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Abstract

Face recognition algorithms need to deal with variable
lighting conditions. Near infrared (NIR) image based face
recognition technology has been proposed to effectively
overcome this difficulty. However, it requires that the en-
rolled face images be captured using NIR images whereas
many applications require visual (VIS) images for enroll-
ment templates. To take advantage of NIR face images for
illumination-invariant face recognition and allow the use of
VIS face images for enrollment, we encounter a new face
image pattern recognition problem, that is, heterogeneous
face matching between NIR versus VIS faces.

In this paper, we present a subspace learning framework
named Coupled Spectral Regression (CSR) to solve this
challenge problem of coupling the two types of face images
and matching between them. CSR first models the proper-
ties of different types of data separately and then learns two
associated projections to project heterogeneous data (e.g.
VIS and NIR) respectively into a discriminative common
subspace in which classification is finally performed. Com-
pared to other existing methods, CSR is computational ef-
ficient, benefiting from the efficiency of spectral regression
and has better generalization performance. Experimental
results on VIS-NIR face database show that the proposed
CSR method significantly outperforms the existing methods.

1. Introduction

Face recognition, as a challenging problem in image pat-
tern recognition, has been researched for several decades.
Although most current face recognition algorithms are able
to achieve satisfactory performance on controlled environ-
ments, it is well known that they confront problems arising
from poor lighting conditions.

Recently, near infrared (NIR) image based face recogni-
tion technology [8] has been developed to overcome illumi-
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nation related problems encountered in visual (VIS) image
based face technology. With active NIR illumination, the
NIR approach is not only insensitive to environmental light-
ing changes, but also greatly increases the accuracy of face
recognition for cooperative user applications.

However, the NIR approach performs matching between
NIR faces. Therefore, it requires the enrolled face images
captured using NIR as well. However, many applications
require that enrollment be done using VIS face images.
Therefore, the existing NIR based face recognition method
is unsuitable in this situation.

A more powerful face technology would take advantage
of the NIR approach being invariant to illumination changes
while allowing the use of VIS face images to generate face
templates. This leads to a new face image pattern recogni-
tion problem, that is, heterogeneous face matching between
NIR and VIS faces. Solutions to such a problem are signif-
icant not only for NIR-VIS face matching but also in face
surveillance and face query systems where characteristics
of face images captured on spot are usually different or het-
erogeneous from that of the target faces stored in database.

Some methods have been proposed to deal with the prob-
lem. Tang and Wang [10] develop eigen-transform method
to synthesis pseudo-sketch image from target photo and
perform recognition between pseudo-sketch image and real
probe sketch one. This method requires one photo vs. one
sketch image under similar condition in training phase. Lin
and Tang [9] propose a common discriminant feature ex-
traction (CDFE) method to transform query faces captured
using near infrared or sketch images and target faces of visi-
ble spectrum into a common discriminant feature subspace,
where the difference of with-in scatter matrix and between
scatter matrix are maximized. Because of the pairwise man-
ner for with-in and between class scatter matrices compu-
tation, the CDFE method is somewhat time-consuming in
training phase and only suitable to be applied on small or
moderate database. Yi et al. [14] utilize canonical corre-
lation analysis (CCA) to exploit the essential correlations
in PCA [11] or LDA [2] subspaces of NIR and VIS im-
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ages and Yang et al. [13] propose regularized kernel CCA
to learn the relationship between VIS and 3D data spaces.
However, their method doesn’t consider class label informa-
tion in CCA process and thus it may drop some important
information helpful for classification.

In this paper, we develop a novel and effective sub-
space learning method, named Coupled Spectral Regres-
sion (CSR), for heterogeneous face recognition. As we
know, heterogeneous data usually occupy different posi-
tions in data space. Using one projection (or feature extrac-
tion) to extract features for heterogeneous data would not
produce sensible comparison. Therefore, like CDFE, we
adopt to use two projections to project the different types
of data, respectively, into a common discriminant subspace
in which the classification is finally performed. Different
from CDFE, we derive the solutions from the view of graph
embedding [12] and spectral regression [4] which is easy
to be combined with regularization techniques to improve
the generalization performance and substantially reduces
the computational complexity. The proposed algorithm is
both efficient and effective and achieves much better accu-
racy than existing methods which will be shown in experi-
mental section.

