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Abstract—Properties of the recently introduced family of cou-
pled resonator optical waveguides (CROWs) are reviewed, partic-
ularly with reference to CROWs designed as planar waveguides
in two-dimensional photonic crystal slabs to enhance nonlinear in-
teractions and develop novel all-optical information processing de-
vices. Topics covered include: pulse propagation both in the nondis-
persive approximation and to all orders of dispersion, and the cou-
pled mode theory of nonlinear optics with pulses in CROWs and
its applications to second-harmonic generation and wave coupling
via field-induced refractive-index gratings. We also review recent
experimental progress in the fabrication and characterization of
CROWs, and applications of the CROW concept to fiber gratings
and microwave waveguides.

Index Terms—Nonlinear optics, photonic crystals, picosecond
phenomena, waveguides.

I. INTRODUCTION

COUPLED resonator optical waveguides (CROWs)
[1]–[10] are composed of a periodic array of isolated

structural elements (e.g., high-Q resonators such as defects in
two-dimensional (2-D) photonic crystal slabs [11]–[13]—see
Fig. 1) weakly coupled to one another [14]. Waveguiding is
fundamentally a consequence not of total internal reflection or
Bragg reflection from a periodic structure, but instead of the
overlap between the resonator modes of the structural elements,
although the individual resonator modes can depend on Bragg
reflection. In direct correspondence with the description of
electrons in a strong periodic potential in solid state physics
[15], [16], the waveguide modes of a CROW can be described
using the tight binding approximation (Section II). Light
propagates in such a waveguide, based on nearest neighbor
coupling, following the physical layout of the resonators—a
“photon hopping” model, thereby allowing the manipulation of
the light path on a microscopic scale.

CROWs are not limited to coupled defects in photonic crys-
tals and can be realized in the coherent coupling of whispering-
gallery modes in microspheres [17] or in optical fibers [18],
as will be discussed in Section V. In this paper, we will focus
mainly on CROWs as planar waveguides in photonic crystals,
as some of the remarkable properties of such waveguides listed
below make them particularly appealing from a designer’s per-
spective and for applications:

1) The extensive research on the properties of defects in pho-
tonic crystals [11], [19], [20] directly leads to both ana-
lytical [2], [5], [9] and numerical [2], [21] descriptions of
the waveguide modes and the propagation of pulses.
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Fig. 1. Schematic of an infinitely-long 1-D CROW with periodicityR
consisting of defect cavities embedded in a 2-D photonic crystal.

2) The group velocity in CROWs can be several orders of
magnitude smaller than in bulk material (of the same re-
fractive index) [1]. This leads to an important class of
applications [8], such as photorefractive holography for
all-optical buffers in packet-switched optical networks
[6], highly efficient second harmonic generation [7] etc.

3) CROWs can be defined as a single (or a few) waveguiding
band(s) inside the photonic bandgap with the guided
mode(s) well isolated from the continuum of modes
that lie outside the bandgap. This is in contrast with
band-edge waveguides in photonic crystals, which can
also achieve low group velocity, but usually at the cost of
poor confinement of the field to the desired modes.

In the applications of CROWs as information processing de-
vices [e.g., second-harmonic generation, correlators, four-wave
mixing (FWM), photorefractive holography], the study of pulse
propagation is important as the case of practical importance, and
it involves features not evident in a discussion limited to contin-
uous-wave (CW) phenomena. Section III discusses the propa-
gation of pulses both in the linear dispersion approximation and
involving the higher order dispersion terms to all orders.

The fundamental representation of pulse propagation in a
CROW that represents the effects of a nonlinear electric polar-
ization generated by optical fields is discussed in Section IV.
In particular, the use of a modulated spatio–temporal Bloch
wavefunction is the starting point for the analysis of all non-
linear optical phenomena in the coupled mode framework for
this family of waveguides. Examples of the application of this
analysis include second-harmonic generation (Section IV-A),
and photorefractive holography in the framework of FWM [6].

This paper discusses how the analysis of nonlinear phe-
nomena in a new family of waveguides can be builtab initio
from a study of the basic waveguiding physics, investigating
first the effects of dispersion, and then the nonlinear polar-
ization. The insights gained by the analysis of CROWs are
applicable to other forms of photonic crystal waveguides. With
growing emphasis on the design of waveguides in photonic
crystals for practical applications, CROWs stand out in the light
of a well-understood analytical characterization that highlights
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the role of the structural parameters in waveguiding, accom-
panied by detailed numerical simulations and experimental
corroboration of the theory.

