
COUPLED SPIN AND SHAPE EVOLUTION OF SMALL RUBBLE-PILE ASTEROIDS:
SELF-LIMITATION OF THE YORP EFFECT

Desireé Cotto-Figueroa
1,2
, Thomas S. Statler

1,3,4
, Derek C. Richardson

4
, and Paolo Tanga

5

1
Astrophysical Institute, Department of Physics and Astronomy 251B Clippinger Research Laboratories,

Ohio University, Athens, OH 45701, USA; dcottofi@asu.edu
2
School of Earth and Space Exploration, Arizona State University Tempe, AZ 85287, USA

3
Division of Astronomical Sciences, National Science Foundation, 4201 Wilson Blvd., Arlington, VA 22230, USA; statler@ohio.edu

4
Department of Astronomy, University of Maryland, College Park, MD, 20742, USA

5
Laboratoire Lagrange, UMR7293, Université de Nice Sophia-Antipolis, CNRS, Observatoire de la Côte d’Azur, BP 4229, F-06304 Nice Cedex 4, France

Received 2014 December 9; accepted 2015 March 9; published 2015 April 9

ABSTRACT

We present the first self-consistent simulations of the coupled spin-shape evolution of small gravitational
aggregates under the influence of the YORP effect. Because of YORP’s sensitivity to surface topography, even
small centrifugally driven reconfigurations of aggregates can alter the YORP torque dramatically, resulting in spin
evolution that can differ qualitatively from the rigid-body prediction. One-third of our simulations follow a simple
evolution described as a modified YORP cycle. Two-thirds exhibit one or more of three distinct behaviors—
stochastic YORP, self-governed YORP, and stagnating YORP—which together result in YORP self-limitation. Self-
limitation confines rotation rates of evolving aggregates to far narrower ranges than those expected in the classical
YORP cycle, greatly prolonging the times over which objects can preserve their sense of rotation. Simulated
objects are initially randomly packed, disordered aggregates of identical spheres in rotating equilibrium, with low
internal angles of friction. Their shape evolution is characterized by rearrangement of the entire body, including the
deep interior. They do not evolve to axisymmetric top shapes with equatorial ridges. Mass loss occurs in one-third
of the simulations, typically in small amounts from the ends of a prolate-triaxial body. We conjecture that YORP
self-limitation may inhibit formation of top-shapes, binaries, or both, by restricting the amount of angular
momentum that can be imparted to a deformable body. Stochastic YORP, in particular, will affect the evolution of
collisional families whose orbits drift apart under the influence of Yarkovsky forces, in observable ways.

Key words: methods: numerical – minor planets, asteroids: general

1. INTRODUCTION

The distribution of asteroids with diameters larger than a few

hundred meters in the period−diameter diagram is interpreted
widely as evidence that these objects are not monolithic

boulders (Davis et al. 1979; Harris 1996). The sharp cutoff in

rotation period at »P 2 hr matches the spin rate at which
material at the equator of a rocky sphere would become

gravitationally unbound; the persistence of this envelope to

large sizes implies that these objects are dominated by gravity,
obscuring the effects of tensile or shear strength (Holsap-
ple 2007). Their actual structures may range from contact

configurations of a few monolithic blocks to nearly homo-
geneous collections of individual small grains. Direct measure-

ments of the masses and volumes of 433 Eros and 25143

Itokawa by the NEAR-Shoemaker and Hayabusa spacecraft
imply porosities of 27% (Wilkison et al. 2002) and 40% (Abe
et al. 2006), respectively, arguing for both fractured bodies and

genuine rubble piles in the near-Earth asteroid (NEA)
population.

In sharp contrast, NEAs smaller than about 150 m in
diameter overwhelmingly are rotating faster than the 2 hr
limit. These objects are under centrifugal tension in directions
perpendicular to the spin axis, and under gravitational

compression along it. Despite an initial rush to dub them

“monolithic fast rotators,” it was shown by Holsapple (2007)
that geological granular materials can supply sufficient

cohesion to hold aggregate bodies together at the observed

sizes and spin rates. The most surprising aspect of the fast-
rotating asteroids is their abrupt appearance as a function of

absolute magnitude: essentially everything smaller than
H = 23.6 (nominal diameter ~60 m) and nothing larger than
H = 21.4 (~170 m) is a fast rotator (Statler et al. 2013). This
abrupt transition is not predicted by current strength models
(Holsapple 2007; Sánchez 2014).
Owing to the action of the YORP effect—the secular

torque due to the reflection and thermal re-emission of
solar radiation from the surface (Paddack 1969; Rubincam &
Bottke 2000; Rubincam 2000; Bottke et al. 2006)—the
current spins of NEAs with diameters (D) of a few kilometers
or smaller may not reflect their original spin states. YORP
spin timescales ∣ ∣P dP dt( ) in the inner solar system are

~ D10 ( 1 kilometer) yr6 2 (Rubincam 2000), as confirmed by
observational detections of YORP acceleration (Kaasalainen
et al. 2007; Lowry et al. 2007, 2014; Taylor et al. 2007; Ďurech

et al. 2008a, 2008b, 2012). Typical NEA lifetimes are~10 yr7

(Gladman et al. 1997), so there is ample opportunity, in
principle, for YORP to modify the spins of sub-kilometer-
sized NEAs.
For a given object and orbit, the secular YORP torque is a

fixed vector function of obliquity. It has become standard
practice to use the plot of the torque components versus
obliquity—the “YORP curves”6—as a description of the
YORP characteristics of an object. If the object remains rigid,
the YORP curves determine its spin evolution: the so-called
“YORP cycle” (Rubincam & Bottke 2000). A typical cycle
begins with the object at an obliquity at which the torque
component along the spin axis is positive; the object accelerates
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in spin rate and evolves in obliquity until it reaches an
orientation at which the spin component changes sign, then
decelerates while evolving toward an end-state obliquity that is
a stable fixed point. Once the spin period is comparable to the
orbital period, spin–orbit resonances come into play; these,
along with tides or small impacts, randomly re-orient the
rotation axis, possibly after an episode of slow chaotic
tumbling, to an obliquity at which the cycle can begin anew.

The YORP cycle concept has important implications for
orbital evolution driven by the Yarkovsky effect (the net
radiation recoil force), which itself is spin-state dependent.
Most NEAs are thought to have been delivered from the Main
Belt to their current orbits with retrograde rotation, having
drifted inward (via Yarkovsky) to various resonances (Bottke
et al. 2002; La Spina et al. 2004). Once in the inner solar
system, YORP timescales should become short. As the
asteroids complete their YORP cycles, their previous spin
states would be forgotten, and the preference for retrograde
rotation should be erased. Yet, recent observational determina-
tions of Yarkovsky semimajor axis drift rates from available
radar and optical astrometry find that the overwhelming
majority have <da dt 0, indicating retrograde rotation (Ches-
ley et al. 2008; Nugent et al. 2012; Farnocchia et al. 2013).
This is difficult to reconcile with simple timescale arguments
showing that YORP should have been able to re-write the spin
state distribution of sub-kilometer-sized objects many times over.

The possibility that the YORP cycle may accelerate objects
to high rotation rates has excited interest in spin-driven
reshaping and binary formation, a compelling demonstration
of which is presented by Walsh et al. (2008). These authors
simulate idealized self-gravitating aggregate asteroids com-
posed of identical spheres, assumed to be inexorably
accelerated by YORP. They find that the objects with a
suffciently high internal angle of friction, or with a rigid core,
become oblate and develop an equatorial ridge, making the
body resemble a child’s top. Continued spin-up causes the
ridge to shed material, which can then reaccrete in orbit. This
process dynamically associates binaries with top shapes; and
the strong resemblance of the simulated binary formed by
Walsh et al. (2008) to the actual binary 1999 KW4 (Ostro
et al. 2006) is striking. YORP is now widely held to be an
important mechanism in binary formation. But this belief rests
on the assumption that YORP will, first, accelerate objects to
spin rates high enough to form axisymmetric tops; then,
accelerate the tops so that they shed mass; and finally, drive
sufficient mass off the surface and into orbit to form a binary
companion. Simulations to date have adopted the ansatz that
YORP will provide angular momentum in whatever amount is
needed to accomplish this. But this is not a safe assumption
when the object is not a rigid body.