The remainder of this paper is organized as follows. Sec-
tion 2 briefly reviews the graph view of subspace learn-
ing. Section 3 describes the coupled spectral regression
approach with its linear and nonlinear implementations in
detail. Experimental results on VIS-NIR databases are
demonstrated in Section 4 and in Section 5, we conclude
the paper.

2. Graph View of Subspace Learning

Recently, Yan et al. [12] unify and re-interpret the sub-
space learning in a graph embedding framework. Let G =
{X, W} be a graph with vertex set X = [x1, x2, . . . , xN ]
and similarity matrix W ∈ R

N×N . Each vertex xi in the
vertex set represents a data point and the elements Wij in
the similarity matrix W is the weight of the edge connect-
ing vertices xi and xj which describes certain relationship
between them. The graph G under such definition can then
be used for characterizing various statistical or geometric
properties of the data set. The purpose of graph embedding
is to find a low-dimension representation for each vertex
while preserve the relationship among them.

For one dimension embedding case, suppose y =
[y1, y2, . . . , yN ]T is the low dimension representations of
the vertex set X where yi represents the low-dimension em-
bedding of xi. The optimal embedding y can then be ob-
tained as

y = arg min
y

∑
i,j

||yi − yj ||2Wij = arg min
y

yT Ly (1)

where L = D − W is the Laplacian matrix, and D is a

diagonal matrix where Dii =
∑

j Wij . The objective func-
tion gives a high penalty when the similar vertices xi and
xj are mapped far apart. Therefore, it tries to preserve the
neighborhood structure of the original data points in the
low-dimension embedding.

To avoid trivial solutions to above optimization problem,
a constraint is then imposed for the embedding, yT Dy = 1,
thus the minimization problem is finally formulated as

y = arg min
yT Dy=1

yT Ly = arg min
y

yT Ly
yT Dy

= arg max
y

yT Wy
yT Dy

(2)
The solution y can be obtained by solving the generalized
eigen-problem corresponding to the maximum eigenvalue,

Wy = λDy (3)

The embedding obtained above is only the solution for
training data. It is unclear how to map new data from test
set into the low-dimension space. To address this problem,
it is turned to learn the relationship f between yi and xi

instead of embedding yi, such as yi = f(xi). Under linear
assumption yi = f(xi) = xT

i a, Eq. 2 can be rewritten as

y = arg max
y

yT Wy
yT Dy

y=XT a−−−−→ a = arg max
a

aT XWXT a

aT XDXT a
(4)

and the solution a can be obtained by solving the general-
ized eigen-problem as

XWXT a = λXDXT a (5)

Once the relationship is learned from training data, it can
be extended to unseen data. The approach mentioned above
is called the linearization of graph embedding; linear sub-
space learning methods such as PCA [11], LDA [2], LPP [7]
and NPE [6] etc. can all be interpreted in such framework
by defining different similarity matrix W. Specifically, for
LDA, the similarity matrix W can be defined as follows:

Wij =

⎧⎨
⎩

1/mt if xi and xj belong to the t-th class

0 otherwise
(6)

where mt is the number of samples in the t-th classes.

3. Coupled Spectral Regression for Heteroge-
neous Subspace Learning

Heterogeneous data occupy different positions in ob-
serve space. Using the same projection (or feature extrac-
tion) to extract features for the two types of data would not
produce optimal comparison and it is necessary that differ-
ent projective directions should be used to map different
types of data into a common subspace.
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Motivated from this, we propose to use two projections
to project the heterogeneous data, respectively, into a com-
mon subspace in which the classification is finally per-
formed. Further, we require that such projections are most
discriminative for the classification. Moreover, the compu-
tation should be efficient. The coupled spectral regression
(CSR) is designed to achieve these three goals.