II. CROW WAVEGUIDE MODES

We assume that the structural elements comprising the pe-
riodic waveguide of length , e.g., defects in a 2-D photonic
crystal slab with index confinement in the out-of-plane direc-
tion, are identical and lie along theaxis separated by a dis-
tance . The waveguide mode (an eigenmode of a time-inde-
pendent Hamiltonian) at a particular propagation constant

is written as a linear combination of the individual eigenmodes
of the elements that comprise the structure [15]

(1)

where the summation overruns over the structural
elements and the summation overrefers to the bound states
in each individual element. In a photonic crystal CROW, for
instance, the individual resonator modes are doubly degenerate
[2], so that .

In the description of a one-dimensional (1-D) waveguide of
finite length, the mode propagation constant is restricted
according to the Born–von Karman periodic boundary condition
[15]

(2)

where is an integer; then ranges over the Brillouin zones
and because is of the Bloch form [15], we may only con-
sider the first Brillouin zone to charac-
terize the dispersion relationship in the structure [1]. From (2),

so that in the description of long
structures, the discrete distribution of eigenmodes goes over to
a continuous spectrum.

For most applications, the emphasis is on undistorted pulse
propagation and a characterization of the deviations from ide-
ality. Consequently, we will assume that the structure is de-
signed so that a single dispersion relationship describes the mul-
tiplicity of resonator modes in (1). If a singleis insufficient to
characterize the lowest order mode of an individual resonator,
this approximation is still valid if the lowest order modes are
degenerate in frequency, as is the case for lowest order modes
that differ by parity [2]. (The two consequent waveguide modes
have opposite parity and cannot couple to each other.)

The dispersion relationship for a CROW around a central
wave number is

(3)

where is the eigenfrequency of the individual resonators, and
both and are overlap integrals involving the individual res-

onator modes and the spatial variation of the dielectric constant
[1]

(4)

where is the dielectric constant of the individual resonators,
and is the dieletric constant of the waveguide.

The formation, when the number of resonators is increased,
of a continuous dispersion relationship such as (5) from a dis-
crete spectrum by reduction of the mode energy splitting of the
individual resonators has been discussed elsewhere [22], [23]. In
the limit of nearest-neighbor coupling, as applicable to waveg-
uides formed by coupling high-Q resonators, the parameter
in (3) is given in terms of the spatial variation of the dielectric
constant by . For the 2-D photonic crystal structures,
we discuss in this paper, finite–difference time–domain simu-
lations indicate that [2], and similar
numbers have been measured for CROWs constructed of poly-
styrene microspheres and microcavities in lithographically pat-
terned in GaAs (see Section V).

If we assume that in order of magnitude, then to a
first approximation, and the dispersion relationship
of the waveguide mode is approximately linear in the middle of
the bandgap (the group velocity goes to zero at the band edges).
We can write an approximate dispersion relationship around the
central wave vector of the pulse as

(5)

where is the group velocity of the pulse. Pulse propagation
governed by (5) will be discussed in Section III-A, and as gov-
erned by the nonlinear relationship (3) in Section III-B.

The spatial distributions of the individual resonator wave-
functions decay exponentially away from the center of the defect
structure [24], typically with a length scale on the order of the
wavelength of light. The quality factors are limited, ideally, by
the lifetime of the defect mode as a consequence of the dielectric
loss in the material [11], and it may be shown by introducing the
absorption coefficient into Maxwell’s equations that [2]

(6)

By altering the distribution of the refractive index, e.g., using
the electro-optic effect, or changing the physical structure of the
waveguide, e.g., using piezoelectric actuators, the waveguiding
bandwidth and the group velocity can be manipulated.
Since waveguiding in CROWs comprised of high-Q resonators
is itself a consequence of the weak overlap between the tails of
the eigenmodes [see (4)], a strong perturbation is not needed in
order to produce an appreciable difference in the propagation
behavior.
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III. D ISPERSIVEPULSE PROPAGATION

In practical applications, waveguides are designed to realize
undistorted propagation, coupling, harmonic generation, etc.,
over a certain length of propagation. It is, therefore, important
to characterize how a given pulse, as the physical carrier of in-
formation, propagates with the role of the structural parameters
( , , etc.) clearly highlighted.

