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Abstract. The solution is given to a system of two pairs of dual integral equations
with constant coefficients involving trigonometric kernels. The method is analogous
to that applied to Bessel function kernels and involves reduction to a single Wiener-
Hopf equation for which a solution is available. The example of an indenter moving
with friction present is worked out by this method and also by means of equivalent
reduction of the system of equations to a singular integral equation.

1. Introduction. This paper deals with the following system of coupled pairs of
dual integral equations with trigonometric kernels:

f r1[a1/(0 + a2g(t)~] cos xt dt = h,(x), x < 1, (1.1a)
Jo

/ fe/CO + a4!7(0] cos xt dt = h2{x), x > 1, (1-16)
Jo

f t'l[bj(t) + b2g(t)] sin xt dt = Si(:c), x < 1, (1.1c)
J 0

f [b3f(t) + b4g(t)] sin xt dt = s2(.c), x > 1, (l.lrf)

where hj(x), s,(x) (i = 1, 2) are known functions and a, , b, (i = 1, 2, 3, 4) are known
coefficients. If a, and b, (i = 1, 3) are assumed to be non-zero or if the system defined
by (1) can be so transformed that the latter condition is satisfied, then the above system
is analogous to one with Bessel function kernels [1], and the same method applies. The
number of constants in (1.1) can be reduced without loss of generality by dividing the
equations respectively by a, , a:! , and b3 or a2 , a4 , b2 and b4 , and redefining the func-
tions h,(x) and s,-(j) accordingly. However, inasmuch as some of the above constants
may be zero, and in the interest of comparing the analysis of the present work with
[1], the authors prefer to maintain the constants as in (1.1).

Solutions /(0 and g(t) are sought belonging to the class L'(— 00, co). To this end the
system (1.1) is reduced to the single integral equation of the; Wiener-Hopf type
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g(t) = c(0 + Pi [ g{u)k(u + 0 du + p2 [ g(u)k{u — t) du, t > 0, (1.2)
Jo Jo

where k(t) = sin t/irt, c(t) is a known function expressed in terms of hi(x) and Si(x)
(i = 1, 2) in (1.1) and Pi , p2 are known constants.

The system (1.1) is suitably transformed so that Pi = 0, for which case Spence [2]
gives a solution for c(t) of a particular form and for real coefficients; in [1] the solution
has been modified for complex coefficients. Hence, by using the known solution of (1.2)
with Pi = 0, the system of coupled pairs of equations (1.1) is resolved.

Application. The solution obtained in this paper is applicable to a number of
problems arising from elasticity. Recently, there have been several solutions to problems
involving the steady motion of indenters developed by means of the complex variable
technique by Craggs and Roberts [3] and Roberts [4], [5]. The solution techniques
presented herein give a slightly different approach which may be more useful when more
difficult problems, such as those involving layered media, are considered. The authors
note that others have solved related problems by use of Fourier transforms to reduce
the physical problem to a singular integral equation. Brilla [6] has solved adhesion
problems for anisotropic halfplanes and Alblas and Kuipers [7], [8], [9], and [10] have
solved several problems for the identation of elastic layers. Iveer and Freedman [11]
have used a method similar to that presented here to determine static compliances for
a rigid strip bonded to an elastic layer.

The particular case of a rough identor in steady motion with velocity c (c < velocity
of Rayleigh waves) on an elastic halfspace is solved in detail. The boundary-value
problem may be formulated in terms of a pair of simultaneous dual integral equations
of the form given by (1) with = b2 = d, a2 = — bl = p,ai = b3 = 0 and h2(x) =
s2(x) = 0, where hi(x) and Si(x) are appropriate for a cylindrical and a wedge punch,
which are the two specific geometries studied. By use of (1.2) the problem is solved and
appropriate physical quantities calculated. It is shown that in the special case c = 0
the wedge solution reduces to that given by Mushkhelishvili [13].

By writing f(t) and g{t) in the form
/ \l/2 »1 / \l/2 pi

M = (jjij J ai(x) cos (tx) dx, g(t) = J a2(x) sin (tx) dx, (1.3)

it is also easy to show that the system of coupled pairs of dual integral equations may
be written in the form of the singular integral equation given below:

V4>{x) - - f = -(-YV + «i'), 1*1 < I- (1-4)7T J — j t X \7T /

The integral equation (1.4) may be solved by standard solution techniques and the
results are in agreement with those obtained by the method of reduction to the Wiener-
Hopf equation (1.2).