Like spectral regression [4], instead of obtaining the pro-
jective directions directly, we could accomplish the hetero-
geneous subspace learning by two steps: (1) get the com-
mon discriminant low embedding; and (2) learn the rela-
tionship between data in observe space and the low embed-
ding. For the first step, it is equivalent to get the solution of
y to Eq. 3. Fortunately, under the definition of W for c class
LDA, the solution y to Eq. 3 in step (1) is straightforward as

yt = [0, . . . , 0︸ ︷︷ ︸∑ t−1
i=1 mi

, 1, . . . , 1︸ ︷︷ ︸
mt

, 0, . . . , 0︸ ︷︷ ︸∑ c
i=t+1 mi

]T ; t = 1, . . . , c (7)

with the same eigenvalue λ = 1 and can be orthogonalized
further by Gram-Shmidit method to get the c − 1 useful
solutions [4]. The left task is to explore the relationship
between heterogenous data and the corresponding low em-
bedding respectively.

3.1. Linear Coupled Spectral Regression (LCSR)

Suppose we have the embedding solution y (e.g. Eq. 7
for LDA) to Eq. 3 for the total data set, where the differ-
ences of samples from the same class are minimized while
the differences of samples from different classes are maxi-
mized. Let yg and yp be the sub-vectors extracted from y
corresponding to the two types of heterogeneous samples.
The purpose of CSR is to explore the relationship between
the heterogenous data sets {Xg, Xp} and their low embed-
ding {yg, yp} respectively. Under linear assumption, this
problem is simplified to find the projective vectors ag and
ap for the two types of data to satisfy

ygT = agT Xg, ypT = apT Xp (8)

where Xg = [xg
1, . . . , xg

Ng ], Xp = [xp
1, . . . , xp

Np ] are the
two heterogeneous data sets and Ng, Np denote the sam-
ple sizes.

In practice, the solution ag, ap to the above equations
may not exist and a possible way is to solve it in least
squares sense. Besides, to avoid the over-fitting problem,
several regularization terms are imposed onto the objective
function. First, we adopt shrinkage measures as in ridge re-
gression [5] on each of ag, ap respectively. Second, though
we motivate to project heterogeneous data in different direc-
tions, both types of face data, e.g. VIS and NIR, come from
the same kind of object, hence the projective directions ag

and ap should not differ too much; therefore, we impose an

additional regularizer to penalize the difference of ag and
ap.

Based on the above discussions, the objective function is
formulated as follows

{ag, ap} = arg min
ag,ap

1
Ng

||yg − XgT ag||2

+
1

Np
||yp − XpT ap||2 + η||ag − ap||2

+ λ(||ag||2 + ||ap||2)

(9)

where the first two terms are the approximation errors; the
third one is the penalty that prevents the coupled projec-
tive directions differing too much or over-fitting the training
data; and the last two ones are the shrinkage constraints,
also known the Tikhonov regularizers [5], which help im-
prove the generalization of the solutions. η and λ are the
two parameters that control the balance between the fit-
ting accuracy and the generalization performance. Through
putting the derivatives of the objective function with respect
to the projective vectors to zero, we obtain

(XgXgT + Ng(λ + η)I)ag = Xgyg + Ngηap

(XpXpT + Np(λ + η)I)ap = Xpyp + Npηag
(10)

By solving the above two equations, we can finally get the
projective vectors ag and ap as

ag=[Φg−NgNpη2(Φp)−1]−1[Xgyg+Ngη(Φp)−1Xpyp]

ap=[Φp−NgNpη2(Φg)−1]−1[Xpyp+Npη(Φg)−1Xgyg]
(11)

where Φg,Φp are defined as

Φg=XgXgT+Ng(λ + η)I, Φp=XpXpT+Np(λ + η)I (12)

The method described above is called linear coupled
spectral regression (LCSR). Naturally, corresponding to d
useful eigenvectors {yt}d

t=1 to Eq. 3, we can get d cou-
ples of projective directions Ag = [ag

1, ag
2, . . . , ag

d] and
Ap = [ap

1, ap
2, . . . , ap

d] to map the two types of heteroge-
neous data respectively into a discriminative common sub-
space to be classified.