The field describing a pulse is written as a superposi-
tion of waveguide modes within the Brillouin zone with
the corresponding time-evolution propagators (as appropriate
for any linear and time-invariant system)

(7)

If the input field involves a wider range of s, the limits of
integration can be extended appropriately, but the analysis of
Section III-B is then more relevant than that of Section III-A.

The boundary conditions that arise in pulse propagation prob-
lems typically specify a pulse shape at the cross section
of the waveguide and centered at the optical frequency

(8)

where is a unit magnitude vector that describes the vectorial
nature of the field at .

In describing the propagation of a pulse, we seek a closed
form expression for , given . It is useful to
consider a simpler more specific case first.

A. Linear Dispersion Approximation

In the linear dispersion (dispersionless) approximation of (5),
(7) can be written as

(9)

We may extend the limits of integration to infinity by defining
the coefficients (as functions of ) so that they are zero outside
the first Brillouin zone. From the equality of (9) evaluated at

and (8), it follows that the vectorial behavior of
must follow . Further, by inverting the Fourier transform rela-
tionship, we write

(10)

in terms of the scalar . Combining (9)
and (10)

(11)

Fig. 2. Pulse propagation in a CROW in the dispersionless approximation,
highlighting the spatial modulation of the envelope due to the physical structure
of the waveguide. The “Distance” axis is normalized toR. Parameterized by
time, the envelope is graphed as a function of (norm.) distance; the pulse moves
toward positive values ofz ast increases, i.e., from the back to the front in this
representation.

As discussed in [5], the approximations

(12)

are usually well justified in CROWs comprised of high-Q res-
onators. A few algebraic manipulations (in the form of Fourier
transform relationships [5]) show that

(13)

where the summation over indexes the
resonators that comprise the CROW, and the summation over

reflects the Born-von Karman quantization of the propaga-
tion constant in structures of finite length (2). Fig. 2 shows
the magnitude of the envelope of Gaussian pulse propagating
along a CROW; the spatial distribution is dictated by thes.
As mentioned before, the vectorial behavior of is simply
given by that of ; therefore, we will usually work in the

approximation ( and coordinates), and revert back
the expressions when necessary, e.g., (33).

Since the allowed s are quantized in a structure of finite
length, the dispersion relationship (5) implies that the allowed

values are quantized. To avoid aliasing [25], the
temporal interval between two samples must be greater
than twice the temporal extent of the pulse envelope, where

according to (5). Therefore

which implies (14)

Further, Fig. 2 shows that theprojection of the eigenmode
represents a spatial sampling function for the propa-
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gating pulse envelope, especially in the limit that the individual
structural eigenmodes are tightly confined (high-Q
resonators). Again, to avoid aliasing, it is necessary that the
spectral content in space be no greater than

which implies (15)

But the free space pulse envelope is invariant in the frame
, and this maximum space extent translates into a min-

imum pulsewidth ,

which implies (16)

In a structure of finite length described by the tight-binding
approximation, therefore, there exists both a maximum and a
minimum allowed pulse duration; the former arises because of
the finite length of the structure, and the latter because of the
sampling-train-like eigenmodes of the waveguide. Equation
(16) limits the bandwidth (where most of the energy of the
pulse is concentrated) in the Fourier space associated with
the propagation distance, and since the pulse is propagating
with group velocity , also in the Fourier space associated
with the temporal coordinate. The dimension of the space
of finite-energy signals (pulse envelopes) that are identically
zero outside the time interval and have most of
their energy concentrated in the bandwidth is
approximately [26]

(17)

where is the number of resonators in the waveguide.
These pulse envelopes can be represented in the mean-square
sense by a superposition of the prolate spheroidal wave func-
tions within the interval . also gives a measure
of the information theoretic capacity of a CROW as measured
in bits using the simpleON–OFF keyed (OOK) amplitude mod-
ulation format.

B. Higher Orders of Dispersion

In this case, the coefficients are derived from the
equality of (7) evaluated at and (8) in the scalar
notation

(18)
The nonlinear term in the exponent implies that this is not a
simple Fourier transform relationship. In considering higher
order dispersion terms in the Taylor series expansion of the
dispersion relationship, the integral equation (18) cannot in
general be inverted to obtain the cs in closed form. This is
clearly evident when, for example, the exponent involves terms
of quadratic or higher polynomial powers of . Therefore,
rather than work with the successive terms in a Taylor-series
expansion of the dispersion relationship, we will maintain the
full form of (3).