The problem solved by Spence for Bessel function kernels is also reduced to a singular
integral equation by an alternate procedure. An appropriate selection of integral trans-
forms in a form similar to (1.3) is found to reduce his coupled pairs of dual integral
equations to the form of (1.4) with p and d appropriately defined.

2. The Wiener-Hopf equation. Formal differentiation of (1.1a) and (1.1c), which
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can be shown to be justified, leads at once to the following sine and consine transform
equations:

and

F.(p) = --pA'(p) - ?G.(P), p<1,U/\ Q/\

= ±s2(P) - ^G.(p), p<1,

F.(p) = ^«/(p) -|^(p), P < !*

= "fWp) - ? Gc(p), p<1,a3 a3

(2.1)

(2.2)

where F,(p), Fc{p), G.(p) and Gc(p) denote the Fourier sine and cosine transforms of
the function /(<) and g{t). Inversion of (2.1) and (2.2) followed by interchange of orders
of integration (which can be proved to be justified) leads to Eq. (2.3) below for t > 0.
The only difficulty in this process arises from the integrals of the form /0° cos ut du

g(x) cos ru dx which can be reduced to the Fourier single-integral formula upon
treatment of the integral as limx_>CD /0X cos ut du /0" g(x) cos xu du. Hence, if it is assumed
that g(x) is continuous and satisfies the condition g £ /-'(— 00 , 00) and that g{x) is of
bounded variation [12], the result below is immediate:

- ?) f g{u)[k{u - t) - k(u + ()] du-jf g(t),
(L\/ Jo ^3 (2.3)

+ (— - r) r g(u)[k(u - t) + k(u + t)] du - ^ g(t),
\Cl 3 0\/ J 0

where

Hi(t) = [ W(p) sin pt dp) H2(t) = f h2(p) cos pt dp,
J o J 1

Di(t) = / s/ip) cos pt dp; D2{t) = / s2(p) am pt dp.
Jo J1

(2.4)

Eliminating j(t) from Eqs. (2.3), we obtain

g{t) = - c{t) + — f g(u)k(u + t) du + — f g(u)k(u — t) du t > 0 (2.5)
co w J0 w J0

where

oj = {cii/(i^) (^4/^3)1 " ^ 0,

c«) = - [~f A(0 + 1 H2(0 - -j- D2(t) + ~ HS)7r J 01 C&3 O3 &i

(2.6)
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and

(I4 b2 1 b4 ®2 a ^4 b2 b4 a2 ,001 = T- + t- , ft, = — — — — — H  (2.7)a3 0, o3 a, a3 o, o3 a,

An equation of the type (2.5) has been solved by Spence [2] for the case /3, = 0, 02 and co
real coefficients. In the next section it will be shown how the system (1.1) can be trans-
formed so that 0! = 0.

3. The equivalent system. Define two functions \pi(f) and \f/2(t) as follows:

h(t) = fit), Mt) = g(t) + Sf(t) (3.1)
where 8 is a parameter to be determined. By means of (3.1) system (1.1) is transformed
into the equivalent system

[ + A2\f/2(t)] cos pt dt = h,(p) (3.2a)
Jo

[ [A3fi(t) + A4\f/2(t)] cos pt clt = h2(p) (3.2b)
*>0

[ + B2if/2{t)\ sin pt dt = s,(p) (3.2c)
J 0

f [-83^1(0 + B4\{/2(t)] sin t dt = s2(p) (3.2d)
Jo

where

A1 — a, ' dd2 , A2 — d2 , A3 — a3 5a4 , A4 — ci4 j

Bi = b\ 5&2 , B2 == b2 , -83 = 63 — 564 , B4 = 64 .
(3.3)

In view of its similarity to the system (1.1), the system (3.2) would obviously reduce
to a AViener-Hopf integral equation

^2(0 = -7 C(0 + f ip2(u)k{u + 0 du + ^7 [ tp2(u)k(u — /.) du, f > 0 (3.4)
CO W J|) CO Jo

similar to (2.5), and to

[ t2(u)[k(n — t) + k(u + <)] ̂
Jo

71—77\ It wo + wo - -
^4 I-A3 7T

J- /).(«) + ̂  H,(t) t> 0, (3.5)

U, Bj
similar to (2.3), where

or   B4  B2 A4   A2 ~ ,   A4   B2   />'i . -A2
pl ~ B3 Bt ^ As ' P2 " A3 ~ Bx~ B3 Ax' ,Q A,