3.2. Kernel based Coupled Spectral Regression
(KCSR)

Face appearances usually lie in a nonlinear low-
dimensional manifold. It is reasonable to utilize nonlinear
embedding to achieve good classification performance. Fol-
lowing similar idea proposed in SVM [3], the CSR method
can also be integrated with kernel trick to kernelize data into
an implicit high or even infinite dimension feature space to
make the problem better solved.

Suppose the two heterogeneous data sets in original
space Rn be Xg = [xg

1, . . . , xg
Ng ], Xp = [xp

1, . . . , xp
Np ],
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and their corresponding mapped data in feature space F
are denoted as φ(Xg) = [φ(xg

1), . . . , φ(xg
Ng )], φ(Xp) =

[φ(xp
1), . . . , φ(xp

Np)], where φ is the mapping function φ :
Rn → F . Our purpose is to find the two projective vectors
wg and wp in feature space F respectively to satisfy:

ygT = wgT φ(Xg), ypT = wpT φ(Xp) (13)

From the reproducing kernel theory, we know that wg ∈
spanφ(Xg),wp ∈ spanφ(Xp), which means

wg=
Ng∑
i=1

ag
i φ(xg

i )=φ(Xg)ag, wp=
Np∑
i=1

ap
i φ(xp

i )=φ(Xp)ap

(14)
where ag = [ag

1, a
g
2, . . . , a

g
Ng ]T and ap =

[ap
1, a

p
2, . . . , a

p
Np ]T . Substituting Eq. 14 into Eq. 13,

we have

ygT=agT φ(Xg)T φ(Xg), ypT=apT φ(Xp)T φ(Xp) (15)

Similar to LCSR, we derive the solutions in least squares
sense and impose regularized items to avoid the over-fitting
phenomenon. Using the kernel tricks like in SVM [3], we
define three kernel matrices Kgg = φ(Xg)T φ(Xg), Kpp =
φ(Xp)T φ(Xp), Kgp = φ(Xg)T φ(Xp). Thus, the objective
function is formulated as

{ag, ap} = arg min
ag,ap

1
Ng

||yg−Kggag||2+ 1
Np

||yp−Kppap||2

+ (η + λ)(agT Kggag + apT Kppap)

− η(agT Kgpap + apT KgpT ag)
(16)

where λ and η are the two parameters that control the trade-
off between fitting accuracy and generalization performance
like LCSR. By putting the derivatives of above function
with respect to ag and ap to zero, we get the final solution
ag and ap as

ag =[Θg − NgNpη2Kgp(Θp)−1KgpT ]−1

· [Kggyg + NgηKgp(Θp)−1Kppyp]

ap =[Θp − NgNpη2KgpT (Θg)−1Kgp]−1

· [Kppyp + NpηKgpT (Θg)−1Kggyg]

(17)

where Θg and Θp are defined as

Θg=[Kgg+Ng(λ + η)I]Kgg, Θp=[Kpp+Np(λ + η)I]Kpp

(18)
Consequently, in test phase, for every input heteroge-

neous data pair (zg, zp), it can be nonlinearly projected as:

z̃g =
Ng∑
i=1

ag
i k(zg, xg

i ), z̃p =
Np∑
i=1

ap
i k(zp, xp

i ) (19)

where k(.) is the kernel function.
Naturally, corresponding to d useful eigenvectors

{yt}d
t=1 to Eq. 3, we can get d couples of projective di-

rections Ag = [ag
1, ag

2, . . . , ag
d] and Ap = [ap

1, ap
2, . . . , ap

d] to
project the heterogeneous data nonlinearly into a common
discriminant subspace to be classified.