Note that the dispersion relationship (3) is symmetric about
. We will assume that is a symmetric en-

velope, but this is merely for analytical convenience. Conse-
quently, for all within
the first Brillouin zone.

A change of variables highlights the mathematical structure
of (18)

(19)

so that (18) becomes

(20)

where is a known function, in terms of which we want
to find . For almost all cases of practical interest, we can
instead find the coefficients in the expansion of as a Fourier
cosine series

(21)

Using the identity [27, (9.4-5)]

where

(22)

and the orthogonality of the cosines over the interval ,
we can simplify (20) to

(23)

Therefore, if we can expand [which describes the envelope
at the cross section—see (19)] in a Neumann series of
Bessel functions [28, Ch. IX], we can find the coefficients,
and by subsequently using (21) and (19), the coefficients .

The general approach to finding thes is based on a con-
tour integral involving the Neumann polynomials, but alterna-
tive approaches are useful in yielding approximate but simpler
representations. Defining the coefficients

(24)
where is a constant that arises from Parseval’s relationship,
leads to the representation [9]

(25)
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Fig. 3. Temporal evolution of a Gaussian envelope at specific distances inside
a CROW, showing the effects of dispersive propagation. Distance is normalized
to units ofR, and the time scale describes a Gaussian envelope atz = 0. At
greater depths, the peak of the envelope arrives at a later time, and ripples in the
trailing edge indicate higher order distortion.

where describes the transverse mode profile. We have
used the symbol “ ” in (25) as a compact notation for the
sum over both choices of sign of “” that yield a nonnegative
number for the expression inside the brackets.

Equation (25) describes the propagation of an arbitrary pulse
envelope in the CROW waveguide to all orders of
dispersion. Intuitively, the Bessel functions in this nonlinear
problem assume the role of sinusoids as basis functions in the
linear dispersion approximation [10]. Equation (25) may be
separated into two terms describing the forward and backward
propagating envelopes. A pulse envelope, as a function of
, is described by a contiguous set of Bessel functions: the

field at is written as a superposition of an appropriately
translated set of these functions ,
multiplied by the coefficients . Distortion ac-
cumulates with distance as a consequence of the changing
inter-relations between neighboring Bessel functions, e.g., the
difference between and

.
Temporal profiles of a Gaussian pulse at increasing depths

into the CROW are depicted in Fig. 3 and clearly show the
effects of accumulated dispersion. While it is evident that the
peak of the envelope reaches structural elements farther from
the input at a later time , there is no single pa-
rameter that describes propagation governed by the nonlinear
dispersion relationship to arbitrary distances. Equation (25) is,
nevertheless, in a simple form for numerical evaluation for a par-
ticular case, e.g., the Gaussian envelope in Fig. 3. Further details
of the dependence of the propagating envelope on the design pa-
rameters of the CROW [e.g., appearing in (3)] are discussed
in detail elsewhere [9], [10].

IV. COUPLED-MODE THEORY OFPULSES

Many of the nonlinear phenomena in CROWs involving
pulses arise from a nonlinear polarization generated by the
fields in the waveguide. Coupled-mode theory [27] dictates

how this polarization drives the evolution of the amplitude
(envelope) of the waveguide modes, typically under the slowly
varying envelope approximation. As we have seen in Section II,
the waveguide modes of a CROW are more complicated
than plane waves; furthermore a pulse comprises a number
of CROW waveguide modes [as in (7)] and each component
can acquire its own envelope function, which complicates the
analysis even more. We show that in most practical cases, the
formalism can be concisely expressed using a spatio–tem-
poral Bloch wavefunction. The approximations involved in
this derivation, which translate into bounds on the structural
parameters of the CROW, are most easily understood in the
spectral (Fourier transformed) domain. Since we are interested
in undistorted signal propagation and processing applications,
we will assume that the conditions of Section III-A apply and
work in the dispersionless approximation.

A change in the power carried by the modes due to a driving
polarization is described by including adependency in the co-
efficients . These coefficients will account for not only
the effect of the polarization, but also the initial superposition
of s that comprise the pulse at e.g., the reference “edge”
of the waveguide. It is convenient to separate these two compo-
nents of and write , where

is independent of and . Thus

(26)
As in (10), the coefficients arise from the boundary

condition, and an expression similar to (13) is obtained

(27)

where the envelope depends on two spatial coordinates,and
the “auxiliary” spatial coordinate (as a
convolution integral in the latter variable).

