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Abstract7

Dietary patterns have long been a driver of global land use. Increasingly, they also respond8

to it, in part because of social forces that support adoption of sustainable diets. Here we develop9

a coupled social-land use dynamics model parameterised for 164 countries. We project global10

land use under 20 scenarios for future population, income, and agricultural yield. When future11

yields are low and/or population size is high, coupled social-land feedbacks can reduce the peak12

global land use by up to 2 billion hectares, if socio-economic barriers to adopting a sustainable13

diet are sufficiently low. In contrast, when population growth is low or yield is high, reductions14

in income elasticity can increase peak land use by 100 million hectares. The model also exhibits15

a regime of synergistic effects whereby simultaneous changes to multiple social and economic16

parameters are required to change land use projections. This research demonstrates the value17

of including coupled social-land feedbacks in land use projections.18

Main19

From 1961 to 2013 global food demand went up threefold, from 6.4 trillion to 19.4 trillion kilocalories20

(kcals) per day. This massive increase is attributed to an increase in the world population from 321

to 7.1 billion and an increase in average per capita consumption of food from 1800 kcals/day to22

2600 kcals/day over this period [1]. Land is the primary global food supply. In 2013, an estimated23

land equivalent of 3.5 billion hectares was consumed (72% of agricultural land in that year) while24

approximately 1.4 billion hectares of land was spent on food wastage [2]. Future expansion in global25

agricultural land and/or increased intensity of existing farmland usage is therefore a highly probable26

pathway to meet the enhanced demands of the 21st century. However, agricultural expansion27

and intensification represent major ecological threats, ranging from clearing of forests and habitat28

fragmentation [3, 4] to increased greenhouse gas emissions [5, 6].29

Agricultural intensification faces an uncertain future. From 1961 to 2013, production gains30

were mostly due to the steady growth in land productivity [5, 1]. Some studies suggest that31

certain major crops are approaching their yield ceilings in rich countries [7, 8, 9]. There has been a32

deceleration in yield growth across the globe primarily due to decreasing investment in agricultural33

research and reduced food production prices in both higher and lower income countries [10]. Slowing34

intensification may trigger agricultural land expansion to catch up with rapidly growing demand35

for food.36

Mathematical models of sustainable food systems are becoming an increasing topic of research37

[11, 12, 13, 14, 15, 16, 17]. Research on sustainable pathways for agricultural technologies tend to38
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focus on the supply side of the problem. On the demand side, models often stipulate future demand39

trajectories that are independent of how the model variables evolve. For instance, sophisticated land40

system ensemble models that are used to project land use in Intergovernmental Panel on Climate41

Change (IPCC) reports since their models use scenarios for homogenized dietary consumption42

patterns as inputs and, as such do not study the dynamics of system-induced drivers of human43

consumption behaviours [18, 19, 20, 21]. The importance of incentivizing sustainable consumption44

has been noted [22]. Dietary patterns can heavily influence trajectories of global land use [20, 23,45

24, 25, 26] and individuals include environmental factors while making dietary decisions [27, 28]46

and therefore land use dynamics and socially-influenced dietary choices are coupled to one another47

through two-way feedback. However, there has been limited investigation into understanding how48

these shifts in dietary patterns evolve within populations due to social and economic factors, and49

in particular how they respond to changing land use.50

Sustainable consumption is an economically and socially induced process that evolves endoge-51

nously in a population and hence can benefit from systematic study using theoretical models. From52

the individual perspective, adopting a land-sparing sustainable diet may involve paying a cost of53

losing the personal satisfaction of consuming meat [29, 30]. However, everyone benefits from an54

individual’s choice to adopt a sustainable diet, since scarce global land use is reduced as a result of55

that choice. Hence dietary choices represent a public goods game, where individuals may choose to56

contribute to a common benefit that all members of the group receive, even if they did not make57

a contribution [31, 32]. Modeling social behavior in public goods games often uses models of social58

learning dynamics from evolutionary game theory, which captures how individuals learn behaviours59

from one another [33, 34, 35]. Interest has grown in coupling dynamic social learning models to60

models of natural processes such as the global climate system [36, 37] and terrestrial ecosystems61

[38] although social learning dynamic models have not been applied to study coupled dynamics of62

global land use and dietary decision-making in human populations, to our knowledge.63