Deformability, as one would expect for a rubble pile,
fractured body, or anything with loose surface material, may
significantly alter the behavior of the YORP effect. Because the
net YORP torque is a small residual of an imperfect
cancellation of competing contributions across the asymmetric
surface, YORP is inherently sensitive to the internal mass
distribution and to the detailed surface topography. Scheeres &
Gaskell (2008) demonstrated that ~50 m shifts of 25143
Itokawa’s center of mass could change the sign of the spin
component of torque, an effect subsequently confirmed by
Lowry et al. (2014). Statler (2009) systematically studied the
topographic effect on a wide variety of simulated asteroids, and

showed that objects that are identical but for the location of a
single crater or boulder can have torques differing by factors of
several. Statler (2009) further conjectured that the successive
effects of minor structural changes that alter the surface may
qualitatively alter spin evolution under YORP, possibly
replacing the YORP cycle with a stochastic random walk at
rotation periods 10 hr, and potentially limiting the amount of
angular momentum that YORP can contribute to processes like
rotational reshaping and binary formation.
The purpose of this paper is to test the conjecture of Statler

(2009) through self-consistent numerical simulations of
coupled shape and spin evolution of gravitationally bound
aggregates driven by the YORP effect. We will demonstrate
that stochastic YORP can, indeed, occur, and is just one of
three distinct processes deriving from spin-driven shape
change, that collectively give rise to YORP self-limitation.
Section 2 describes our numerical approach and the simulated
aggregates that we use for our initial conditions. Section 3
presents the results, describing the time evolution in spin and
obliquity as well as the statistics of mass reconfigurations,
shape changes, and mass shedding; it also presents a
preliminary version of a statistical (Monte Carlo) description
of self-consistent spin evolution. Section 4 discusses the
implications for top shapes, binaries, and the Yarkovsky effect,
and Section 5 sums up.

2. NUMERICAL METHODS

2.1. Overview

The physical system we are simulating is characterized by

two very different timescales: the dynamical timescale—103 to

10 s5
—on which the object rotates and centrifugally driven

material movement may occur, and the YORP timescale—1013

to 10 s15 for kilometer-sized objects—on which the spin state is
altered. Running a discrete-element simulation for 1010

dynamical times is not feasible, but we can exploit the
difference in timescales. Material reconfigurations, quick
compared with the YORP timescale, take place at effectively
constant angular momentum; and YORP evolution, acting
slowly between reconfigurations, takes place at constant shape.
This allows us to adopt a two-step computational approach in
which we integrate the YORP-induced spin state evolution at
constant shape, incrementing (or decrementing) the spin rate in
the discrete element code on a greatly compressed timescale
until material movement is triggered, and then follow the
dynamical evolution in “real” time, at constant angular
momentum, until the reconfiguration is finished. At that point
we recompute the torques for the new shape and resume the
spin state integration. This back-and-forth approach, handing
off between the particle dynamics and the radiation dynamics
parts of the calculation, is the key to making these simulations
possible.

2.2. Gravity and Particle Dynamics: pkdgrav

The gravitational and particle dynamics are simulated using
the hard-sphere discrete element method (HSDEM) as
implemented in pkdgrav, a gravitational N-body tree code
originally developed for cosmology (Stadel 2001) and
subsequently modified to handle interparticle collisions
(Richardson et al. 2000, 2009, 2011). The ensemble of
spherical particles used by pkdgrav is intended to model
the collective behavior of a deformable material composed of
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discrete pieces, not to literally represent components of the
aggregate. Collisions between pairs of spheres are treated as
instantaneous events that alter their translational and rotational
motions. Dissipative effects are parametrized by coefficients of
restitution that affect the relative motion of the surfaces at the
point of contact in the normal (en ) and tangential (et )
directions. At very slow collision speeds or in situations where
many collisions are occuring between the same particles in a
very short span of time, it is necessary to briefly set en and et to
unity (no dissipation) to avoid numerical problems. The
thresholds at which this occurs are set by two additional
parameters termed the slide limit and collapse limit. Because
dissipative processes in small asteroids are not quantitatively
well understood, we do not attempt at this stage to model the
rate of relaxation or the lifetimes of non-principal-axisrotation
states. Cohesive forces can, in principle, be included, but are
ignored in the simulations reported here; hence the results are
applicable to objects in the few-kilometer size range where
gravity dominates, and are not easily scalable to smaller sizes
where cohesion is expected to become relatively more
important.

Aggregates modeled by the HSDEM approach may be
somewhat more deformable than real aggregates composed of
irregularly shaped components, owing to the ability of the
spherical particles to roll. The use of identical spheres allows
for a certain degree of rigidity resulting from “cannonball
stacking.” Richardson et al. (2005) and Walsh et al. (2012)
find that cannonball-stacked arrangements of identical spheres
in hexagonal-close-pack (HCP) configuration have angles of
friction near 40 , comparable to lunar and Martian regolith.
When the spheres are not in ordered packing, the resulting
aggregates have angles of friction in the range of 5°–10°. This
is lower than typical values for terrestrial granular materials;
however, the properties of real asteroidal materials are not
quantitatively well determined. Tanga et al. (2009), using the
pkdgrav HSDEM implementation, demonstrate that a
population of disordered aggregates of identical spheres,
allowed to equilibrate at constant angular momentum, can
collectively reproduce the observed asteroid shape distribution.
On the basis of this result we adopt the objects from the Tanga
et al. (2009) study as our test objects in this paper. These
choices represent a simple starting point, a first step in
simulations of self-consistent spin evolution. In Section 4 we
describe physical mechanisms and computational strategies that
will be appropriate for subsequent steps; we also demonstrate,
by re-running a subset of our simulations using an alternative
algorithm, that our major conclusions are unlikely to be
significantly altered by changing the computational approach or
the material properties of the aggregates.

2.3. Radiation and Surface Physics: TACO

The dynamical effects of radiation recoil are calculated using
TACO (Statler 2009), a code for calculating thermophysical
processes on the surfaces of inactive small bodies. TACO

models an asteroid surface using a triangular tiling. The
interaction of each tile with incident solar radiation is described
by a Hapke model for the bidirectional reflectance
(Hapke 2002). Shadowing is handled explicitly by calculating
a horizon map for each tile, which gives the maximum
elevation of the visible parts of the surface as a function of
azimuth from the tile centroid. The incident radiation that is not
reflected is absorbed and heats the surface. TACO includes the

ability to solve the one-dimensional heat conduction equation
for the flow of heat into and out of the surface; however, for
computational expediency in these simulations we work in the
limit of zero thermal inertia, so that the absorbed radiation is
instantaneously re-emitted. Non-zero thermal inertia changes
the obliquity torques, but not the spin torques, so this
simplification is a reasonable strategy for obtaining statistically
representative descriptions of spin evolution. The thermal
emission is assumed to be Lambertian (i.e., isotropic into the
sky hemisphere), with a correction for partial blockage of the
sky by an elevated horizon (Statler 2009). The code computes
the torques from both the reflected and emitted radiation,
though the latter dominates for typically dark asteroids.

2.4. Self-consistent Spin and Shape Evolution

In order to self-consistently model the spin and shape
evolution, we developed four additional code elements that
work with pdkgrav and TACO, and carry out the following
tasks:

1. Fit a triangular tiling over a pkdgrav object composed
of spheres, to pass to TACO for computing the YORP
torques.

2. Identify when a movement of material has occured, and
minimally adjust the tiling to accommodate the move-
ment (leaving it unchanged over the part of the surface
where no movement occurred).

3. Integrate the spin and obliquity in time using the torques
calculated by TACO; and finally,

4. Orchestrate the entire procedure, running and passing
data between the codes.
We describe each of these elements in detail below.