4. Experimental Results

The following experiments evaluate the proposed CSR
methods in comparison with several existing meth-
ods of PCA [11], LDA [2], CDFE [9], PCA+CCA,
LDA+CCA [14]. In classification phase, the cosine distance
is adopt to measure the dissimilarity of feature in subspace
and the nearest neighbor (NN) classifier is chosen to do the
classification task.

Specifically, in CSR methods, the similarity matrix W is
defined following LDA according to Eq. 6 in this experi-
ment and hence the embedding solution y has the formula
of Eq. 7. Gaussian kernel is utilized in KCSR. For LCSR
and KCSR method, the regularized coefficients {λ, η} are
empirically set to {0.001, 0.01} and {0.00005, 0.0005} re-
spectively. For other methods, the parameters are optimized
according to the recommended values in their papers. For
PCA and LDA, we combine the heterogenous data together
and train a unique projection matrix for heterogenous data.

A VIS-NIR database is collected. There are totally 5097
images, including 2095 VIS and 3002 NIR ones from 202
persons in the database. Two test protocols are designed to
evaluate different methods, where the database is split into
training set and test set randomly. In protocol I, the training
set contains 1062 VIS and 1487 NIR images from 202 sub-
jects and the left ones constitute the test set. The persons in
test set are all contained in training set. In protocol II, there
are 1438 VIS and 1927 NIR images from 168 persons in
training set and the test set contains 657 VIS and 1075 NIR
ones from 174 persons. The persons in test set are partially
contained in training set. All the images are cropped into
128 × 128 size according to the automatically detected eye
coordinates. Fig. 1 shows some cropped VIS and NIR face
examples from the database.

Two kinds of features are adopted as the input for differ-
ent algorithms. One is intensity feature where each image
is resized into 32 × 32 and transformed to form a 1024 di-
mension feature. The other is LBP [1] feature in which 1000
dimension LBP features are extracted to represent each face
image. Consequently, there are four combinations of differ-
ent feature types and test protocols for each algorithm in
experiment. The results are reported in terms of three in-
dices: rank-1 recognition rate, verification rate (VR) when
the false accept rate (FAR) is 0.001 and equal error rate
(EER).

Tables 1 - 4 illustrate the results of different configura-
tions. Tables 1 and 2 illustrate the results of image inten-
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Figure 1. VIS and NIR face example images. (The left three
columns are VIS images and the right three columns are NIR im-
ages.)

Table 1. Results based on image intensity in protocol I.
Method Rank-1 VR@FAR=0.001 EER

PCA 0.1208 0.0271 0.3305
LDA 0.9801 0.8725 0.0609

CDFE 0.9721 0.9534 0.0201
PCA+CCA 0.9542 0.9196 0.0313
LDA+CCA 0.9774 0.9199 0.0310

LCSR 0.9748 0.9542 0.0191
KCSR 0.9734 0.9653 0.0180

Table 2. Results based on LBP features in protocol I.
Method Rank-1 VR@FAR=0.001 EER

PCA 0.8061 0.3887 0.1091
LDA 0.9874 0.9268 0.0301

CDFE 0.9973 0.9972 0.0017
PCA+CCA 0.9695 0.9399 0.0214
LDA+CCA 0.9801 0.9579 0.0193

LCSR 0.9940 0.9795 0.0067
KCSR 0.9887 0.9775 0.0087

Table 3. Results based on image intensity in protocol II.
Method Rank-1 VR@FAR=0.001 EER