Here, we introduce a social learning modelling framework for coupling the country-level dynam-64

ics of sustainable dietary decision-making under social learning dynamics to country-level land use65

dynamics. Our objectives are to: (1) show how models of social dynamics and land use dynamics66

can be coupled to generate novel predictions that are not possible using approaches that treat these67

systems in isolation from one another, and (2) gain insight into how potential coupled social-land68

use processes alter both projected global land use and projected dietary trends. Our objective was69

not to generate projections for policy use. Hence, we opted for a minimal model that was easier to70

fit to data and gain insight from.71

Model Overview72

Our mathematical model describes a social learning process by which individuals learn dietary73

behaviour from others. Our model captures the two-way feedback between land use and dietary74

practice: as dietary practices impact global land use, the resulting trends in global land use can, in75

turn, stimulate behaviour toward more sustainable diets in a closed feedback loop, albeit modified76

by socio-economic drivers. Details of the model appear in Methods.77

For every country, i, we define bounds for maximum and minimum per capita land use in78

year t (cU,max
i (t) and cSi (t) respectively). We classify individuals as having either sustainable or79

unsustainable diets. Individuals with a sustainable diet consume cSi (t) hectares per capita in year80

t. Those with unsustainable diets increase their consumption based on per capita income up to a81

maximum cU,max
i (t). We define hi as the elasticity of food consumption with respect to income in82

country i (or just, income elasticity of food consumption in i). The higher h is, the more rapidly83
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consumption changes with income for those practicing an unsustainable diet (see Methods). The84

estimate procedure for cU,max and cS appears in Methods. Beyond 2013 (the last available year85

in the FAO food balance sheets), these bounds are extrapolated under different scenarios defined86

by a parameter f (a number between 0 and 1). Low values of f represent scenarios where future87

global yields are higher. High values of f represent inferior (low) yield futures (see Methods for a88

mathematical representation of the scenarios).89

We assume every country i is characterized by a barrier to adopting a sustainable diet, σi, such90

that when global land use L < σi, the perceived costs of a sustainable diet push the population91

toward an unsustainable diet, while when L > σi, the population moves toward the sustainable92

diet. σi represents a barrier to achieving population-wide adoption of a sustainable diet due to the93

combined effects of various psychological, social and economic factors. The rate of dietary change is94

dictated by κi, which describes how fast social learning occurs in country i. κi is a control knob that95

determines how often an individuals samples other individuals in the population regarding their96

diet. If an individual on a non-sustainable diet samples an individual on a sustainable diet and if97

L > σi, they switch to a sustainable diet with a probability proportional to the difference L−σi. A98

similar process occurs for the switch from sustainable to unsustainable diets (see Methods). When99

L > σi, the proportion x of individuals on a sustainable diet increases as individuals switch from100

an unsustainable diet to a sustainable diet. The opposite happens in the unsustainable regime. A101

high value of κi can accelerate change in either direction depending on the difference between L102

and σi.103

We use a previously published model [2] to generate country-level land use data based on104

dietary patterns from 1961 to 2013. We fit our model to these data to estimate κi, σi and hi for105

166 currently existing countries (see Appendix SI Section 1 for methods of parameter estimation106

and Appendix SI Section 4 for countries included). These estimated parameters were taken as our107

baseline parameter values. Under the umbrella term ‘agricultural land use’ we included land used108

for agriculture, pasture and feed generation. Our land calculations excluded land equivalent of109

food wastage: we accounted only for the land that is used to generate the food that ends up being110

consumed by the population (See Methods for details). The model parameters, κ, h and f , are real111

numbers in the interval (0, 1).112

Results113

We make global land use projections for 20 scenario combinations for the 164 countries we analyzed114

(see Appendix SI Section 4 for details on countries used). For country-level population and income115

projections, we use the five shared socio-economic pathway (SSP) scenario markers, SSP1 to SSP5116

[39, 40]. Each SSP scenario represents a unique storyline for the future that dictates the trajectory117

of population and income in countries (among other things). Although these scenarios have unique118

storylines for yield growth, we also show results for different possible future yield trajectories119

under each SSP scenario. SSP1 is characterized by relatively high income and small population.120

In SSP2, current trends of population and income continue, and moderate progress is made by121

achieving income convergence between countries. SSP3–also called the road to regional rivalry–is122

characterized by an overall high population growth and low income levels in developing countries.123

The SSP4 future sees high disparity in economic growth rates between high income and low income124

countries; global growth is less rapid compared to SSP1. In a SSP5 world, economic development is125

of utmost priority, income growth is high, on average, and it is coupled with strong improvement in126

education that leads to reduced fertility and hence a relatively small but well-educated population.127

See Appendix SI Figure 11 for population and income projections under the five SSP scenarios until128
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a.

b.