2.4.1. Tiling

Our initial test objects (Section 2.5) are aggregates of
identical spheres. To fit a tiling over an object, we first compute
and diagonalize the inertia tensor, and rotate the object to
principal axis orientation with the center of mass at the origin
and the x, y, and z axes corresponding to the long, middle, and
short axes, respectively. We then create a tiling of the
equivalent ellipsoid with the same bulk density. At this point
the ellipsoidal tiling is close to the object, and the goal is to
adjust the vertices to fit the tiling tightly around it. We define
the function

åº é
ëê
- + -

+ - ù
ûú -

=
-

G x y z R x x y y

z z G

( , , ) ( ) ( )

( ) , (1)

n
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j j

j

n

2

1

2 2

2
0

where R is the sphere radius, x y z( , , )j j j are the coordinates of

the center of sphere j, N is the number of spheres, and n and G0

are constants chosen so that the surface =G x y z( , , ) 0 tightly

surrounds the object. We have found by trial and error that the

choice n = 2 and G0 = 1.25 works well for a variety of

aggregate shapes. Each vertex of the ellipsoidal tiling is moved

in or out in the direction normal to the ellipsoid, to place it on

the surface =G x y z( , , ) 0 as shown in Figure 1. Finally, the

tiling is rotated back to the orientation of the original object.
One should remember that both the system of spheres and

the triangular tiling are numerical idealizations. They are
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intended to simulate the collective behavior of a real aggregate
composed of irregular rocks, pebbles, and regolith, not to
literally represent the constituent pieces. Hence there is no need
to resolve each sphere individually with an extremely fine
mesh, or to resolve each surface facet by filling the interior with
tiny spheres.

Nonetheless, Statler (2009) emphasized the extreme sensi-
tivity of YORP to the detailed topography of asteroid surfaces.
So we should be concerned about the sensitivity of the
computed torques in our simulations both to the resolution of
the tiling and to the positioning of the tiling on the aggregate
object. We have tested this by calculating the torques on a
small selection of aggregates at nine different resolutions
(determined by the number of tiles, ranging from 784 to
19,960) and small angular shifts of the tilings (by a few
degrees). As expected, we find that the torque varies typically
by tens of percent among the various shifts and resolutions.
This result implies that the exact results of our simulations will
depend on arbitrary choices of parameters related to the
resolution and tiling. We adopt the lowest resolution consistent
with the number of spheres in the initial objects, and stress that
the detailed results of each simulation will be resolution-
dependent, and should be interpreted only as examples of the
types of behavior that may result from self-consistent YORP.

2.4.2. Detecting Material Movement and Updating the Tiling

We define a movement of material as a shift of one or more
pkdgrav spheres by more than a quarter of its radius. To
determine whether a movement has occurred, we compare the
current object with the object resulting from the previous
movement. If no spheres have moved, the current object should
be a rotated and translated copy of the earlier object, except for
small differences caused by the slight bouncing of spheres that
is inherent in the HSDEM approach. We use the LMDIF
routine from the MINPACK (Moré et al. 1984) library to fit for
the three Euler angles and three displacements describing the
rotation and translation that minimizes the sum of the squares
of the differences in sphere positions. After the initial fit, the
spheres that have moved by more than the allowed tolerance
are flagged and excluded, and the fit is obtained again. The
process is iterated until none of the remaining spheres is
flagged as having moved. Figure 2 shows an example of two
consecutive objects, with the spheres identified as having
moved marked with black spots.

When a material movement has occurred, we need to update
the tiling. However, we must ensure that, insofar as is possible,
the tiling is altered only over the regions where motion
occurred, so that any changes to the YORP torques are due to
the motion itself and are not merely the result of a shifted tiling.
To “minimally evolve” the tiling, we transform the new object
back to the original orientation at time t = 0, and re-build the

tiling starting from the original equivalent ellipsoid. This
guarantees that those spheres that do not move will be at the
same position that they were initially and therefore will receive
the same tiling. Figure 2 shows the tilings on the example
objects before and after material motion.
Our minimal evolution algorithm can encounter difficulties

when an initially flattened or elongated object becomes
significantly rounder. As described below, this limits the
simulations to objects with intitial flattenings >c a 0.5.

2.4.3. Spin-state Evolution

The rate of change of the obliquity ϵ and the angular velocity
ω are given by (Rubincam 2000)

w
=
 d

dt

T

C
(2)

and

w
= wd

dt

T

C
(3)

where C is the moment of inertia about the rotation axis and T

and wT are spin- and orbit-averaged torque components,

respectively: wT is the component parallel to the spin axis, and

T is the orthogonal component that lies in the plane containing

both the spin axis and the orbit normal. Once a tiling is

obtained for a given object, T and wT are calculated using

TACO over an obliquity grid with a spacing of 5 . At

intermediate values of obliquity, the torques are interpolated

from the grid. Equations (2) and (3) are solved numerically

using a fourth-order Runge–Kutta integrator with a 103 yr step

size. We have verified that this routine reproduces the exact

analytic results for idealized cases of rigid-body evolution in

which the YORP curves take the forms µw T cos and

µ T sin .

2.4.4. Orchestrating the Simulations

Top-level control of the simulations is handled by a python
script that orchestrates the back-and-forth stepping between
TACO and pkdgrav and enables their interaction with the
additional routines described above. Details of the logic,
including a flowchart showing the individual steps, are given in
the appendix.

2.5. Initial Conditions

We select our initial test objects from a collection of 144
rotating equilibria created using pkdgrav (Tanga et al. 2009).
These authors built ellipsoidal aggregates with various shapes
and initial spins, and then allowed them to evolve and

Figure 1. Othogonal views of an aggregate of spheres along with the triangular tiling in red, projected onto the (left) xy plane, (center) yz plane, (right) xz plane.
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reconfigure dynamically until they reached stable configura-
tions. The objects have a natural disordered packing, and are
composed of 1000 spheres of radius 50.2 m, each with density

of -2.96 g cm 3. The bulk densities and mean diameters are in

the range of 1.55– -1.72 g cm 3 and 1.3–2.0 kilometer, respec-
tively. We tile each object, compute the torques, and integrate
the spin state evolution it would undergo if it remained rigid.
We intentionally pick objects that, were they rigid bodies,
would initially accelerate in spin rate and display a representa-
tive range of YORP-cycle behaviors. In particular, we select
four objects that would spin up at all obliquities, with rigid-
body end states in which (formally) w  ¥ as  ¥t . The
remaining 12 objects are chosen to be approximately uniformly
distributed in the axis-ratio plane, subject to the requirement
that ⩾c a 0.5 to avoid numerical difficulties in minimally
evolving the tiling.

Table 1 shows the initial parameters for our sample of 16
aggregates. Figure 3 shows the initial distribution of shapes in
the axis-ratio plane, plotted in terms of the short-to-long axis
ratio (c a) and the triaxiality parameter T, defined7 by

º
-
-

T
b a

c a

1 ( )

1 ( )
. (4)

2

2

Objects with T = 0 are oblate spheroids (b = a), and those with
T = 1 are prolate spheroids (b = c). The initial distribution is

representative of the distribution of known asteroid shapes

approximated by triaxial ellipsoids (Kryszczyńska et al. 2007;

Tanga et al. 2009).
We dynamically evolve the initial objects with pkdgrav for

several rotations to ensure that all mass motion has stopped.
We then recompute the initial tilings and torques, and again
consider the rigid body evolution of the fully settled objects.
We choose initial obliquities so that, if they remained rigid, the
objects would evolve through a wide range of obliquities and
spin rates. The adopted initial obliquity, the spin rate and
obliquity at the end of the YORP cycle (which we refer to as
the rigid-body end state), and the time tYC required to complete
the cycle are listed for each object in Tables 2 and 3. Owing to
shape adjustments during the initial settling, only 2 of the 16
objects have rigid-body end states involving continual,
indefinite spin-up, and the object in simulation 16 is initially
decelerating.