Taking the temporal Fourier transform of (27), e.g., with defi-
nitions and similarly for and

, it may be shown after some algebra that (8)

(28)

The group velocity plays an important role in (28): as is
reduced, the contributing spectral components of the envelope

are at frequencies farther removed from dc, i.e., for fixed,
the argument of is larger in magnitude, signifying that an en-
velope of broader bandwidth is described. If CROWs are to be
designed for a substantial (at least three to four orders of magni-
tude), reduction in the group velocity compared to bulk material
waveguides [1], it follows that needs to be broadband in the
time-transformed Fourier space. As we have not affected the
part of , we approximate using
the delta function in its usual role in (28). (This follows from the
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fact that the inverse Fourier transform of a broad-band function
in Fourier space is a narrowband waveform in original space,
which in this case refers to the auxiliary spatial coordinate.)

A different but related physical argument leads to the same
conclusion: in the slowly varying envelope approximation, the
polarization term driving the evolution of the field may be as-
sumed to be constant over the relatively small range of propa-
gation constants that comprise a narrow-band pulse in
the center of the waveguide band.

In this approximation, (27) simplifies to

(29)

where we define

(30)

and the notation is a reminder of the presence of a
dispersion relationship as in (5).

In considering CROWs comprising a large number of struc-
tural elements, the summation overin (30) may be translated
as desired, and is of the Bloch form
(in spatial and temporal coordinates), i.e., a plane wave multi-
plying a function with an inherent periodicity reflecting that of
a lattice structure. Consequently, may be viewed as an
amplitude modulating the Bloch wavefunction .
The spatial periodicity of the Bloch wavefunction is exactly that
of the CROW structure and the temporal periodicity is the time
taken by the pulse envelope to travel the distance defining the
spatial periodicity.

The generalization of the spatial dependency of the wave-
guide modes while maintaining the assumption of a single spa-
tial dimension for pulse propagation, is straightforward since the
only the vectorial functions in (1) are the individual resonator
modes. The Bloch wave function is normalized according to an
inner product definition (in three spatial and one temporal co-
ordinates) between the vector space of the Bloch wave function
and its dual space

(31)

where the spatial integration extends over a unit cell and the
temporal integration over the extent of the pulse envelope, with
a characteristic time constant. The temporal normalization is
needed to ensure that (31) represents an electromagnetic energy
conservation relationship, and can be interpreted as yielding a
time-averaged energy stored in a unit cell volume. Note that the
involvement of is indicative of the nontrivial role that pulse
envelopes play in propagation phenomena in CROWs, as dis-
cussed in Section III-A.

The starting point for the analysis of nonlinear phenomena
such as second-harmonic generation (Section IV-A) and FWM
[6] is to write the field under consideration (such as the second-
harmonic field) in the modulated spatio-temporal Bloch repre-
sentation (29), and obtain equations of motion for the envelope
of that representation.

A. Second-Harmonic Generation

Following (29), theAnsatzdescribing a pulse at the second
harmonic (carrier) frequency is

(32)

and is generated by a nonlinear polarization ac-
cording to

(33)

Each term of the above equation can be expanded out in terms
of the components of (32) and using the slowly varying approxi-
mation [7]. To show the correspondence with second-harmonic
generation in bulk materials, we will only discuss a particular
case of the final result here. We assume that the field at the fun-
damental, described by the propagation constant is unde-
pleted, and define the propagation constant mismatch

(34)

which explicitly involves the Bragg contribution of the periodic
waveguide. The second-harmonic field in the unsaturated limit
grows according to

(35)

where the s are complicated space–time integrals involving
the overlap of adjacent resonator eigenmodes and the effective
second-order nonlinearity coefficient of the medium, andis
the group velocity at the second-harmonic frequency [7].

Setting aside the modifications brought about by theco-
efficients, the (quasi) phase-matching sinc function in (35) is
exactly analogous to the results of CW second-harmonic gen-
eration in bulk crystals. Equation (35) also shows that at the
phase-matched condition, the intensity of the second harmonic

grows quadratically with distance, the intensity of the
fundamental , and in regions where it is a constant, the
nonlinearity coefficient (through the s); these are features
in common with the analysis of second-harmonic generation in
bulk media [29]. Further discussions of the more general anal-
ysis for second-harmonic generation, including a discussion of
the Hellman–Feynman theorem in the description of the group
velocity, and a measure of the efficiency of second-harmonic
generation, are discussed elsewhere [7].