Higher future yields Lower future yields

Figure 1: Global land use projections to 2100 under multiple yield and SSP scenarios
(a) Global agricultural land use projections till 2100 (excluding land equivalent of food wastage)
under 20 scenario combinations. The four columns cover the yield scenarios of f = 0.2, 0.4, 0.6 and
0.8. Yellow dots show the time series data for land use from 1961 to 2013. Data from 1961 to 2013
is generated using Ref. [2]. Projections in solid lines begin from 2011 and continue till 2100. (b)
Model projections of fraction of global population consuming sustainably. See Methods for model
definition of sustainable consumption. Yellow dots show time series data for fraction of people
consuming sustainably between 1961 and 2013 estimated as in Ref. [2].

2100. For each of the five SSP scenarios, we also explored four scenarios for future agricultural129

yield: f = 0.2, 0.4, 0.6, 0.8, producing a total of 20 scenarios.130

Dynamic social-land feedbacks can partially counteract policy131

At the global level, the model shows how social dynamics partially counteract land use impacts132

caused by other trends such as changing per capita income and population size. The model predicts133

a net decrease in the proportion of individuals practicing a sustainable diet (x, or, ‘sustainable134

consumers’ hereafter) from 2013 to 2100 in all scenarios, on account of a high average barrier to135

adopting a sustainable diet (σi) and increasing per capita incomes (Figure 1b, and see Appendix SI136
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a. b.

Figure 2: Global land use projections to 2100, broken down continent-wise, reveal
heterogeneity under sustainable behaviour in baseline conditions. (a) Projections of
change in agricultural land use with respect to 2013 (excluding land equivalent of food wastage)
broken down continent-wise into five major regions - Africa, Asia, Americas, Europe and Oceania
(see Supplementary Section 5.2 for division methodology). Projections are shown for 20 scenario
combinations (combinations of 5 SSP scenarios and 4 f scenarios). (b) Model projections for
fraction of regional population consuming sustainably for 20 scenario combinations. See Methods
and Supplementary for formal definitions of sustainable consumption. Only Europe and Oceania
show a rise in sustainable consumers over the projecting period (2011 - 2100).

Figure 6 for global distribution of baseline σ values). A more rapid decline occurs under SSP5 and137

SSP1, on account of lower population sizes and thus lower land use in those scenarios creating a138

reduced perception of need to switch to a sustainable diet (Figure 1a). There are more sustainable139

consumers higher under SSP3, on account of higher land use in that scenario. In SSP3, due to140

reduced global income, unsustainable practitioners cannot consume as much as they could have141

with a higher income. However, this does not help reduce global land use because population142

size grows fastest under this scenario. Unsustainable practitioners therefore switch to sustainable143

diets faster because growing global land use exceeds the barrier to adopting a sustainable diet.144

Their behavioural change is, however, of little avail. Since their unsustainable consumption is not145

substantially higher than the sustainable level (due to reduced income in SSP3), the effects of this146

behavioural change are outweighed by high population growth. On the contrary, in SSP1 and SSP5,147

higher incomes allow higher consumption for the unsustainable practitioners. But low population148

growth prevents higher per capita consumption from causing a large rise in global land use. As a149

result, the temporal evolution to sustainable diets is slower in these scenarios.150

Under scenarios of higher future yield (f = 0.2 and f = 0.4), global land use declines from its151
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# occurrences in 25 scenario combinations at 2050

Ranking 
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(Land Use, 2013)
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India

Brazil
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Kazakhstan

Nigeria

Australia

Argentina

a. b.

c.

Figure 3: Countries with high population and high land use show general trend of
reducing sustainable behaviour under baseline parameters. (a) Ranking of countries based
on their total land use across 25 scenarios at 2050. Six countries land at least once inside the top
5 positions in 25 scenario combinations (combinations of 5 SSP scenarios and five yield scenarios:
f = 0.2, 0.4, 0.6, 0.8 and 1). The heat map indicates the number of appearance of a country at a
particular ranking position. China and the USA dominate the first two spots while India, Saudi
Arabia and Nigeria dominate third, fourth and fifth positions respectively. (b) Table showing
ranking of countries based on their population (2020, data) and land use (2013, data generated
from model in Ref. [2].). (c) Model outputs of sustainable consumers for the twelve countries that
occupy spots in either of the rankings in b.