(3.6)
co' = ^ ^ , o>' ^ 0, 0 = —p2'/u',
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2C(t) = -
IT 1 Z),(0 + -f H2(L) - i- DS) + ~ Hi(o] • (3.7)_B, lw 1 .43 ",w B

It can be shown that /3/ = 0 if <5 satisfies the quadratic

,4'52 + 2i?'5 + C' = 0 (3.8)

where

A' = (12(146,64 — a2a3btb2 — a2aib2b3 + alaib2bi ,

B' = a2a3b2b3 — a1a46164 , (3.9)

C" = a^b^i — alazb2b3 — a^b^s + .

The parameter 8 is generally complex. Hence the coefficients , B, (i = 1 — 4) as
well as and co' become complex.

4. Solution. There always exists a solution to (3.8); therefore the transformation
(3.1) always succeeds in producing an equivalent system for which 0/ = 0. In [1] Spence's
results for the Wiener-Hopf equation with complex coefficients were quoted; we use
those results in this paper. Let \p2(t) = 0 for t < 0; then (3.4) can be extended over
— ro < x < as follows:

e(x) = 1p2(x) + /3 [ 1p2(u)k(u — x) du — - C(t), (4.1)
J-a (0

where e(x) is an unknown function which must be zero for x > 0. Replacing x by — x
in (4.1) and adding the resulting equation to (4.1), one finds for x > 0

e(—x) = 1p2{x) + P [ ^2(u)[k(u + x) 4- k(u — x)] du - jj- D^x) + -j- H2(x)j-

(4.2)
Now, upon substitution from (3.5), one gets

ti(x) = 1 +^ii
A3 y_

\p2(x) — e(—x) f> + = (l+~7 3 J- Dx(x) + H2(:x)\ (4.3)
. _ 7T

where

7 = (At/A3) - (BJB,). (4.4)
The solution of the system (3.2) consists in solving (4.1) for \p2{x) and e(x) and using
(4.3) to find ipi(x). The functions /(<) and y(t) can then be determined from (3.1).

Let C{t) be of the form

cm - p(|>(0 + q(£) m (4.5)

where P and Q are iVth degree polynomials in the operator d/dt, and l(t) = (1 — cos t)/xt.
The function C(t) is of the form (4.5), for example, when /h(p) and Si(p) are polynomials
and h2(p) = sa(p) = 0. It can be shown [1] that the Z/(—<», co) solution of (4.1) is

^2^ = db-sinh^TTK [ [U(w) cos 4> + toF(w)sin<^>] dw (4.6)
e(-t) * 2 Jo
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where <fi = kd(w) ± wx (the ± sign corresponds respectively to ip2(t) and e( — t)), k is
the known complex parameter

k = - log (1 + 0), 9(w) = I log , \w\ < 1 (4.7)
7T Z 1 — W

and

U(w) = —^ a'mh ^{Bt(w)\[/(w, k) + iwB2(w)x(w, k)}

[S(«0 - ,S(-W)] + ^ [R(w) + R(-iv)},

U(w) = ^sinh|ir^{52(w)^(u), k) + iwB^wjxiw, *)}

+ ^[S(w) ~ S(~w)] ~ ^[R{w) ~ R{~w)]-

(4.8)

(4.9)

The parameter X used above is defined by X = 1/co'. The definitions of other symbols
in (4.8) and (4.9) are as follows:

*""'1 - cosechi„ coti/l dy
x(»,«)J 2 1 I cash Ky f «*>» + » 8>n „

and

#i(w)j

B2{w)\
= Q(iw) ± Q{—iw).

The functions R(w) and S(w) in (4.8) and (4.9) are polynomials. The method of con-
structing them from P( — iw) and Q( — iw) is described by Spence. In the case of the
second-degree polynomials

:) " <>" + ft + "■(!) ; ®(l) = »' I + «-(!) '\dt)

R(iv) and S(w) are found to be

R(w) = pu + + \kj>2 — y2w - iw(p, + Kp2),

2 1
,S(to) = - sinh - irK(qJ» + q2I, — iwq210),

7T Z

(4.11)

where

/0 = k^(1, k), /i = 5 — |k/0 . (4.12)