2.6. Choice of Code Parameters

1. The normal and tangential coefficients of restitution in
pkdgrav, en and et , are set to 0.2 and 0.5 for all
simulations. These values were chosen in order to ensure
a fair amount of dissipation given the compression of the
timescales for the forces considered here. Larger values
of en and et would result in the need of longer timescales
to damp the particle motions, but in practice most particle
motions are so small that the precise choice of these
parameters makes little difference. Similarly, our choices
of slide limit (0.01 times the particle mutual escape

speed) and inelastic collapse limit ( ´ -1 10 5 in dimen-
sionless units) are relatively conservative to encourage
dissipation but still avoid numerical problems for small
particle motions with HSDEM. Since we expect YORP
timescales typically to be longer than dissipative time-
scales, we do not expect that these choices will greatly
affect our major results. However, we will not be able to
constrain the real setttling times or how long the objects
might stay in non-principal axis spin state after a mass
movement.

2. We adopt the lowest resolution in TACO (784 tiles)
consistent with the number of spheres (1000) in the initial
objects. Despite the sensitivity of the YORP torques to
the details of the tiling, we expect statistical results, such
as the fraction of objects exhibiting various types of
behavior, to be relatively robust. We re-run a subset of
the simulations at twice the linear resolution (3184 tiles)
to verify this expectation.

3. We adopt the Hapke model parameters for an average S-
type asteroid determined by Helfenstein & Veverka
(1989): a single-scattering albedo of w= 0.23, a surface
roughness or mean slope angle of q = ¯ 20 , and an
asymmetry parameter x =-0.35. The opposition effect is
neglected.

4. As explained above, we set the thermal inertia to zero, so
that the absorbed radiation is re-emitted instantaneously.
Since a non-zero thermal inertia alters the obliquity
torques, and not the spin torques, we adopt this strategy
for obtaining statistically representative results for how
the spin state evolution of aggregates compares to that of

Figure 2. Showing the adjustment of the tiling on an aggregate object before
(left) and after (right) a small movement of material. The line of sight is along
the spin axis. The tiling is shown in red. Black asterisks identify three spheres
that move by more than a quarter of the sphere’s radius. Note that after the
movement the tiling has been modified in that area while remaining unchanged
elsewhere.

Table 1

Initial Aggregate Objects

Simulation Semi-axis

Ratio

Semi-major Axis a

(kilometer)

Bulk Density

( -g cm 3)

Period

(hours)

b a c a

1 0.91 0.88 0.686 1.55 10.08

2 0.88 0.87 0.696 1.66 10.00

3 0.94 0.83 0.688 1.62 10.51

4 0.86 0.74 0.722 1.62 5.52

5 0.88 0.82 0.701 1.66 10.34

6 0.78 0.69 0.765 1.66 5.72

7 0.70 0.70 0.797 1.66 5.74

8 0.74 0.65 0.799 1.63 6.09

9 0.77 0.62 0.786 1.67 6.26

10 0.99 0.76 0.698 1.61 5.70

11 0.97 0.89 0.672 1.72 5.00

12 0.51 0.50 1.000 1.60 5.28

13 0.68 0.55 0.871 1.56 4.54

14 0.59 0.53 0.935 1.55 4.84

15 0.78 0.59 0.795 1.68 4.35

16 0.92 0.64 0.745 1.63 4.19

7
This definition of T matches that used in galaxy dynamics (e.g., Statler

et al. 2004).
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rigid bodies under the same assumptions. Neither the

rigid-body nor the aggregate evolution simulated here

will reproduce the known tendency for YORP to drive

objects toward obliquities of 0 and 180 , which is largely

a consequence of finite thermal inertia (Čapek &

Vokrouhlický 2004).
5. We assume all objects are in circular orbits around the

Sun at 1 AU.

Nearly all simulations are run initially to a time of15 Myr, as

the typical dynamical lifetimes of NEAs are around 10 Myr.

Simulations are continued further if the rigid-body YORP cycle

time >t 15 MyrYC . Some simulations are terminated early if
objects are spinning down toward zero with slow rotation
periods of over 20 hr. Objects for which rigid-body YORP
predicts infinite spin up in infinite time are run for 30 Myr.

3. RESULTS

3.1. YORP Self-limitation

The time evolution of the rotation rate and obliquity in a
representative selection of our simulations is shown in
Figures 4, 5, 7, and 10. In each figure, the solid black lines
show the evolution expected if the object had remained rigid,
while the actual evolution of the aggregate is shown in a color
sequence. Each color corresponds to a new configuration, and
every change of color corresponds to a movement of material
requiring a recalculation of the torques. Every object simulated
undergoes multiple changes in shape, and no aggregate evolves
according to the rigid-body prediction.
Tables 2 and 3 summarize the evolutions in spin rate and

obliquity, respectively. The most robust and striking result is
the narrow range of spin rates attained by the evolving
aggregates compared with their rigid counterparts. Column 3 in
the upper section of Table 2 shows that the ordinary YORP
cycle would have accelerated 9 of the 16 rigid bodies (at the
standard TACO resolution) past the nominal 2 hr rubble-pile
spin limit, and four of them to periods shorter than 1 hr. As
rigid bodies, every object but one would have reached

maximum spin rates faster than -6.5 rot day 1. But as
aggregates, not a single one ever spins this fast. As rigid

Figure 3. Semi-axis ratio distribution of the initial shapes, plotted in terms of
the short axis ratio c a and the triaxiality parameter

º - -T b a c a[1 ( ) ] [1 ( ) ]2 2 . Purely oblate objects have T = 0 and purely
prolate objects have T = 1.

Table 2

Summary of Spin Rate Evolution

Simulation Initiala Rigid-body tYC
b Aggregate tsim

d Ev. Typee

Maxa Mina Enda Maxa Mina Enda,c

Standard Resolution Tiling:

1 2.4 9.1 0.0 0.0 3.6 4.7 0.8 0.8 3.2 MYC/Stg

2 2.4 8.3 0.0 0.0 4.2 4.8 0.3 0.3 1.9 MYC

3 2.3 7.3 0.0 0.0 1.7 5.6 0.2 0.2 3.5 MYC

4 4.3 13.7 0.0 0.0 6.8 6.2 4.1 4.1 ↝ 15.0 Sto

5 2.3 8.3 0.0 0.0 3.7 6.2 0.1 0.1 1.7 MYC

6 4.2 26.8 0.0 0.0 7.3 6.0 4.2 4.7 ↝ 20.4 Sto/SG

7 4.2 6.8 0.0 0.0 1.1 5.5 0.6 0.6 2.5 Sto/Stg

8 3.9 22.6 0.0 0.0 16.0 6.1 3.9 3.9 ↝ 2.5 Sto/F

9 3.8 25.8 0.0 0.0 9.4 6.1 0.5 0.5 3.3 Sto

10 4.2 20.1 0.0 0.0 5.3 6.4 4.2 5.1 ↝ 15.0 Sto

11 4.8 17.7 0.0 0.0 6.9 6.4 4.3 5.3 ↝ 30.0 Sto/Stg

12 4.6 12.2 0.0 0.0 3.2 5.4 3.8 4.1 ↝ 15.1 Sto/SG

13 5.3 11.7 0.0 0.0 2.5 5.9 0.3 0.3 7.0 Sto

14 4.9 Inf. 4.9 Inf. Inf. 5.6 4.8 5.4 ↝ 30.0 Sto

15 5.5 Inf. 5.5 Inf. Inf. 6.1 4.4 4.5 ↝ 31.0 Sto/SG/Stg

16 5.7 5.7 0.0 0.0 2.9 5.7 0.0 0.0 1.2 MYC

High Resolution Tiling:

6H 4.2 Inf. 4.2 Inf. Inf. 6.0 0.7 0.7 15.8 Sto

8H 3.9 6.5 0.0 0.0 4.8 6.1 3.4 5.1 ↝ 13.5 Sto

10H 4.2 25.5 0.0 0.0 12.1 6.6 0.8 0.8 ↝ 13.2 Sto

13H 5.3 Inf. 5.2 Inf. Inf. 5.9 3.9 4.6 ↝ 30.0 Sto

a
Spin rates in revolutions day−1.

b
YORP cycle completion time in Myr.

c
Symbol indicates trend at simulation end: ↗ increasing; decreasing; ↝ varying; no symbol: constant.

d
Simulation duration in Myr.

e
Descriptive classification of spin evolution: “MYC”—modified YORP cycle; “Sto”—stochastic; “SG”—self-governed; “Stg”—stagnating; “F”—ending with fission

event.
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bodies, all objects but two would subsequently have spun down
to zero in times ranging from 1.1 to 16 Myr. As aggregates,
only five objects spin down effectively to zero, or are headed
that way at the end of the simulation. Of the remainder, seven

are still spinning at rates> -4 rot day 1, three are rotating slowly

at < -1 rot day 1, and one has fissioned (about which more
below). The lower part of Table 2 confirms that these same
qualitative results regarding maximum and minimum spin rates
hold in the simulations rerun at higher TACO resolution.