2013 values across most SSPs. The only exception is SSP3 where land use starts to increase again152

after a period of decline. This occurs because the global population continues growing throughout153

the 21st century under SSP3. Eventually, the effect of population size outweighs the effect of154
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saturating gains in yield. Under scenarios of lower future yield (f = 0.6, 0.8), future land use155

deviates significantly across the SSPs but generally tends upward. We project land use to go as156

high as 6 billion hectares in the most extreme scenario (f = 0.8, SSP3). SSP scenarios with large157

initial population growth rate (SSP3 and SSP4) do not reach peak land use by 2100. On account158

of rapidly expanding land use, the sustainable consumers decline less rapidly than in the higher159

future yield scenarios, but the overall trend is still downward.160

Taken together, these results show how changes in parameters such as population size and per161

capita income can cause a social response that partially counteracts those changes. For instance,162

SSP5, despite being the most sustainable scenario in other respects, does not exhibit the strongest163

transition to sustainable diets because the reduced population size in that scenario causes a reduc-164

tion in land use required, and thus reduces the perceived need to transition to a sustainable diet.165

Similarly, higher agricultural yields reduce land pressure, and thereby also reduce the perceived166

need to transition to a sustainable diet. Scenario combinations involving higher future yield and/or167

SSPs with lower population size cause sustainable consumers to decline, which means that land use168

ends up being higher than it would be without this feedback between land use and dietary choices.169

Continental and country-level land use projections170

Projections broken down by geopolitical region reveal significant heterogeneity behind the global171

trends (Figure 2). Europe and Oceania exhibit an increase in sustainable consumers and a decrease172

in land use across all SSPs. This is because countries in Europe and Oceania have lower inferred173

barriers to adopting a sustainable diet (σi) compared to the rest of the world (Appendix SI Figure 6).174

With respect to evolution of global land use, they always remain in the regime where sustainability175

is the dominant behaviour with higher utility. The relative ordering of land use by SSP we saw in176

the global projections remains consistent at the continent level. These projections also show that177

an increase in sustainable consumers will not necessarily lead to a decrease in land use, even if that178

is the general trend.179

For example, in certain scenarios, Africa, Asia and the Americas show a decrease in land use180

(with respect to 2013) while the fraction of sustainable consumers also declines, on account of181

growth in agricultural yield outweighing the effects of income and population growth. For these182

regions, projections under the SSP3 scenario shows the highest use of land. This is because, for183

them, population projection under SSP3 is the highest among all SSP scenarios (unlike Europe184

and Oceania where it is the lowest). That, coupled with a steady decline in sustainable consumers185

in their population, results in the fastest change in land use. For these regions, the average socio-186

economic barrier to adopting a sustainable diet is always higher compared to the evolution of187

global land use in all of the 20 scenario combinations. This indicates that future yield, income and188

population do not drive the growth of sustainable consumers and the decline of land use identically.189

The feedback loop between land use and dietary behaviours in our country-level model gets scaled190

up to the regional level, too. In other words, each region shows a unique behavioural response to191

change in global land use because of its unique social setting.192

Some countries with relatively small population sizes are projected to emerge as front runners193

of global land use (Figure 3). The correlation between population and land use is not absolute,194

however (Figure 3b). In 2013, the countries that had a comparatively lower population but high195

land use were Kazakhstan (population, 18 million), Saudi Arabia (33 million), Australia (25 million)196

and Argentina (45 million). Ranking projection of land use shows that it is likely the fourth spot,197

currently occupied by Russia, will be taken over by Saudi Arabia by 2050 (which, in 2013, occupied198

the fifth spot in land use) (Figure 3a). In 2013, the two countries consumed comparable areas199

of global agricultural land for their respective demands (123 million hectares for Russia and 105200
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million hectares for Saudi Arabia). The primary reason for Saudi Arabia overtaking Russia can201

be identified from Figure 3c. Russia sees an increase in sustainable consumption over the time202

horizon, while Saudi Arabia sees a decrease. In all the scenarios, their baseline parameter value of203