5. Punch in steady motion. Let a punch be in steady motion on an elastic halfspace
y < 0, — < x < co; where the ^-coordinate is relative to the center of the region
of contact which moves with a velocity c. It is assumed that the normal contact stress
is always compressive and that there is friction between the punch and the halfspace
on y — 0. The boundary conditions are:
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= Txy = 0, [a;| > b, (5.1)

t„ = -fav , \x\ < b, (5.2)

v = l(x), |z| < b, (5.3)

where <jx , uy , , u, v are stresses and displacements appropriate to a state of plane
strain and / is a coefficient of kinetic friction. It is easily shown that

_ , ohp _ dcf> chp . .
U ~ dx by ' V ~~ by bx ^ ^

will satisfy the equations of equilibrium if

<t>(x, y) = J A© exp (|£| aiy - i&) d£, f(x, y) = f B(£) exp (|£| a2y - i&) dt,

(5.5)
where a2 = 1 — c /c2 (i = 1, 2). Here c2 = (X + 2p)/p, c2 = p/p, where X, p are
Lam6 constants. By writing

(2tt)1/2£3AA = (1 + aSKC - 2ia2 |f| D, ('ZtY^AB = 2ia, ||| C - (1 + a22)W, (5.6)

where A = (1 + a2)2 — 4aia2 , and using the boundary condition (5.2), one obtains
D = —fC. The function C(£) may be written in the form C = E + iF where E and F
are even and odd functions respectively. The above relations allows the displacements
and stresses to be written as sine and cosine transforms thus:

vc = - I)
1/2

A 1 f £ '{«i(l — «22)E + f[2a,a2 — (1 + a22)]F] COS d£, (5.7)
J()

v. = 0' ' A"1 J r'l-fl2a,a2 - (1 + a22)]E + ffll(l - a,')F} sin £x df, (5.8)

crvc/p = (^j J E cos d£, (5.9)

<^./V = (!) J F sin d£, (5.10)

where in (5.7)-(5.10) it is assumed that the boundary conditions can be written as
even and odd functions. If this is not the case, then the same results can be developed
directly from the exponential transforms as in Brilla [6],

Two types of indentors are considered, a cylindrical and a wedge punch; thus the
boundary conditions will enter into (5.3) as

l(x) = — v0 + (5 — x)2/2R (cylindrical punch), (5.11)

l(x) = —a + ax (wedge punch). (5.12)

In the next section we will look into these specific examples.

6. Cylindrical punch. Use of the boundary conditions (5.1)—(5.3) and Eqs. (5.7)-
(5.10), with l(x) defined by (5.11), leads to the following system of coupled pairs of
dual integral equations appropriate for the cylinder:
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f £ l[dE(£) + pF(Q] cos & di = h^x), x < 1,
J 0

f E(Q cos fcc d£ = 0, x > 1,
Jo

[ r'[-pE(0 + dF(£)] sin & d£ = s,(x), x < 1,
Jo

f F(£) sin £x d£ = 0, x > 1,
Jo

(6.1)

(6.2)

where the change of variable has been made so that the point x = 1 corresponds to
x = b in the physical situation. The coefficients d and p and the functions hx(x) and
s^x) are defined below:

d = «i(l — a22), p = j[2axa2 — (1 + a22)],

- Hi)"!"- -1 - w] ■ ffenir)- (6-3)
Comparing Eqs. (6.1) and (6.2) with the system (1.1) shows that in the former case the
coefficient b3 = 0, which was not allowed. However, the following transformation
removes that difficulty. Let

E(0 = m F® = E(B - P({); (6.4)
then (6.1) and (6.2) become

f £ '[(d + P)E(0 - pP(£)] cos £x d£ = h,(x), x < 1,
J 0

f E(£) cos {i tij = 0, x > 1,
Jo

[ r'[(d - P)E(0 — dP(£)] sin £x d£ = s,(x),
Jo

X < 1,

[ [E(£) - P(0] sin x£ di, = 0, x > 1,
Jo

where, in comparing these equations with (1.1) and (1.2), one finds

a, = d + p, a2 = —p, a3 = 1, a4 = 0,

^1 = d P, ^2 == ^/1 = 1 , ^4 — 1 ,

(6.5)

(6.6)

(6.7)

The above coefficients give 5 = — (1 ± i) as the solution of (3.8). Either value of 5
may be used to obtain the solution. Using 8 = — (1 + i), one finds (from 3.3)

Ax = d - ip, A2 = -p, A3 = 1, A4 = 0, ^ g.

Bt = —i(d — ip), B2 = —d, B3 = —i, Bt = — 1.

