorenz-Online (last access: 6 May 2020). There,

an interactive instance of the notebook can be run in the cloud.

www.geosci-model-dev.net/13/2185/2020/ Geosci. Model Dev., 13, 2185–2196, 2020
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Figure 4. (a) Evolution of linear regression parameters a (slope) and b (intercept). An iteration on the x axis corresponds to one gradient

descent update, which in this case is equal to 10 ML-LR model time steps. (b) Evolution of the neural network parameterization starting with

the wrongly pretrained fit. See the Jupyter notebook for an animated version of this.

The experiments indicate that coupled learning works well

in both cases (see Jupyter notebook; Fig. 4). One slight differ-

ence is that the learned linear regression intercept parameter

b is slightly different from the reference in the case where the

HR time step is smaller. This is likely an indication that the

linear superposition assumption during the HR integration is

not perfect. However, the differences are very small.

Another hyper-parameter is the update frequency of the

neural network M . The experiments show that updating ev-

ery time step causes the parameters to change a lot during

every update step. This is likely because the batch, which has

size m, is only a small sample of the parameter space that is

also potentially correlated. To combat this, we can gather the

features and targets over several ML-LR model time steps be-

fore doing an update step. Here, I used M = 10. This results

in significantly smoother parameter convergence. Another

potential advantage of updating only every few time steps is

that the ML model can evolve more freely, thereby covering a

larger fraction of the state space. At the extreme end, setting

M to an infinitely large value amounts to not learning dur-

ing the simulation and simply collecting the training data in

F and T . Theoretically one could do this and then train the

ML parameterization offline after the simulation. However,

with a nudging timescale greater than the model time step

(see discussion in the next paragraph), the collected training

data do not represent the true fit (see experiments in Jupyter

notebook).

Finally, the nudging timescale τnudging has an impact on

the fit. When the timescale is equal to the time step of the

LR model, the HR model will be fully pulled towards the LR

state. This works well for the L96 model, but for complex

ESMs this nudging will likely throw the HR model too much

off its attractor because the ML-LR model will exhibit dif-

ferent dynamics, particularly at the start of learning. It is also

common practice to use larger nudging timescales for GCMs

(e.g., 24 h in Bretherton et al., 2019). Weaker nudging, how-

ever, means that the HR and LR states at the beginning of the

time step are further apart, which introduces an error. If the

nudging timescale is too large, the ML targets will eventually

become meaningless (see sensitivity experiments in the ac-

companying Jupyter notebook). For the experiments shown

in Fig. 4, τnudging = 0.1 = 101tLR.

The same algorithm can be used to train much more com-

plicated parameterizations such as a neural network (Fig. 4b).

The X–B curve gradually approaches the one learned offline

using data generated with the correct L96 parameters. One

final note on the L96 experiments: I did not exhaustively

search for the best combination of hyper-parameters because

the L96 experiments mainly serve as proof of concept. For

coupled learning in a real modeling setup, the parameters are

likely very different.

4.4 Purpose and limitations of L96 experiments

The L96 model, while commonly used to test parameteri-

zation and data assimilation approaches, only represents a

small fraction of the challenges that algorithms are faced

with in real GCMs. In particular, L96 does not exhibit any of

the issues that require a coupled learning approach in the first

place; an offline parameterization for the L96 model is stable

and does not show major biases. The purpose of demonstrat-

ing the method using the L96 model is mostly a sanity check.

Having confirmed that coupled learning works in this simple

framework now gives us more confidence to try to apply it

for more complex systems.

Geosci. Model Dev., 13, 2185–2196, 2020 www.geosci-model-dev.net/13/2185/2020/
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5 Algorithms for online learning in the

super-parameterization and 3D HR frameworks

In this section, I will outline how coupled learning algorithms

can be applied to 3D CRMs and super-parameterized GCMs.

5.1 3D high-resolution models

The 3D HR case is similar to the L96 setup (Algorithm 2).

The key difference is that the scale separation is not clearly

defined as in L96 or SP, but rather downscaling (coarse-

graining) and upscaling are required to get the HR state on

the LR model grid and, reversely, apply the forcing term,

which is computed on the LR model grid, in the HR model.