B. Two-Wave and Four-Wave Coupling via Index Gratings

The interference pattern of two co-incident pulses in a
nonlinear CROW creates an index grating that may cause
power transfer from one waveform to another—this is known
as two-beam coupling. Phenomena such as FWM and holog-
raphy involve a third waveform which is Bragg scattered from
the grating, resulting in the generation of a fourth field that
is related to the waveforms of the other fields. CROWs are
an attractive geometry to realize the proposals of all-optical
temporal signal processing using “nonlinear delay lines” [30].
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From (13), the spatial Fourier transform (in space) of
may be written as

(36)

A typical geometry involves a grating written by two counter-
propagating pulses. If two pulses centered at the carrier frequen-
cies and , propagate in opposite directions with wave vec-
tors and , and group velocities and , respectively,
the space representation of the field is

(37)

The interference pattern of the spectral components of this
field (for example, considering the component at from the
forward-propagating pulse and the component at of the
backward-propagating pulse) is weighted by a complex cou-
pling coefficient which depends on the material
properties, the orientation of the medium, and the polarization
of the waves [27], [31]. Therefore, we may write the grating as

(38)

where is the total optical power.
Equation (38), describing the refractive index, may be used to

express the nonlinear polarization as in standard coupled-mode
theory [27]; the formalism presented in Section IV then dic-
tates the polarization-driven evolution of the fields. The partic-
ular example of photorefractive holography, which introduces
the further complication of two time coordinates, separated by
the hold-time of the grating is discussed elsewhere [6].

V. EXPERIMENTAL PROGRESS ANDAPPLICATIONS OFCROWS

The formalism we have described is independent of the
material in which the CROW geometry is realized. In this
section, we will review the progress made in the last few
years in the fabrication of CROWs and related structures,
and discuss their role in the demonstration of the theoretical
validity of the framework in which our analysis was carried

out. The particular realizations include: superstructure Bragg
gratings in semiconductor materials and in fibers, polystyrene
microspheres, alumina rods (microwave), resonators in GaAs
without a photonic crystal structure, and defects in GaAs
2-D photonic crystal slabs. We also discuss three aspects of
current research in this field that have close links to other areas
of optics: holography and the photorefractive effect, spatially
localized fields due to nonlinearity, and the coupling between
waveguides that are intrinsically of different types.

The optical modes of a linear array of GaAs cavities with
InGaAs quantum wells as the optically active material, were
measured by angle-resolved photoluminescence spectroscopy,
demonstrating the creation of a continuum of mode energy dis-
tributions from a discrete family as the number of resonators
increases [23]. Narrowing the width of the GaAs channels con-
necting the cavities resulted in a larger bandgap at the Brillouin
zone boundaries, in accordance with the increased modulation
of the dielectric function along the waveguide.

Coupling between whispering gallery modes of two polysty-
rene microspheres was demonstrated to follow the tight-binding
theory [17]. An intersphere coupling parameter [indicated by
in (4)] between microspheres of diameter 2 to 5m was mea-
sured to be in the range 2.8–3.510 , and decreases as the
size of the spheres increases since the field is less confined in
smaller structures.

Thevalidityof the tight-bindingdescriptionofweaklycoupled
electromagnetic structures was demonstrated in the microwave
(10–13 GHz) experiments conducted in structures defined by
micromachined alumina rods; a single rod was removed from
consecutive unit cells, thereby forming a CROW; excellent
agreement between the calculated and measured dispersion
relationship of the resulting waveguiding band was observed
(see [32, Fig. 4]).

The dispersion characteristics of a row of nine hexagonal cav-
ities in a GaAs-based 2-D photonic crystal slab of length 8m
have been measured in the near IR [33]. The large defect cavi-
ties in this structure support several resonant modes [and would
be indexed by in (1)]. Several transmission and stop bands
(“minibands separated by minigaps”) were observed within the
photonic bandgap. Larger defect cavities were found to make
it easier to couple light into and out of CROW waveguides,
without necessarily invalidating the tight-binding model.

Superstructure gratings, [(SSGs), or superstructure Bragg
gratings, (SBGs)] are gratings in semiconductor materials
or in optical fibers, whose parameters in the description
of the (periodic) refractive index variation themselves vary
periodically along the length of the grating [18], [34], [35].
Typically, the SSG period is much longer than the period of
the underlying uniform grating (the latter is on the scale of
the wavelength of light). SSGs in semiconductor have been
used in tunable DFB lasers, and in optical fibers for dispersion
compensation of WDM systems [34]. A deep SSG is described
by the tight-binding method [18]: in the weakly coupled
regime, the eigenfield (waveguide mode) of an SSG is written
as a superposition of the eigenmodes of the individual wells,
exactly as in the description of a CROW.