Eqs. (3.6), (3.7) and (4.4) give

p = -Y^-r- , «' = 1, 7 = - Y, d ■ V (6.9)
d — ip i(d — ip)
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and (4.3) gives

<AiO) = | IMx) - x > 0, (6.10)

where the functions and \p2 are related to E(£) and P(£) above according to the following
relationship:

m) = M)> p(o = mo + WiG). (6.ii)
The functions and e( — £) are defined by Eq. (4.0), where

- m7W - "i(l)'" (6 I2)
\*here

« - J log (1 + « - 1 log (6.13)

which can be written in the form

k — —(1 + 2a + 2m)i, d ± ip = — exp (±»a). (6.14)
cos ira

The integer in takes values 0, ±1, ±2, • • • .On using Eqs. (6.10)-(0.14), (0.4) and
(4.0) we find

E(Q - (?)1/2 A . , 1
■=—; Sinh — 7TKRd 2

i(— d0 + itch) J cos k6 cos wi, dw + b J w sin k6 cos w£ , (0.15)

F© =

•^(— 5o + i«b) J sin k6 sin w£ dw + bi J w cos k6 sin wi- du)j , (0.16)

which completes the solution of the coupled pairs of dual integral equations for the
cylinder.

The normal stress. The normal stress can be computed from the formula

<t„/m = (2tt)-1/2 J (E + iF) exp (-ifr) d£ (0.17)

which can be written in the form

rjn = (I)1" £ {£" Z-lE(Q sin d£ - f" cos & dfj , (0.18)

Substitution of E{£) and F(£) from (6.15) and (6.16) into (6.18) gives

A?"
Vy/n = ^sinh |™{(— S„ + itch) + J exp [—ud(Q]. (6.19)
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Since k = — (1 + 2a + 2m)i, we find that sinh = —i cos (a + m) ir and

<t„/m = ^ cos Tr(a + m)

[— S0 + 2ab + 2mb]{j^j U " + 6(1 + f)1^—"(1 - 01/,+ B+-|. (6.20)

From the physical standpoint it is known that the normal stress must not be singular
at £ = ±1. Hence, since 0 < a < §,

S0 = +2ab + 2nib, — § < m < J. (6.21)

Being an integer, therefore, m can be only zero, leading at once to the result (after the
transformation £ = x/b)

aju = costt«(6 + x)1/2~a(b - x)l/2+a, -b < x < b. (6.22)
Kcl

7. Wedge punch. For a wedge punch the same coupled pair of dual integral equa-
tions is used with the boundary conditions

hi(x) = 0, St(x) = ^ (^j xbe, (7.1)

which leads to
V 1/2

-2A1 e

C(x) = VoHx), Po = d _2{p i. (7.2)

The functions U(iv) and V (iv) become

A ITT 1/2

(7.4)

U(w) = | (Jj «, V(w) = 0,

resulting in the following solution of the system of dual integral equations:

A /2\1/2 . r'
E(x) = — ei sinh §7tk J cos k6 cos vox dw,

A /2\I/2 f1
F(x) = d W esinh %wk J sin k6 sin vox div.

Use of this solution and k = — (1 + 2a + 2m)i gives

a /l | y\ — (1/2 + a + m)

^ ^ cos 7T(« + «)(f^j (7.5)

where m is an integer. Physical considerations permit that the normal stress be singular
at £ = — 1 but not at £ = +1, thus demanding that m < § + a, or simply that m < 1
(as 0 < a < 5). Moreover, the normal stress (7.5) must be integrable, which requires
m > —1. Being an integer, therefore, m can be only zero. Hence the normal stress
becomes
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aju = ^ cos ira(b + x)~1/2-a(b - x)1/2+a (7.6)

which agrees with Muskhelishvili [13] when c = 0.

8. Singular integral equation approach. Now consider Eqs. (6.1) and (6.2) from the
point of view of writing the system as a singular integral equation rather than a Wiener-
Hopf equation. It is convenient to write

^ t^x) cos & d£,

F(£) = j t2(x) sin £x d(,

(8.1)

where ri and r2 are even and odd, respectively, and (8.1) satisfies the second of (6.1)
and (6.2) respectively. The following relations [14] are noted:

/ £_1 cos £s cos d£ = — \ log \(x + s)(x — s)| + c,
Jo

/ £_1 sin £s sin d% = § log \(x + s)/(x — s)|,
(8.2)

/ £-1 cos £s sin £x = jwH(x — s),
Jo

/ £-1 sin £s cos £x d£ = \wH(s — x),
Jo

where c is an arbitrary constant. Substituting (5.5) and (5.6) into (5.1) and (5.3), dif-
ferentiating, and making use of the symmetric properties of ti and r2 , we obtain the
following equation:

" f ~ pr2(x) = (2Y/2V(z), N < 1.
7T J — i S X \7T / 11

^ 1 1 C & (2Y2 „ X-PTi(x) + d / _ = I-J s/(x),
J — i o X \7T /

(8.3)

x < 1.