PCA 0.1183 0.0124 0.3358
LDA 0.6451 0.2505 0.2890

CDFE 0.5487 0.1668 0.1927
PCA+CCA 0.5109 0.1640 0.1959
LDA+CCA 0.4155 0.1156 0.2062

LCSR 0.7565 0.4471 0.1310
KCSR 0.7306 0.4473 0.1254

sity and LBP features respectively following protocol I, and
tables 3 and 4 are the corresponding results in protocol II.
Fig. 2 plots the ROC curves of different methods with differ-
ent configurations. For clarity, we omit the results of PCA
and LDA. From the results, we can observe:

1. In protocol I, the performances of various meth-
ods are close. As a whole, the methods us-

Table 4. Results based on LBP features in protocol II.
Method Rank-1 VR@FAR=0.001 EER

PCA 0.8221 0.3802 0.1119
LDA 0.7903 0.2644 0.1747

CDFE 0.6282 0.2615 0.1539
PCA+CCA 0.4612 0.1417 0.2479
LDA+CCA 0.3519 0.1008 0.3924

LCSR 0.9384 0.7305 0.0416
KCSR 0.9523 0.7695 0.0373
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Figure 2. Receiver operating characteristic (ROC) curves of differ-
ent methods with four configurations ((a) Image intensity + proto-
col I, (b) LBP + protocol I, (c) Image intensity + protocol II, (d)
LBP + protocol II).

ing different projective directions for heterogeneous
data (CDFE, PCA+CCA, LDA+CCA, LCSR, KCSR)
achieve higher accuracy than the unique one (PCA
and LDA). It proves that it is feasible and effective to
project heterogeneous data respectively into a common
discriminant subspace.

2. For the previous methods like CDFE, PCA+CCA and
LDA+CCA, they achieve satisfactory accuracy in pro-
tocol I. However, their performance degrades dramati-
cally in protocol II, even much worse than PCA in the
case of LBP feature. It is a severe problem in practice
because in many cases, it is impossible to get images
of all subjects to be trained. Comparatively, the pro-
posed CSR methods, including LCSR and KCSR, owe
to the effective regularization techniques, achieve sig-
nificantly better results in protocol II where the sub-
jects in training set and test set are not totally over-
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lapped and thus are more reliable and applicable in real
world.

3. For most methods, whether following protocol I or II,
the results with LBP feature are better than those with
image intensity which suggests LBP is a good feature
descriptor to represent faces. The kernel based method
KCSR achieves better result than LCSR which shows
the effectiveness of nonlinear kernel technology. In all
of the methods, the KCSR with LBP feature achieves
the best heterogeneous face recognition accuracy in
protocol II.

Table 5. Computational time (s) of different methods with 1024 di-
mension intensity feature on training set A (protocol I) and training
set B (protocol II).

CDFE PCA+CCA LDA+CCA LCSR
Training Set A 77.98 (s) 22.29 (s) 30.47 (s) 5.07 (s)
Training Set B 73.26 (s) 21.85 (s) 26.50 (s) 4.76 (s)

Table 5 illustrates the experimental computational cost
of different methods on two training sets of protocol I and
II. These four are all linear feature extraction methods, so
the results are comparable in linear sense. Each reported
result is the average of 20 running times with matlab code
on a Core 2 Duo 2.4GHz and 2GB RAM PC. It can be seen
the proposed LCSR method has the lowest computational
cost, less than 1/15 of CDFE, 1/4 of PCA+CCA and 1/5 of
LDA+CCA which indicates the computational efficiency of
the CSR method.

5. Conclusions

In this paper, we have developed the couple spectral re-
gression (CSR) as an effective and efficient framework for
matching heterogeneous faces. The motivation is that het-
erogeneous face data occupy different positions in a fea-
ture space. Therefore, it is necessary that different pro-
jective directions should be used to map the heterogeneous
data into a common subspace. The couple spectral regres-
sion framework provides such a way to solve this problem
that it can integrate regularization technology to improve
the generalization performance effectively and meanwhile
greatly reduce the computational expenses. While this work
deals with the two-modal heterogeneous data case, the CSR
method can be extended to couple more than two modalities
and this is a future direction to explore.
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