σ (barrier to adopting a sustainable diet) places them on opposite regimes of behavior with respect204

to evolution of global land use.205

Synergies can reduce peak global land use206

We found that socio-economic factors as represented in our model–the social learning rate (κ), the207

barriers to adopting a sustainable diet (σ), and income elasticity (h)–have very large impacts on208

peak global land use, often ranging in the giga-hectares (Figure 4). This is particularly true when209

higher incomes, higher population sizes and lower future yields force individuals to make a choice210

between sustainable and unsustainable diets in the face of rapidly expanding global land use. In211

contrast, when land use does not expand as rapidly due to lower population sizes or higher yields,212

the perceived need to switch to a sustainable diet is less.213

When future yields are lower (f = 0.8), the peak global land use is much more sensitive to social214

processes than when future yield is higher (f = 0.2) (Figure 4). Low yield means rapidly expanding215

land use, which in turn stimulates a social response in favour of wider adoption of a sustainable216

diet. Hence in this scenario, changes in social parameters governing the pace and desirability217

of change have large impacts on land use. When future yields are low, population growth also218

becomes a determining factor in assessing the effectiveness of varying social parameters (Figure219

4d). In contrast, when future yield is high, land use is lower even though more individuals are220

practicing an unsustainable diet, and thus changes to parameters governing pace and desirability221

of a sustainable diet have less impact.222

In scenarios where future yields are lower, an increase in the social learning rate (κ) leads to high223

peak global land use due to faster conversion to unsustainable consumption as per capita income224

rises (Figure 4a). Globally, the barrier to adopting a sustainable diet is too high for sustainability225

to spread in populations even when global land use increases quickly. In the model, if a sustainable226

consumer samples their population very often (high social learning rate, κ), they are easily tempted227

to shift to unsustainable consumption because they see an increased expected utility in switching.228

The only way to reduce this effect is to reduce the barrier to adopting a sustainable diet (lowering229

σ, Figure 4b). This could be possible by incentivizing consumption of plant protein by reducing230

the market price of animal protein substitutes or increasing public knowledge about health and231

environmental implications of a high meat diet. Once the barrier to adopting a sustainable diet is232

sufficiently low, social learning rates assist in lowering the peak global land use (Figure 4b). When233

σ is lowered, sustainable consumption becomes the dominant behaviour due to its higher utility. In234

this case, a considerable amount of land is saved even in scenarios where global population growth235

rate is high (SSP3) and future yields are inferior (f = 0.8).236

If global land use evolves very slowly due to slow population growth (SSP1, SSP5) and high237

global yield (f = 0.2), the model predicts that sustainable consumption never becomes the dominant238

behaviour at the global level. This is because L always remains significantly lower to the baseline239

values of σ in these scenarios. Even with sizeable changes in social parameters, κ and σ, only an240

insignificant increase in sustainable consumers is achieved. As a result, there is no direct impact on241

peak global land use. As global land use change is small in these scenarios (and sometimes negative,242

see Figure 1a), there is not enough incentive for individuals to even pay a lowered cost to being243

sustainable. In such a setting, the key to reducing global land use lies in the consumption patterns244

of highly prevalent unsustainable consumers. Since global average income is high in these scenarios,245

an increase in income elasticity can potentially cause negative impacts on global agricultural land246
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Figure 4: Variations in social parameters from baseline level impact global land use.
Model output of peak global land use at four scenario combinations - f = 0.2, SSP1, f = 0.2, SSP3,
f = 0.8, SSP1 and f = 0.8, SSP3. Model projections are evaluated at parameters deviated from
their baseline settings. The black star in each plot indicates the position of the baseline parameter
in the heat map. Heat map for peak land use projection with deviations in (a) κ (social learning
rate) and h (income elasticity of food consumption), (b) κ and σ (barrier to adopting a sustainable
diet), and (c) σ and h. All other parameters held at baseline values. The unit for the color bar in
the heat-map is billion hectares. (d) Peak global land use values from (a)-(c) plotted versus the
scenarios. (e) Model time series of global land use in the 21st century in scenarios of low global
yield; parameters varied within 50% of baseline value.

use (Figure 4a, 4c).247

However, in the least optimistic scenarios (high population growth rate and low future yields),248
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certain variations of social parameters from their baseline values can alter peak global land use by249

approximately two billion hectares (twice the size of China). Depending upon socio-economic and250

yield growth scenarios, the optimal strategy for lowering peak land use changes. Although it is251

always beneficial to reduce the barrier to adopting a sustainable diet, there can be scenarios where252

better gains are achieved by modulating the consumption patterns of unsustainable consumers.253

Varying all three social parameters guarantees a synergy in terms of lowering of peak land use254

in the 21st century, irrespective of socio-economic scenario, while varying only two of the three255

parameters sometimes has little effect.256

Discussion257

Individual diets are influenced by complex social factors such as religion, concern for health, ur-258

banization, female participation in labour, food prices, and sustainability practices [41, 42, 43, 44].259