Since uv — <rvc + ava , it is clear that,

4> = <tv/h = ti(x) + t2 (x) (8.4)

and the two equations in (8.3) are added to obtain

J*Kx) - - f = -(-)12(/i/ + sx'), M < 1. (8.5)
7T J — i t CC \7T /

Now let

7^7' M
where according to the Plemelj relations



478 R. KHADEM AND L. M. KEER

4>{t) = <£+ - ~ f = $+ + (8 ?)xt t — z

and Eq. (8.5) is reduced to a Hilbert problem

** - - f+i <v+ s',) (8-8)
where

g = — (d — ip)/(d + ip) = — exp (2iira). (8.9)

A. Cylindrical punch. For this case

K\x) = -(|)'/2 Az/R, s/(.x) = (l)"" A«„/fl, (8.10)

and it is easy to verify that a solution to (8.8) and (8.10) bounded at the end points is

<t>{x) = A(b + x)1/2~a(b - x)1/2+a; -b <x <b (8.11)
an

where 50 = 2ab in agreement with (6.22).
B. Wedge punch. The boundary conditions for this case are

hi'(x) = 0, s1'(x) = Ae, (8.13)

and the solution to (8.8) and (8.13) bounded at the point x = b is

t(x) = a«(& + x)~1/2~a(b - x)1/2+a, (8.14)

in agreement with (7.6).
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Appendix: Axially-symmetric case. In observing the relationship between the
Wiener-Hopf and singular integral equation techniques for plane problems, one finds
that similar results hold for the axially-symmetric case such as that treated by Spence.
Indeed, if the indentation of a halfspace z > 0 is described by the coupled system

2nur(r, 0) = [ [-(1 - 2v)D + 2(1 - v)E].J^r) $ = 2mm, r < 1, (1)
J 0

2/m,(r, 0) = [ [2(1 - v)D - (1 - 2v)E}J0&) d£ = 2nv, r < 1, (2)

r2z(r, 0) = - f £DJ0(£r) d£ = 0, r > 1, (3)
*•'0

Tzrir, 0) = - I £EJ,(£r) d£ = 0, r > 1, (4)
Jo

it can be easily shown that the representation

D = f <j>(t) cos (£0 dt, E = f \p(t) sin (£t) dt (5)
J o Jo

will satisfy (3) and (4) identically. Eqs. (1) and (2) can be transformed to the following:

£ J~ [-(1 - 2V)D + 2(1 -v)E] ^ dt = -2M £ dr - Vix), (6)

jT [2(1 - v)D - (1 - 2v)E] S-y^ dt = 2n fo ^2^7)172 dr = q(x). (7)

Use of (5) and the relations in (8.2) gives, provided that 4>(t) = <£(—t) and \p{t) = — t),

2(1 - ,)$(*) + (1 - 2v) f f= -(«'- IV), -1 < « < 1, (8)irl J-i I — X ir

where

$ = 4> — (9)
Eq. (8) can be solved easily by the techniques in [13] for polynomial indenters.

When u = 0, v = e, then = 0 and q' = 2fit. Let [13]

+ _ i rl m dt + ( ,
$ = X - X , — /    = X + X (lUj

7TZ t — x
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Then

for which the solution is

where

(3 - 4„)x+- x~= -V, (ID
7T

M'?(r^j|1-x(,)l <12)

X(() = (f + - 1)'*, (S =  — • (13)
Ztt

Then, using (10), we get

<£«) =-m e x+(<). (i4)
7T

Since

dt> , (15)P = 2ir J Ttzr dr = —ir Re $(<)

the load is obtained as

-P = lo§ (3 - 4")> (16)
1 — Zv

in agreement with Spence [15]. The approach used here is somewhat analogous to that
given in [16], although one arrives at the pertinent results in a more straightforward
manner by the present method.