Issues with this will be further discussed in Sect. 6. The other

difference between Algorithms 1 and 2 is the way the gra-

dient update is computed. In the L96 case the features and

targets are stored in memory. This is unpractical for the HR

setup since it requires storing several 3D fields over several

time steps. Rather, in Algorithm 2 the gradients are computed

directly at each time step and collected in a single gradient

vector G, which is then used to update the parameters every

M steps. This also allows computing the gradients locally on

each node and then collecting them. The size of G is equal to

the number of network parameters and, therefore, manage-

able. There is also no explicit batch size in this version of

the algorithms. Rather, the batch size is implicitly given by

M × K .

One major conceptual difference of the 3D HR case from

SP (see below) lies in what is actually learned by the neural

network during coupled learning. In SP, the CRM is purely

responsible for clouds and turbulence, while a 3D HR model

also evolves globally according to its own set of physics.

What this means is that the neural network essentially learns

a subgrid correction term that compensates for everything(!)

missing from the LR model dynamics and non-ML physics in

comparison to the HR model (HR′ → LR′′ in Fig. 2). So even

if all parameterizations except for convection are present in

the LR, the network will not only learn convective tenden-

cies. On the one hand, this is exactly what is required to get

the LR closer to the expensive HR simulation. On the other

hand, this makes the interpretation of what the network does

a little more complicated.

5.2 Super-parameterization

Similar to L96, SP has the advantage of a clean scale separa-

tion, which makes the parameterization learning task easier.

It also provides a good framework for coupled learning

since SP already has the LR model and the embedded CRMs

running in parallel. Because the embedded CRMs do not

have any large-scale dynamics on their own, the time step

schematic in Fig. 5 looks different from Fig. 2. In contrast

to regular SP, the LR model state is not set to the CRM

state after the CRM integration. Instead, the LR model

evolves on its own according to the ML physics, and the

difference between CRM′ and LR′ is the loss to minimize.

Algorithm 3 describes coupled learning specifically for

super-parameterized models like SPCAM. The interactions

between the LR model and CRM are already contained in

the CRM function call. This means that only few changes

to the code are required: the neural network forward and

backward passes have to be implemented, in addition to the

optimizer and the communication of the gradients between

the threads.

www.geosci-model-dev.net/13/2185/2020/ Geosci. Model Dev., 13, 2185–2196, 2020



2192 S. Rasp: Coupled learning

Figure 5. Evolution of a tracer φ during a regular SP step in (a) and for coupled learning in (b).

6 Discussion

6.1 Which variables have to be forced/predicted by the

neural network?

In the three original ML parameterization studies, of the

prognostic variables, only temperature and humidity were

used in the input and output. This was done to reduce the

complexity of the problem to the fewest prognostic variables

necessary to produce a general circulation. In coupled learn-

ing, the variables used by the ML parameterization also have

to be forced in the HR model. The HR model will typi-

cally have many more prognostic variables compared to the

LR model (e.g., hydrometeors), but it is alright for those to

evolve without forcing. In fact, this might be necessary since

the HR and LR models might have different prognostic vari-

ables. This is the case in SP where only the LR model prog-

nostic variables are forced during CRM integration. If the

variables predicted by the neural network differ, for example

temperature vs. moist static energy, an additional conversion

step has to be added to the up- and downscaling described

below.

So theoretically coupled learning should work fine even

if only temperature and humidity are forced/predicted. How-

ever, there are reasons for going beyond this. First, it is likely

that the network skill suffers from not having information

about, e.g., cloud water. We saw this in RPG18 where the

network was essentially unable to produce a shallow cloud

heating signature in the subtropics. Second, to implement

physical constrains it is necessary to add more variables in

order to close the conservation budgets, which we will dis-

cuss now.

6.2 Physical constraints

A major critique of machine learning and especially neural

network parameterizations is that they do not obey physical

constraints. However, Beucler et al. (2019) recently showed

that it is possible to encode physical constraints in neural net-

works if the conservation equations are known. There are two

ways of doing so. First, violation of constraints can be added

to the loss term during neural network training. This does

not guarantee that the constraints are exactly obeyed, partic-

ularly outside of the training regime, but in practice might

come close. The second method is to hard-code the conser-

vation constraints into the last layers of the neural network.
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This ensures exact conservation and has been shown to only

hurt skill of the network slightly.