Several of these factors imply a two-way feedback between land use and dietary decisions. Here260

we focused on the effect of ballooning global land use as a stimulus for individuals to adopt more261

sustainable diets, against a backdrop where rising incomes also permits individuals to opt for un-262

sustainable diets instead by eating more land-intensive foods such as meat. We subsumed other263

factors in decision-making into our phenomenological parameters at the social (κ, σ) and individual264

(h) level that we inferred from data.265

We showed how coupled social-land dynamics can have giga-hectare impacts on land use, espe-266

cially when future yield is low and/or population size is high, and we explored changes to social267

parameters that minimize future land use under various scenarios for socio-economic development268

pathways and future agricultural yield. We found that reducing barriers to adopting sustainable269

diets is an important way to reduce peak global land use. Increasing social learning rates holds the270

potential to accentuate the mitigating effect of reducing socio-economic barriers (a simultaneous271

effect shows a reduction of 2 billion hectares in peak global land use). Increasing social learning272

can result in negative effects if no improvements in lowering barriers are made, however.273

Our minimal model made simplifying assumptions that could impact its land use projections.274

For instance, we did not include aquatic sources of food, we ignored the influence of institutions,275

and we assumed a binary classification of consumption behaviour. A future extension of our model276

could include aspects of population heterogeneity such as a continuous behavioural spectrum along277

with age and gender structure. Future work could also explore the effects of social norms in order278

to determine how social inertia can accelerate or decelerate behavioural changes, as well as social279

learning between countries. For the purpose of simplicity in working with country level data, we280

also assumed homogeneous behaviour within each country by assigning unique parameter values281

to every country, and this could be relaxed in future research. Similarly, given the enormous282

greenhouse gas impacts of livestock [45], a future social process model would take into account the283

perceived risk of climate change in modeling the behavioural drivers of a population.284

Future research in coupled social-land use models can incorporate increasing sophistication285

to deepen our understanding of social processes around dietary choices and land use dynamics,286

as well as their interaction with other socio-economic factors and other environmental dynamics287

such as climate change. These models could inform land use projections and deepen our insights288

into relevant processes, by incorporating the driving mechanisms behind our dietary choices and289

accounting for how they respond to changes in land use and socio-economic variables.290
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Methods291

Coupled social-land Use Model292

For a country i and year t, we assume two possible diet types: sustainable and unsustainable for293

the entire population. The sustainable diet type requires cSi (t) hectares per capita to generate294

while the unsustainable diet requires cUi (t) hectares per capita. By definition, cSi (t) < cUi (t) for all295

i and t. We make the assumption that the sustainable diet is within reach of anyone in a country296

irrespective of income whereas unsustainable is aspiration-only. When income is small, individuals297

aspiring to an unsustainable diet are only able to include occasional land-intensive items in their298

diet, but as their income rises, they include more. We represent this behaviour with the following299

equation:300

cUi (t) = (cU,max
i (t)− cSi (t))(1− e−hi(mi(t)−m0

i
(t))) + cSi (t) (1)

Where cU,max
i (t) is upper limit of consumption by the unsustainable practitioners, mi(t) is the301

average income of the population and m0
i (t) is the minimum income that can afford the sustainable302

diet at i in t. The parameter h denotes the elasticity in the behaviour of unsustainable practi-303

tioners. If h is large, cU grows towards cU,max faster with income as compared to when h is small.304

Note that when average income mi(t) equals m0
i (t), the entire population consumes sustainably;305

that is, they consume cSi (t) hectares per capita. The per capita consumption of practitioners of306

unsustainable diet, cUi , approaches c
U,max asymptotically as the difference between mi and m0

i gets307

higher. Our assumption that meat and dairy consumption increases with income has been explored308

and identified in earlier papers like [46, 41].309

Let xi(t) and 1− xi(t) be respectively the proportions of the population that are practitioners310

and non-practitioners of sustainable diets in i at t. The average per capita consumption of the311

population can then be defined as follows:312

ci(t) = xi(t)c
S
i (t) + (1− xi(t))c

U
i (t) (2)

If Pi(t) is the population of i in t then the land used due to dietary consumption of population313

i at t is Pi(t)ci(t). Global land use, or, the land used due to consumption by the entire population314

of the globe at t can then be defined as the sum of land consumed by all the nations in the world315

at t:316

LG(t) =
∑

i

Pi(t)ci(t) (3)

We use imitation dynamics from evolutionary game theory to describe the time evolution of xi.317