Aggregate bodies thus resist—and avoid—the wide excur-
sions in spin rate implied by the rigid-body YORP cycle.
Because the resistance is produced by the YORP-driven
deformation of the object, we refer to this overall phenomenon
as YORP self-limitation, or self-limited YORP.

We observe three distinct behaviors that can give rise to
YORP self-limitation:

1. Stochastic YORP, in which the object random-walks
among different shape configurations, resulting in a
sequence of episodes of unpredictable duration, each
resembling part of a YORP cycle.

2. Self-governing YORP, in which the object toggles
between a small number of configurations, resulting in
a limit cycle that restricts the spin and obliquity to a
narrow range; and

3. Stagnating YORP, in which the object settles into a long-
lived configuration of very low torque well before
reaching a YORP cycle end-state.

An object can exhibit any of these behaviors in its spin or
obliquity evolution. Spin and obliquity do not need to behave
in the same way; and multiple behaviors at different times for a
single object are common.
The objects that do not exhibit YORP self-limitation (in

either spin or obliquity) as a result of one of the above
behaviors are best described as following a:

4. Modified YORP Cycle, which qualitatively resembles the
typical YORP cycle prediction, and in which changes in
shape do not alter the direction of evolution.

The last columns of Tables 2 and 3 indicate the behaviors in
spin and obliquity seen in each of the simulations. We describe
each of these four behaviors in more detail in the paragraphs
below.

3.1.1. Stochastic YORP

Eleven of the 16 objects exhibit stochastic YORP in their
spin evolution, and an equal number (though not exactly the
same objects) do so in their obliquities. The upper panel of
Figure 4 shows an example of weak stochasticity in the spin
evolution of the object in simulation 7. The evolution has
qualitative similarities to the YORP cycle prediction shown in
black, and many of the movements of material have only a
slight effect on the YORP torques. Nonetheless, the spin
evolution changes direction multiple times due to changes in
the shape of the object. The obliquity evolution, shown in the
lower panel, is monotonic, with greater similarity to a YORP
cycle (which we discuss in Section 3.1.4 below), demonstrat-
ing that different types of YORP behavior can be seen in a
single object at the same time.
An example of strongly stochastic YORP is shown in

Figure 5. Here, nearly every change in shape results in a
significant change in both components of torque, and often a

Table 3

Summary of Obliquity Evolution

Simulation Initiala Rigid-body Aggregate

Enda Enda,b Ev. Typec

StandardResolutionTiling:

1 5 90 90 MYC

2 5 90 90 MYC

3 5 90 83 Sto

4 5 90 50 ↝ Sto

5 5 90 90 MYC

6 5 90 0 Sto

7 5 90 80 MYC

8 5 90 19 Sto/F

9 5 90 90 Sto

10 5 90 0 Sto

11 5 90 12 ↝ Sto/Stg

12 5 90 23 ↝ Sto/SG

13 5 90 90 Sto

14 5 90 6 ↝ Sto

15 5 90 30 ↝ Sto/

SG/Stg

16 85 86 90 MYC

High Resolution Tiling:

6H 5 73 66 ↝ Sto

8H 5 86 2 Sto/Stg

10H 5 85 2 Sto/Stg

13H 5 85 20.6 Sto/Stg

a
Obliquities in degrees.

b
Symbol indicates trend at simulation end:  increasing;  decreasing; ↝

varying; no symbol: constant.
c
Descriptive classification of spin evolution: “MYC”—modified YORP cycle;

“Sto”—stochastic; “SG”—self-governed; “Stg”—stagnating; “F”—ending

with fission event.

Figure 4. Spin (top) and obliquity (bottom) evolutions in simulation 7. Black
lines show the rigid-body evolution. Colored lines show the actual evolution of
the aggregate; each color represents a new shape with a corresponding torque.
The spin evolution is weakly stochastic, resulting in mild YORP self-limitation.
The spin reaches 80% of the maximum rigid-body rate and eventually stagnates
at a~14 hr period. The obliquity changes monotonically and more resembles a
YORP cycle, but asymptotes to an unusual end state of 80 .
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change in their signs. The scale of these changes can best be
seen by looking at the sequence of YORP curves that describe
the shapes through which the object evolves. This sequence is
shown in Figure 6; keep in mind that the object evolves along
only a small fraction of each pair of YORP curves before
shifting to a new pair. As a result of these shifts, strong YORP
self-limitation confines spin and obliquity to narrow intervals.
Note that one can discern a few longer-lived YORP-cycle-like
episodes in Figure 5 (e.g., between 7 and18 Myr); but the time
variability is non-repeating and unpredictable.

One can think of stochastic YORP as arising from two
coupled effects. First is the shape evolution itself, which causes
the object to random-walk among topographic configurations,
each producing different YORP torques. Second is the natural
tendency for an evolving object to spend more time in
configurations that produce smaller torques, simply because it
takes longer to build up a sufficient change in spin to trigger a
reconfiguration. Hence some points in the topographic space
are “stickier” than others, and the time an object may dwell in
each configuration is a function of the nearby topographic
landscape and its past history. “Sticky” low-torque configura-
tions are also the cause of YORP stagnation, which we discuss
below.

3.1.2. Self-governed YORP

Three objects show self-governing behavior in their spins,
and two of these are also self-governed in obliquity (the third
having already evolved to an = 0 orientation before self-
governing begins). Figure 7 shows simulation 12, which
evolves stochastically in spin and obliquity for the first
3.7 Myr, but then abruptly begins toggling between two
neighboring configurations, one generating a positive, and the
other a negative, component of YORP torque along the spin
axis. The resulting increases and decreases in spin rate trigger
alternating movements of material that convert one

configuration into the other. We invariably see self-governing

YORP resulting in strong self-limitation of spin and obliquity

between narrow limits.
Owing to the unavoidable low-amplitude bouncing of

spheres in the HSDEM algorithm, successive appearances of

the two configurations are not quite identical, and so the

Figure 5. Obliquity (left) and Spin (right) evolutions in simulation 14. Black lines show the rigid-body evolution (top). Colored lines show the evolution of the
aggregate (top and bottom). Small variations of the aggregate evolution can be seen on the expanded scale in the bottom panels. Both spin and obliquity evolutions are
highly stochastic and result in strong self-limitation.

Figure 6. The obliquity (bottom) and the spin (top) torques (YORP curves)
through which the aggregate object in simulation 14 (Figure 5) evolves. The

torque components divided by the moment of inertia (in units of - -10 s18 2) are
plotted against the obliquity in degrees. Each colored curve corresponds to a
new shape of the aggregate object after a movement of material, and
corresponds to the segment of the same color in Figure 5. Dashed vertical lines
indicate the range of obliquity values to which the object is confined during the
evolution. The spin and the obliquity torques are symmetric and antisymmetric
about 90 , respectively.
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toggling is not quite periodic. In some cases we see self-
governing come to an end and return to stochastic evolution,
possibly due to this non-repeatability. We can conjecture that a
different computational approach that allows the particles to
come to rest with respect to each other might show truly
periodic switching that continues indefinitely.