One downside of implementing physical constraints in

Beucler et al. (2019) is that it requires predicting all prognos-

tic variables that occur in the conservation budget equations.

In effect, this increased the size of the output vector from

65 in RPG18 to 218. This now also includes variables that

we might not actually care about like the snow storage term.

Anecdotally, more variables also means more potential for

things to go wrong, e.g., instabilities to develop. One possi-

bility to reign in this complexity in offline and coupled learn-

ing is to omit some of these terms from the output vector and

simply set them to zero in the budget equations. While this

makes it impossible for the network to exactly reproduce the

target (where all terms of the budget equation are used), this

essentially forces the network to make the closest prediction

to the target that lies on its own manifold of physically con-

serving solutions. If the omitted terms are small, this should

still yield good results.

When using coarse-grained HR output as training data as

in BB18, the residuals (Eq. 1) do not obey any conservation

relations. In coupled learning, however, physical constraints

could still be encoded. All one needs to know is the budget

equations valid on the LR model grid, i.e., the equations a tra-

ditional parameterization would also obey. The network will

then learn the best physically conserving subgrid correction

term to bring the LR model closer to the HR model.

6.3 Up- and downscaling

Another issue is how to convert 3D fields from the LR model

to the HR grid and vice versa. I already mentioned down-

scaling or coarse-graining along with some issues in the con-

text of discussing BB18. For coupled learning in the 3D HR

setup (Algorithm 2) a downscaling algorithm D is required

to transform the HR state xHR to the LR model grid to com-

pute the ML targets. Upscaling U is used to apply the forcing

term, which is computed on the LR model grid, in the HR

model. The simplest method for downscaling is to simply

average the HR values onto the LR model grid and interpo-

late if necessary. In signal processing this is the equivalent of

applying a rectangular filter, which potentially leads to alias-

ing. It might be worth investigating common filtering meth-

ods, such as using a Gaussian low-pass filter11. For upscal-

ing, simply taking the LR model grid value that corresponds

geographically to each HR grid point will results in sharp

boundaries for the HR forcing field. A different way would

be to use a smoother interpolation function, for example a

spline. In practice, how problematic sharp boundaries in the

forcing would be is hard to say without trying it out. Note

also that up- and downscaling are done in operational data

11See https://dsp.stackexchange.com/questions/6313/

low-pass-filter-parameters-for-image-downsampling (last ac-

cess: 6 May 2020) for a related discussion.

assimilation, for example 4DVAR, where the adjoint model

is run on a lower resolution.

6.4 Technical challenges

Depending on the setup, there are some daunting technical

challenges for the implementation of coupled learning. SP-

CAM represents the easiest case because it already has the

embedded CRMs running in parallel with the LR model with

coupling. The key challenge here would be the implementa-

tion of the neural network forward and backward pass. We

have already implemented the forward pass in RPG18 by

hard-coding it in Fortran. This works but is error-prone, hard

to debug and cumbersome. Backpropagation along with a

modern gradient descent algorithm like Adam (Kingma and

Ba, 2014) would add to the complexity. Another option is to

call Python from Fortran12, but this is potentially slow. Fur-

ther, since the network parameters are global, the gradient

descent step has to happen globally as well requiring com-

munication between the nodes. The Python–Fortran interface

currently is a major obstacle in ML parameterization research

that begs for a simpler solution.13.

For the 3D HR setup, in addition to the neural network

implementation and the up- and downscaling issues, coupled

learning requires two models to be run in parallel communi-

cating every few time steps. This potentially requires quite

a lot of engineering. My guess is that a successful and rela-

tively quick implementation of coupled learning requires ex-

tensive working knowledge of the atmospheric models used.

6.5 How efficient is the online learning algorithm?

Running a HR model is expensive. Therefore, it is essen-

tial that the coupled learning algorithm is efficient enough

to learn from a limited number of coupled HR simulations.