Single pulse holographic recording requires strong nonlinear
properties which are not available with ordinary materials since
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the hologram has only a short time and a limited amount of en-
ergy in which to form. The highly nonlinear properties of ul-
tracold atomic vapors form the basis of one approach which
was demonstrated recently [36]. We have investigated the pos-
sibility of recording and reconstructing holograms of optical
pulses using photorefractive holography [37] in CROWs [6].
A CROW of weakly coupled high-Q resonators leads to very
high optical intensities even at moderate (propagating) power
levels—exactly what is required for holographic recording. In
spite of the discrete localization of the optical field at the in-
dividual resonators, it is still possible to reconstruct faithfully
the signal pulse which is recorded in the hologram. For pho-
torefractive holography in photonic crystal CROWs, we refer to
the schematic of Fig. 1: the material of index is taken to be
photorefractive (e.g., GaAs) and the material of indexwill
be assumed to be air for simplicity. Note that the defect cavity
is then composed of photorefractive material, and the simulta-
neous presence of two optical fields in this region will induce a
photorefractive index grating which can be used for holography.

A related family of waveguides in photonic crystals—the
reduced-index and increased-index waveguides—is exempli-
fied e.g., in a triangular lattice of holes by altering one row
of holes [38], and either increasing or decreasing the radius
[39] or leaving out a line of holes [40]. Photonic crystal
waveguides fabricated in a silicon slab (with an undercut air
region for symmetry) for both triangular and square lattice have
demonstrated low scattering-loss transmission around bends
at 1550 nm [41]. In light of the finite height of waveguides
defined in photonic crystal slabs, (and the combination of
photonic band guiding and index guiding that characterizes
such waveguides), full vectorial calculations are important in
the numerical determination of the waveguide modes of such
structures, as in the analysis of CROWs [2]. One approach
to the problem of coupling between CROWs and these types
of waveguides is based on the design of adiabatically tapered
transition regions [3], [4].

CROWs achieve a localization of the light field along the
longitudinal direction of propagation, and the extension to 2-D
or three-dimensional (3-D) CROW structures is straightforward
conceptually. Localization of light in the transverse directions
can be achieved in a variety of other ways. Index guiding in
slab waveguides is the simplest of examples. In the presence of a
nonlinear effect, intrinsic localized modes or discrete breathers
can be formed [42]. This has been proven mathematically for
using a class of time-periodic spatially localized solutions to a
Hamiltonian coupled-oscillator nonlinear lattice [43]. Discrete
breathers have been predicted for 2-D and 3-D photonic crys-
tals with Kerr (cubic) nonlinearity [44], at nonlinear interfaces
with quadratic nonlinearity [45] and along dielectric waveguide
structures with a nonlinear Kerr-type response [46]. Unlike a
CROW, the waveguides that have been under consideration, thus
far, are uniform in the longitudinal direction. In the transverse
plane, these waveguides may consist of an array of thin quadrat-
ically nonlinear layers embedded in a linear slab waveguide.
Such structures can inhibit light propagation along the trans-
verse axis under certain conditions, e.g., as a consequence of
parametric coupling of the fundamental and second-harmonic
fields excited at the nonlinear interfaces [47].

VI. CONCLUSION

A CROW is a waveguiding structure based on the coupling of
resonator modes that can be designed as planar waveguides e.g.,
in photonic crystals or as superstructure gratings in optical fibers
but, in general, the analysis addresses any waveguide based on
the spatial overlap of the wavefunctions defining the resonator
modes. We have carried out a numerical and analytical charac-
terization of such a waveguide, i.e., of the propagation of elec-
tromagnetic CW waves and pulses, and the first experimental
realizations of CROWs corroborate the theory. We have also
developed a spatio–temporal theory of nonlinear phenomena
such as harmonic generation and holography in CROWs. In light
of the applicability of the CROW concept to different physical
manifestations of the coupling of resonators, and the degree to
which the analytical characterization highlights, the role played
in waveguiding by the structural parameters, we are optimistic
that CROWs will play a significant role in the development of
microstructure optical information processing devices.
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Pearsall, “Waveguiding in planar photonic crystals,”Appl. Phys. Lett.,
vol. 77, no. 13, pp. 1937–1939, 2000.