The utility gain for changing from an unsustainable diet to a sustainable diet for the baseline model318

is given by319

∆e = αiL
G(t)− σ0,i

Hence, as the impact function LG(t) rises over time due to growing incomes, there is a growing320

incentive for individuals to switch to a sustainable diet, according to a proportionality constant321

αi. The rate of switching becomes faster as the difference between αiL
G
− σ0,i grows and vice322

versa. However, this behaviour to switch to sustainable practice is only effective when αiL
G is323

greater than σ0,i. When αiL
G is less than this threshold, σ0,i, the proportion of unsustainable324

practitioners grows, the rate being determined by the absolute difference between αiL
G
− σ0,i. We325
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call the parameter σ0,i, the socio-economic barrier to adopting a sustainable diet in i. Assuming a326

social learning rate of κ0,i for i we can write the evolution of sustainable practitioners as follows:327

dxi
dt

= κ0,ixi(1− xi)∆e, xi(t0) = x0,i (4)

After some rescaling of parameters we obtain:328

dxi
dt

= κixi(1− xi)(L
G(t)− σi), xi(t0) = x0,i (5)

Where κi = κ0,iαi and σi = σ0,i/αi are the rescaled parameters. We refer to the rescaled329

parameters κi and σi with their original names. That is, κi is social learning rate and σi is the330

barrier to adopting a sustainable diet in i. When global land use LG(t) exceeds σi, unsustainable331

practitioners switch to sustainable behavior at a rate which is determined by κi, the existing332

proportion of sustainable practitioners and the absolute difference between global land use and σi.333

When global land use is less than σi, sustainable practitioners switch to unsustainable behaviour334

through the same mechanism.335

Method for calculating c
U,max
i (t) and cSi (t)336

The upper bound of per capita consumption, cU,max, is calculated by assuming that the maximum337

diet is the one that allows highest intake of items that belong in the meats and dairy diet groups.338

Similarly, for cS , we assume that sustainable diet is the one that allows least consumption of items339

in those groups. Our assumption is backed by numerous studies that have found meat intensive340

diets to be environmentally unfriendly and land-intensive [18, 47]341

cU,max and cS can be calculated between 1961 and 2013 for countries whose data is reported342

in FAOSTAT’s food balance sheets [1]. We categorize each of the 21 food items listed in the food343

balance sheets into one of the seven groups of diet - fruits, vegetables, grains, meats, dairy, oils and344

sugar.345

For every country i, we calculate its maximum possible diet by replacing its average consumption346

of items in the ‘meats’ and ‘dairy’ groups (in kcals/capita/day) with the consumption values of the347

countries that consumed the most of those items that year. Similarly, for the minimum sustainable348

diet, we replace them with the consumption values of countries that consumed the least of those349

items in that year. Values for the remainder of the diet (i.e the other groups - fruits, vegetables,350

grains, sugar, oils), remain the same as reported data. An example of such a construction is shown351

in Appendix SI Table 1). The method of evaluating these bounds are explained with more detail352

in Appendix SI Section 1.1.353

Once these hypothetical maximum and sustainable diets are constructed for a country i, we354

use the model developed in Ref. [2] to calculate the total land required to generate that per capita355

dietary demand for the population of i in t (see Appendix SI Section 2 for an overview of this356

model). We divide the output of the model with the population of i at that year to obtain per357

capita land use equivalent of the hypothetical diet (cU,max if maximum diet, cS if sustainable diet).358

In order to evaluate these values for years beyond 2013 (for purpose of projections), we use an359

extrapolating parametric function (See Method section for f scenarios).360

Definition of land use: Data and Methods361

We use the model developed in [2] to generate the country-level time series data of average per362

capita land use between 1961 and 2013. The model is described briefly in Appendix SI Section363

2. The UN FAOSTAT data-set also provides country level data for land used on agriculture and364
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pasture land. However, this is not the same as our definition of ‘land use by i’. This is because365

countries are not entirely self-dependent in providing for their food demand. Consume in i can366

be partly produced in j and vice-versa. Since the model in [2] accounts for differential yields of367

food sources, the data for per capita land use, as generated by model in [2], accounts for land368

used from across the globe to provide for the consumption in i. If two countries have similar369

dietary consumption, the country which has a lower effective yield has higher value of per capita370

consumption than the country which has a higher value of effective yield.371

In all our projections and analysis, we consider land that is required to generate the food that372

ends up being consumed by humans. Land equivalent of food wastage is not considered in our373

calculations. The data reported by UN FAOSTAT’s land statistics division [48] accounts for land374

used for all agricultural purposes. This includes land equivalent of food wastage. In Appendix SI375