To judge this, L96 is a bad toy model because it is so far

removed from the actual problem. On the one hand, the pa-

rameterization task is exceedingly easy (one input, one out-

put). On the other hand, it has 32 “LR” grid points, while

a 2◦ global LR model has more than 8000, yielding a much

larger sample for each gradient descent update. Further, there

are a large range of hyper-parameters to tune. For a dry

run, one could use a network trained offline on a reference

dataset and then simulate coupled training by using a differ-

ent, non-shuffled dataset (e.g., the +4 K run from RPG18).

This should provide guidance for choosing hyper-parameters

and give a rough estimate of how many iterations are re-

quired.

12See Noah Brenowitz’s blog post at https://www.noahbrenowitz.

com/post/calling-fortran-from-python/ (last access: 6 May 2020).
13CLIMA might be just that eventually; see https://github.com/

climate-machine/CLIMA (last access: 6 May 2020) or alternatively

the Sympl and CliMT frameworks (Merwin Monteiro et al., 2018).
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7 Conclusions

Coupled learning is a potential method to combat some of the

main obstacles in ML parameterization research: instabilities

and tuning. In this paper my aim was to present the algo-

rithms and challenges as clearly as possible and demonstrate

the general feasibility in the L96 case. The next step will be

to test coupled learning in a more realistic framework. Some

open questions are as follows. How much weight should be

given to new samples, particularly if the tendencies are sub-

stantially chaotic? Are the HR and ML-LR model guaranteed

to converge? Will the linear superposition assumption break

down if the forcing becomes too large? How should situa-

tions be handled where the model crashes after all? Finally,

coupled learning can only fix short-term prediction errors,

which raises the question of to which degree this would lead

to a decrease in long-term biases?

There are a number of problems with ML parameteriza-

tions that coupled learning cannot address. First and fore-

most for climate modeling is generalization, i.e., the ability

of a neural network parameterization to perform well outside

its training regime. Neural networks are essentially nonlinear

regression algorithms and should not be expected to learn

anything beyond what they have encountered during train-

ing (Scher and Messori, 2019). The research area of learning

physical laws with deep learning is still in its infancy. For this

reason Schneider et al. (2017a) advocated sticking to physi-

cally motivated parameterizations and improving the tuning

process. Note that coupled learning can still be used to tune

parameters in existing parameterizations if they are coded up

in differentiable fashion.

Another issue unsolved by coupled learning is stochastic-

ity. Any deterministic ML model that minimizes a mean error

will be unable to represent random fluctuations in the train-

ing dataset. This leads to smoothed out predictions. The case

for stochastic parameterizations has been growing steadily,

(Berner et al., 2015; Palmer, 2019) raising the question of

how stochasticity can be incorporated into ML parameteri-

zations. Two possible approaches could be using generative

adversarial networks (GANs; Gagne et al., 2020) or using a

parametric distribution14. How to combine coupled learning

with GANs, however, is not readily apparent.

Finally, high-resolution models might be better than coarse

models, but they still are not the truth. Our best knowledge

of the true behavior of the atmosphere comes from obser-

vations. The problem is that observations are intermittent in

space and time and, in the case of remote sensing, indirect.

So how to learn from such data? Schneider et al. (2017a)

propose a parameter estimation approach using an ensemble

Kalman inversion, a gradient free method for parameter op-

14Parametric approaches have been commonly used for postpro-

cessing of NWP forecasts (Rasp and Lerch, 2018), however mostly

for single output tasks. Realistic multivariate predictions need to

take into account covariances, which might require further research.

timization (Cleary et al., 2020). The second best guess of the

truth would be a reanalysis, such as the ERA5 (https://www.

ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era5, last

access: 6 May 2020) dataset, which provides 3D fields every

3 h. It could well be worth spending some thoughts on ex-

ploring how reanalyses could be used for ML parameteriza-

tion training.

Clouds are incredibly complex. No wonder then that we

humans have such trouble shoving them into mathematical

concepts. We need any assistance we can get. Could ML

provide us with such? The verdict is still out. First studies

show that ML models are, in general, capable of representing

subgrid tendencies, but the way towards actually improving

weather and climate models poses several obstacles. Coupled

online learning could be one potential solution out of many

to overcome some of these obstacles.
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