[42] S. F. Mingaleev, Y. S. Kivshar, and R. A. Sammut, “Long-range inter-
action and nonlinear localized modes in photonic crystal waveguides,”
Phys. Rev. E, vol. 62, no. 4, pp. 5777–5782, 2000.

[43] R. S. Mackay and S. Aubry, “Proof of existence of breathers for time-re-
versible or Hamiltonian networks of weakly coupled oscillators,”Non-
linearity, vol. 7, no. 6, pp. 1623–1643, 1994.

[44] S. John and N. Akozbek, “Nonlinear optical solitary waves in a photonic
band-gap,”Phys. Rev. Lett., vol. 71, no. 8, pp. 1168–1171, 1993.

[45] A. A. Sukhorukov, Y. S. Kivshar, and O. Bang, “Two-color nonlinear
localized photonic modes,”Phys. Rev. E, vol. 60, no. 1, pp. R41–R44,
1999.

[46] A. R. McGurn, “Intrinsic localized modes in nonlinear photonic crystal
waveguides,”Phys. Lett. A, vol. 251, no. 5, pp. 322–335, 1999.

[47] A. A. Sukhorukov, Y. S. Kivshar, O. Bang, and C. M. Soukoulis, “Para-
metric localized modes in quadratic nonlinear photonic structures,”
Phys. Rev. E, vol. 63, 2000.

Shayan Mookherjea(S’00) received the B.S. degree with honors in electrical
engineering from the California Institute of Technology (Caltech), CA, and the
S.M. degree in electrical engineering and computer science from the Massachu-
setts Institute of Technology (MIT), MA, in 1999 and 2000, respectively.

He is currently a doctoral candidate with the Yariv group at Caltech working
on soliton-based optical communication systems and on optical information pro-
cessing devices. His research interests also include optical networks, photonic
crystals and periodic structures, nonlinear and quantum optics, and a wide range
of topics in applied mathematics and physics.

Mr. Mookherjea is a member of Tau Beta Pi and Sigma Xi.

Amnon Yariv (S’56–M’59–F’70–LF’95) a native of Israel, received the B.S.,
M.S., and Ph.D. in electrical engineering from the University of California at
Berkeley, CA, in 1954, 1956 and 1958, respectively.

In 1959, he went to the Bell Telephone Laboratories, Murray Hill, NJ, joining
the early stages of the laser effort. In 1964, he joined the California Institute
of Technology as an Associate Professor of Electrical Engineering, becoming
a Professor in 1966. In 1980, he became the Thomas G. Myers Professor of
Electrical Engineering and Applied Physics. In 1996, he became the Martin
and Eileen Summerfield Professor of Applied Physics and Professor of Elec-
trical Engineering. On the technical and scientific sides, he took part (with var-
ious co-workers) in the discovery of a number of early solid-state laser sys-
tems, in the original formulation of the theory of nonlinear quantum optics; in
proposing and explaining mode-locked ultrashort-pulse lasers, GaAs optoelec-
tronics; in proposing and demonstrating semiconductor-based integrated optics
technology; in pioneering the field of phase conjugate optics; and in proposing
and demonstrating the semiconductor distributed feedback laser. His present
research efforts are in the areas of nonlinear optics, semiconductor lasers and
WDM filters, especially the problem of monolithic integration of transistors,
injection lasers, ultrafast (<10 s) semiconductor devices and phenomena,
and the propagation of optical signals in fibers, including wavelength-division
multiplexing (WDM). He has published widely in the laser and optics fields and
has written a number of basic texts in quantum electronics, optics, and quantum
mechanics. He has received the 1980 Quantum Electronics Award of the IEEE,
the 1985 University of Pennsylvania Pender Award, the 1986 Optical Society
of America Ives Medal, the 1992 Harvey Prize (shared with M. Gorbachev) and
the 1998 Esther Beller Medal of the Optical Society of America. He is a founder
and chairman-of-the-board of ORTEL Corporation (acquired by Lucent Tech-
nologies), and a founder and a board member of Arroyo Optics Inc.

Dr. Yariv is a member of the American Physical Society, Phi Beta Kappa,
the American Academy of Arts and Sciences, the National Academy of Engi-
neering, the National Academy of Sciences, a Fellow of the Institute of Elec-
trical and Electronics Engineers, and the Optical Society of America.