Examples of the positive- and negative-torque configurations
from simulation 12 are shown in Figure 8, and the torques that
they generate as functions of obliquity are shown in Figure 9.
At obliquity values between 20° and 30°, where the toggling
occurs, one configuration has positive values of the spin and
obliquity torques while the other one has negative values. A
subtle bending at the constriction, one third of the way up from
the bottom, results in a change in sign of the obliquity and the
spin torques. Note that, as a result of the centrifugal kneading,
parts of the object have settled into ordered packing, giving it a
“head-tail” structure composed of two more rigid (packed)
chunks joined by a flexible waist. This suggests the possibility
that known “head-tail” or contact binary objects might also be
found in self-governing states.

3.1.3. Stagnating YORP

A close look at Figure 4 shows that the object in simulation 7
does not reach, or even approach, the expected YORP-cycle
end state of 90 obliquity and zero spin, but instead asymptotes
to a moderately slow spin rate (∼2 day period) at an obliquity
of 80 . This is an example of stagnating YORP, which we see
in 4 of the 16 objects simulated at the standard TACO resolution
and in 2 of the 4 objects re-run at higher resolution.
Technically, stagnation is just a special case of stochasticity,
in which, as a result of multiple mass movements, an object
randomly falls into a configuration of very low torque. What
makes it distinct from stochastic YORP is that objects can
remain “stuck” in such configurations for times that approach

expected NEA lifetimes, effectively shutting off their YORP
evolution.

3.1.4. Modified YORP Cycle

Not every object is equally susceptible to small changes in
topography, and not every shape reconfiguration necessarily
reverses the direction of spin or obliquity evolution. For
roughly one-third of our test objects, shape changes affect
only the rate of evolution, and as a result these objects follow
what we refer to as a modified YORP Cycle. Figure 10 shows
simulation 5 as an example. This object approaches the same
end state as its rigid counterpart, in a shorter elapsed time,
having accelerated to, and decelerated from, a lower
maximum spin rate. Another example is seen in the obliquity
evolution of simulation 7 (Figure 4, lower panel), which is

Figure 7. Obliquity (left) and spin (right) evolutions in simulation 12. Black lines show the rigid-body evolution (top). Colored lines show the evolution of the
aggregate (top and bottom). Small variations of the aggregate evolution can be noticed on the expanded scale in the bottom panels. The evolution is stochastic for the
first 3.7 Myr, after which it becomes self-governed, toggling between neighboring configurations that alternately accelerate and decelerate the spin.

Figure 8. The two configurations between which the object in simulation 12
toggles in the self-governed phase of its evolution (Figure 7). The view is
along the rotation axis. Notice that the object bends at the constriction, one
third of the way up from the bottom.

9

The Astrophysical Journal, 803:25 (18pp), 2015 April 10 Cotto-Figueroa et al.



monotonic and resembles the rigid-body prediction until it

stagnates. Table 2 shows that the duration of the modified

YORP cycle can be either longer or shorter than the rigid-

body cycle.
Rozitis & Green (2013) and Kaasalainen & Nortunen (2013)

have argued that greater topographic sensitivity is a character-

istic of objects with weaker overall YORP torques, suggesting

that objects that are more instrinsically “yorpy” might be more

likely to follow a modified YORP cycle. However, we see no

tendency for self-limited or modified YORP cycle behavior to

be correlated with the magnitudes of either the initial torques

on the test objects or the episodic torques during the aggregate

evolution.

3.1.5. End States

The fifth column of Table 2 and the third column of Table 3
give the YORP cycle end-state spins and obliquities, for objects
evolving as rigid bodies. The ninth and fourth columns
(respectively) of those tables give the corresponding quantities
for the aggregate objects at the ends of the simulations.
Two of the 16 objects have rigid-body end states of formally

infinite spin; the remaining 14 have rigid-body end state spins
of zero, reached in finite time tYC. As we have emphasized,
most aggregates do not reach or approach the rigid-body end
states: only five aggregates have spun down to zero or are
monotonically decelerating at slow spin rates at the end of the
simulations. One object has fissioned, but the majority have
either stagnated (2) or are stochastically wandering (8) at finite
spin rates, at simulation end times averaging t2.5 YC. The
situation is similar for obliquity. All 16 objects have rigid-body
obliquity end states at, or nearly at, 90°. Among the aggregates,
roughly half (7) have reached this obliquity or are clearly on
their way there as of the end of the simulation. Of the eight
remaining objects that do not fission, three have reached
different constant values of obliquity, and five are wandering
stochastically.
Two of the four simulations with higher resolution tilings

have rigid-body end states of formally infinite spin and the
other two have rigid-body end state spins of zero, reached in
finite tYC while the four aggregate objects wander up and down
in spin stochastically. In the case of obliquity, the rigid bodies
have end states at obliquity values between 73 and 86 while
the aggregates are stochastically wandering. Three of the four
aggregates stagnate at certain values as well, two of them at
nearly 0 .
The clear tendency for a majority of aggregates not to evolve

to the standard YORP-cycle end states has important implica-
tions for orbital evolution due to the Yarkovsky effect. We
return to these issues in Section 4 below.

3.2. Mass Movement

An important aspect of the mass motion events is that the
moving material is not restricted to the surface of the object.
Animations of the shape evolution clearly show the entire
object reconfiguring (albeit often subtly) rather than material
migrating along the surface. To quantify the amount of deep
motion in each event, we sort the pkdgrav spheres in order of

effective potential wF = F - Reff
1

2

2 2, where Φ is the gravita-

tional potential, ω is the rotational angular frequency, and R is
the cylindrical radius from the spin axis. Each sphere is given
an enclosed-mass-fraction coordinate equal to its position in the
sorted list divided by the number of spheres. We then tally the
number of times that the sphere at each mass fraction
coordinate moves by more than 25% of its radius during the
simulation.
Figure 11 shows the cumulative distributions of the move-

ments as functions of the mass fraction for all of the
simulations. Though the outer layers are somewhat more
mobile, there is clearly motion of material all the way into the
deep interior. Between 25% and 40% of the mass motion
events occur in the inner (i.e., most tightly bound) half of the
mass. The outer 10% of the mass accounts for only 15%–25%
of the motion. The freedom to reconfigure internally is what
gives the objects the ability to acquire greater rigidity with
time, in these simulations by falling into ordered packing. The

Figure 9. Components of torque (YORP curves) generating changes in (top)
spin and (bottom) obliquity for the two toggling configurations in simulation
12 (Figure 8).

Figure 10. Spin (top) and obliquity (bottom) evolutions in simulation 5, as in
Figure 4. Only one change in the sign of the spin component of torque occurs,
resulting in evolution that resembles a modified YORP cycle.
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figure also shows that objects that shed mass (solid curves)
tend to exhibit more deep motion than those that do not
(dashed curves). We will see below that this is likely related to
large-scale shape changes that promote mass shedding.

3.3. Mass Loss and Binary Formation

Five of the 16 simulations experience mass-loss episodes.
The first four columns of Table 4 show the number of mass-
loss events, the total percentage of mass lost from the initial
object, and the average time between events for the five
simulations. Figure 12 shows the distribution of events in terms
of the mass lost per event and the rotation period at the time of
the event. The minimum mass loss in a single event is 0.1%
(one sphere) while the maximum is 2.0%. The mass-loss
episodes can occur as isolated events or as a chain of events.
The average time between events can be as short as 0.01 Myr
for consecutive events and more than1 Myr for isolated events.

The spin rates at which mass loss occurs range from 6.3 to
5.2 revolutions day−1 with a mean of 5.6 revolutions day−1. The
averages for each simulation are listed in the last column of
Table 4. These spin rates are substantially slower than the
nominal spin limits at which loose material should become
unbound from the equator of a sphere with the same bulk
density. The fifth and sixth columns of Table 4 give the
densities for each simulation, averaged over mass-loss events,
and the corresponding limiting spin rates for spheres. The latter
are between 8 and approximately 9 revolutions day−1. Part of
the difference can be attributed to the fact that in our
simulations mass is commonly lost from one end of the object
as its shape becomes elongated (an example, just before the
event, is shown in Figure 13). The axis ratios b a in the plane
normal to the spin axis, again averaged over events for each
simulation, are given in column 7 of Table 4, and column 8
gives the limiting spin rates for prolate spheroids of the same
axis ratio and density (Harris 1996; Richardson et al. 2005).
The theoretical limits are still 20–30% faster than the
simulation results. We can speculate that this difference may
be caused by the tendency for our objects to become sharply
pointed at the ends, by non-uniformity of the interior bulk
density, or by the dynamical motion of the material close to
the tip.