Figure 1, we see the quantitative difference between their time-series and our global model output.376

FAOSTAT estimated that 1.4 billion hectares were lost due to food wastage in the year 2007 [49].377

This number matches exactly with the difference between the two series at 2007 in Appendix SI 1.378

Population, income and f (yield) scenarios:379

We borrow the SSP scenarios (Shared Socioeconomic Pathways) introduced in [39] for projecting380

population and income to 2100. A number of existing models are compiled in the SSP Public381

Database hosted by the International Institute for Applied System Analysis (IIASA). Among them,382

we choose the OECD Env-Growth Model [40] for obtaining future projected values of country level383

population and income. In Appendix SI Section 4 we discuss the inclusion procedure of countries384

in our analysis. There we provide reasons for the exclusion of certain countries from the analysis.385

The choice for OECD Env-Growth was made because it covers projections for maximum number386

of countries among the existing models.387

The bounds for maximum and minimum per-capita consumption (cU,max and cS) are projected388

into the future with a parametric function. The parameter f , a number between 0 and 1, represents389

scenarios of yield future. We now explain the meaning of a yield scenario parameterized by f . If the390

trend of cU,max and cS between 1990 to 2013 is decreasing (which is more often than increasing),391

the series can at least reach f times its 2013 value in the future. Similarly, if the trend is increasing,392

it can reach at most 1 + f times its 2013 value in the future. The rate at which a projected curve393

(either cU,max or cS) reaches towards its bound is determined by its rate between 1990 and 2013.394

Let c be the concerned time series that we wish to project till 2100 using our parametric function.395

The series c can either be cU,max or cS for a country i. The series is always defined between 1961396

and 2013. First, we fit an exponential of form y = aebt to a truncated c series. This truncated397

version of c is the time series of c from 1990 to 2013. If b < 0 we call the series trend decreasing398

and if b > 0 we call the series trend increasing. Here, a and b are constants. We extrapolate the399

time series c till 2100 (starting from 2013 onward) using the following equations:400

c(t) =

{

c(2013)− (c(2013)− c(2013)f)(1− e−β(t−2013)), if initial trend is decreasing

c(2013) + c(2013)f(1− e−β(t−2013)), if initial trend is increasing

Here f is the tune-able parameter - a real number between 0 and 1 that defines the future yield401

scenario. For the above equation, t is always greater than 2013. The exponent β is adjusted such402

that continuity is maintained at 2013 between the initial trend, aebx, and the projected trend c(t).403
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That is,404

β =















−

1
c(2013)

abe2013b

1−f
, b < 0

abe2013b

c(2013)f , b > 0

In Appendix SI Figure 9 , we show two examples of cU,max and cS projection till 2100 using405

the above method. The two countries that are chosen as examples are USA and Netherlands. USA406

shows a decreasing initial trend (b < 0) whereas Netherlands shows an increasing initial trend (b407

> 0).408

If we assume that maximum and sustainable dietary distributions (in kcals/capita/day) for409

countries remain constant from 2013 onward, f scenarios represent scenarios of yield future. Then,410

a low f value represents improvement towards high yield values. A high f value represents decel-411

eration of yield rates, causing them to converge to inferior future values.412

Parameter plane analysis413

The three social parameters, κ, σ and h are varied from their baseline values in a pairwise fashion414

while keeping the third parameter fixed at the baseline setting. Every parameter is varied from415

-100% to 200% of its baseline value. That is, if α is a social parameter, we vary it from 0 to 3α416

while conducting this analysis.417

Since we begin projecting at 2011 and continue till 2100, we make the corresponding changes418

in social parameters at 2011 and keep them that way for the entirety of the projecting period. We419

make equal percentage changes to social parameters of all countries included in our model. In the420

parameter planes, we observe the effect of changes in parameter values on peak global land use421

attained between 2011 and 2100.422

We show results for four scenario combinations - i) SSP1, f = 0.2, ii) SSP3, f = 0.2, iii) SSP1,423

f = 0.8 and iv) SSP3, f = 0.8. In all the parameter planes, the colors represent the value of peak424

global land use (based on an accompanying color-bar). All units of peak global land use are in425

billion hectares. Baseline parameters are marked by a black star (no change) in each parameter426

plane. Arrows indicate direction towards least peak global land use.427
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