The spheres are removed from the simulations after being
shed from the main object. We do not track their orbital

evolution since the main objects become strongly prolate.
Scheeres (2007a) has shown that objects orbiting a rapidly
rotating prolate body would most likely escape rather than
reach stable orbits where they could accrete to form a binary
companion. However, we do encounter one case of binary
formation. Figure 14 shows the spin and obliquity evolutions of
the object in simulation 8. Black squares indicate mass loss
episodes. After losing 6.1% of its initial mass in nine events,
the objects splits in two (at a time of about 2.5 Myr, at which
point the simulation is stopped). At the moment of fission, the
object is increasing in angular momentum but decreasing in
spin rate because of its evolution toward an elongated shape.
Figure 15 shows the aggregate at the last point of contact. Note
the wasp-waist constriction, where the fission occurs. After
fission, the primary object contains 52.7% of the initial mass
while the secondary contains 41.2%.

3.4. Axis-ratio Evolution

Figure 16 shows the evolution of the 16 objects in the space
of triaxiality T and semi-axis ratio c a, where T is given by
Equation (4). Each simulation is shown in a different color.
Squares indicate the initial objects, as in Figure 3; each object
at the end of the simulation is indicated by an X. Solid curves
identify the five objects that lose mass. Most objects are still
evolving in spin at the end of the simulation and therefore the X
does not necessarily represent an evolutionary end point.
The majority of objects (13 of 16) become flatter (c a

decreases) during the simulation. Evolution in triaxiality can go
in either direction, but we note two striking trends. First, all
objects following a modified YORP cycle (simulations 1, 2, 3,
5, and 16) evolve toward smaller T; that is, they become less
prolate and more oblate. This appears to be a result of the
deceleration to very slow spin rates, although it is important to
note that the evolution does not follow a fluid sequence, which
would imply T 0 at finite ω. These objects arrive at genuine
non-rotating end states with non-zero T. Second, all of the
objects that shed mass or fission (simulations 4, 8, 10, 11, and
15) evolve toward smaller c a and larger T; that is, they
become highly elongated and prolate. Moreover, these 5
simulations show the largest changes in axis ratio. We
conjecture that these objects were the most initially deformable,
which is consistent with the finding (Figure 11) that they also
show the greatest amount of deep mass motion. The smooth
black line in Figure 16 indicates the sequence of Jacobi
ellipsoids. The objects that lose mass are the only objects that
dip well below the Jacobi sequence, and the episodes of mass
loss from the endpoints (small diamonds) occur exclusively
below the sequence, as does the final fissioning of simula-
tion 8.8

3.5. The Statistical Spin and Obliquity Evolutions

Stochastic processes, while non-deterministic, can still be
described statistically. Here we formulate a statistical descrip-
tion of the spin-state evolution obtained from our simulations,
intended to inform models of spin-dependent processes,
particularly the Yarkovsky effect. This description should be
regarded as very preliminary: first, because our initial
conditions were chosen to survey a variety of interesting

Figure 11. Normalized cumulative distribution of mass-movement events for
the 16 simulations as a function of enclosed (by surfaces of constant effective
potential) mass fraction. Each color corresponds to a different simulation. Solid
lines indicate the five objects that exhibit mass-loss episodes.

8
It is interesting that the only other object that becomes as elongated as the

fission case, simulation 8 (Figure 15), is simulation 12 (Figure 8), which
evidently escapes fission by self-governing.
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YORP behaviors, and not to represent a realistic population of

objects; and second, because at this point we are still neglecting

processes known to be important, such as thermal conduction.
We break the evolution into discrete intervals bounded by

material movements (shape changes). The shape is constant

(except for small bouncing of the spheres) during each interval.
Consider one such interval of duration dt , over which the

change in spin rate is dw. We define the statistical spin

evolution, as , by

a
dw
d

= 
t

, (5)s

where the sign is determined by whether the sign of dw is the

same as (+) or opposite to (−) that in the previous interval.

With this definition, rapidly alternating spin-up and spin-down

behavior, characteristic of self-governed YORP, would be

described by consistently negative values of as . Strongly

stochastic YORP would produce a tendency for negative a ,s
while weak stochasticity or modified YORP cycle evolution

would appear as predominantly positive values.
Similarly, we define the statistical obliquity evolution, z ,s in

terms of the change of obliquity during the interval according

to

z
d
d

= 

t
, (6)s

with the sign determined by comparison with the previous

interval, as above.
Figure 17 shows the joint distribution in a dt( , )s and z dt( , )s

for all intervals in all simulations. One can see that typically a

few 10 yr4 elapses between shape changes, and significant

alterations to the spin evolution can generally be expected on

~10 yr5 time scales, for the kilometer-sized objects considered

here. The shapes of the distributions in as and zs are actually

surprisingly similar, showing a slight overall tendency toward

weak stochasticity. Similar a z dt( , , )s s distributions derived

from unbiased initial conditions, with all relevant input physics,

will provide a pathway for stochastic YORP to be included, in

a Monte Carlo sense, in simulations of orbit evolution that

incude the Yarkovsky effect.

4. DISCUSSION

The simulations presented here strongly support the
conjecture of Statler (2009) that YORP can behave stochas-
tically when the surface topography is susceptible to

Table 4

Mass-loss Events

Simulation Nev
a DM(%)b áD ñt c rá ñd wmax,sph

e á ñ( )ba ev
f wmax,pro

g wá ñev
h

4 10 7.0 0.05 1.42 8.66 0.76 7.55 5.69

8 10 6.1 0.01 1.53 8.99 0.52 6.45 5.35

10 13 6.3 0.15 1.46 8.79 0.91 8.39 5.73

11 18 7.6 1.71 1.48 8.86 0.58 6.72 5.30

15 13 5.1 0.04 1.57 9.13 0.71 7.69 5.88

a
Number of events.

b
Total mass lost (percent).

c
Mean time between events (Myr).

d
Mean bulk density at time of mass loss ( -g cm 3).

e
Maximum spin rate in revolutions day−1 for cohesionless sphere of the same density.

f
Mean axis ratio at time of mass loss.

g
Maximum spin rate in revolutions day−1 for cohesionless prolate spheroid of the same density and axis ratio.

h
Mean spin rate in revolutions day−1 at time of mass loss.

Figure 12. Distribution of all mass-loss events. The fraction of the initial body
mass that is lost is plotted against the spin period at the time of mass loss. A
single sphere corresponds to 0.1% of the initial mass. Mass loss occurs at a
mean rotation period of 4.3 hr.

Figure 13. Shape of the aggregate object in simulation 11 before having its first
mass-loss episode, in which it loses three spheres. The view is along the
rotation axis. Material is lost from the right side.

12

The Astrophysical Journal, 803:25 (18pp), 2015 April 10 Cotto-Figueroa et al.



spin-driven alterations. We actually see four distinct types of
behavior, three of which—stochastic YORP, self-governed
YORP, and stagnating YORP—collectively give rise to the
phenomenon of YORP self-limitation.
It is a widely held view that YORP is responsible for the

formation of top-shaped asteroids, and particularly top-shaped
asteroids with binary companions. This view has been shaped,
in large part, by the influential simulations of Walsh et al.
(2008). By continually adding angular momentum, ostensibly
supplied by YORP, the authors were able to make idealized
aggregates evolve, through motion of surface material, to
nearly axisymmetric top shapes with equatorial ridges, which
then shed mass that accreted in orbit to form binaries. But as we
have demonstrated in this paper, YORP should not be
presumed to be an inexhaustible source of angular momentum.
Self-limitation is likely to intervene, possibly stalling the
mechanism before substantial evolution has a chance to occur.
In a follow-up study, Walsh et al. (2012) show that the

distinctive evolutionary path taken by their earlier aggregates
was in part a consequence of the rigidity resulting from the
initial HCP arrangement of identical spheres. Altering the size
distribution or the initial arrangement to avoid HCP makes the
aggregates more fluid, and tends to inhibit both evolution to
axisymmetry and mass shedding. Our test objects, while
composed of identical spheres, start with a disordered packing.
Except for those that follow a modified YORP cycle, our
objects generally evolve toward more elongated shapes. The
minority that do lose mass do so mostly in modest amounts
from their elongated tips; we see only one case of fission into
two comparably sized bodies. In these respects their behavior
falls between the “near-fluid” and “intermediate” cases of
Walsh et al. (2012). Owing to the strongly time-varying
potential, we would not expect the slowly shed mass to
accumulate on stable orbits, and consequently not form long-
lived binaries. Alternative pathways to binaries, and especially
to top shapes, are discussed by Statler (2015).
Exactly how YORP self-limitation may occur on objects

with less deformable interiors is a question that we cannot fully
address with the present set of simulations. We do observe
parts of our aggregates, through time-varying centrifugal
massaging, occasionally falling into a HCP state. This tends
to happen after some amount of reshaping has already
occurred, leading to localized off-center chunks of higher

Figure 14. Spin (top) and obliquity (bottom) evolutions of the object in
simulation 8, as in Figure 4. Black and colored lines show the rigid-body
evolution and aggregate evolution, respectively. Black squares indicate mass-
loss episodes. At the end of the simulation the object fissions to form a binary.

Figure 15. Shape of the aggregate in simulation 8 at the last point of contact
before splitting and forming a binary asteroid. The view is along the
rotation axis.

Figure 16. Shape evolution of simulated aggregates, in terms of triaxiality T

and semi-axis ratio c a, as in Figure 3. Each color corresponds to a different
simulation. Squares and crosses indicate shapes at the start and end of each
simulation, respectively. The 5 simulations that shed mass are plotted with
solid lines; mass-loss epsiodes are marked with small diamonds. The smooth
black curve indicates the sequence of Jacobi ellipsoids.

Figure 17. Scatter plots of the distribution of (top) a dt( , )s , and (bottom)
z dt( , )s , defined in Equations (5) and (6). The horizontal axis is the base-10

logarithm of the time interval dt in Myr.
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rigidity rather than a central rigid core. We would not expect
real objects to “crystallize” in this way, but a real aggregate
may naturally develop rigidity as a result of time varying
stresses that allow its components to find interlocking
configurations. This is a question for future simulations that
can take more physical effects into account with greater realism
(see below).

In approximately two-thirds of the cases we have simulated,
YORP self-limitation prevents objects from decelerating to
zero spin rate. These objects never complete a YORP cycle;
consequently one would expect them to avoid a chaotic
tumbling phase, and hence to preserve their original sense of
spin (direct or retrograde). This has bearing on the fraction of
retrograde rotators among the NEAs. Studies of the delivery of
NEAs from the Main Belt (Bottke et al. 2002; La Spina
et al. 2004) conclude that approximately 37% should arrive as a
result of inward Yarkovsky drift, requiring retrograde rotation,
into the n6 secular resonance. The rest should come through
other resonances with an equal fraction of retrograde and direct
rotators. We should therefore expect about 69% of NEAs to
have been delivered to their current orbits with retrograde
rotation. But from measurements of Yarkovsky drift in the
present NEA population, Farnocchia et al. (2013) estimate the
retrograde fraction to be just that, i.e., 69%, implying that few
of the objects have forgotten their original spin sense. Self-
limitation may possibly account for this. If we assume that all
NEAs with Yarkovsky drift measurements are aggregates
similar to those we have simulated, then about 25% out of the
37% of NEAs delivered through n6 will be prevented from
forgetting their initial senses of spin. Adding half of the 12% of
the n6 objects that do forget, plus half of the 63% that come
through other resonances, we should expect roughly 63%
retrograde rotators, not inconsistent with the observational
result. In making this estimate we have also assumed that the
rigid-body YORP cycle times are short compared with the
10 Myr mean NEA lifetime (Gladman et al. 2000). In our
simulations tYC is typically a few Myr, for objects with mean
radii »R 0.63 kilometer in circular (e= 0) orbits at semimajor
axis =a 1AU. The corresponding mean values for the NEAs
with Yarkovsky drift measurements (D. Farnocchia 2013,
private communication) are =R 0.37 kilometer, e= 0.47,
and =a 1.81AU. YORP timescales are proportional to

-a e R(1 )2 2 1 2 2 (Scheeres 2007b). Hence if we scale our
aggregates to the mean sizes and orbital elements of the
observed sample, we expect tYC to be nearly the same on
average, the more distant orbit being almost exactly compen-
sated for by the smaller size. Therefore we would expect the
NEAs with measured Yarkovsky drifts to be equally prone to
forgetting their sense of spin. While the statistical uncertainties
are substantial, and our simulations are not yet definitive,
YORP self-limitation may provide a means to reconcile the
high present-day retrograde fraction with the long lifetimes of
NEAs relative to their nominal YORP-cycle timescales.

The tendency for self-limited, and particularly stochastic,
YORP to preserve a memory of earlier spin states is also
relevant to the spreading of collisional families by the
Yarkovsky effect. Bottke et al. (2013) find that the envelopes,
in (a, H) space, of old families (ages~1Gyr) are inadequately
fit by models in which the spin sense of objects is frequently
reset, as would happen at the end of a YORP cycle. Instead, a
stochastic YORP model, in which the memory of the spin state,
and hence the direction of Yarkovsky drift, is preserved for

longer times, results in a much better fit. These results are
encouraging for the general picture of stochastic YORP, and
furthermore hint that even relatively small collisional fragments
in the Main Belt may be re-accreted aggregates. We can
anticipate that a statistical description, as in Figure 17, of future
results of a more exhaustive, unbiased suite of simulations will
help to clarify the situation further.
In the interest of computational expediency, we have

neglected physical effects that are known to be important to
YORP, and therefore the simulations presented here should be
interpreted as a first demonstration of processes that may occur,
and not (yet) a definitive depiction of what does occur. The key
effects to be explored in future simulations should include:

1. Thermal conduction: at a given orientation, this has no
direct impact on the spin component of torque, but does
affect the obliquity component. Since all components are
obliquity-dependent, the coupled evolution will change.
One indicator of this dependence is that the rigid-body,
YORP-cycle obliquity end states are expected to be
concentrated near 0 for direct rotators with moderate
thermal inertia Γ (Čapek & Vokrouhlický 2004), rather
than 90 when G = 0 (see Table 3). As a check, we have
computed the torques on our initial objects, taking into
account thermal conduction as well as self-heating (see
below), with an assumed G = - - -200 J m s K1 1 2 1, and
verified that the rigid body end states do, in fact, shift to
0 .

2. Self-heating: where concavities exist, parts of the surface
can be heated by light reflected or radiated from other
parts of the surface. This effect tends to reduce local
temperature gradients caused by self-shadowing, which
Rozitis & Green (2013) argue may somewhat lessen the
sensitivity of YORP to small surface changes. To gauge
the potential influence of this effect on our results, we
have recalculated the YORP curves for the sequence of
objects in simulation 14 (Figure 6) with a full treatment
of self-heating and partial sky blockage. While the
torques on individual objects are changed by typically
10%–50%, the variety and spread of YORP curves in
Figure 6 is qualitatively unaltered. Hence we expect
YORP self-limitation and stochasticity still to occur.
Rozitis & Green (2013) further suggest that self-heating
will act to prevent cases in which the spin component of
torque has the same sign at all obliquities. We have “spot-
checked” this suggestion on a few objects, including our
one initial object that shows a purely positive spin torque.
We do find a tendency for these YORP curves to be
shifted vertically so that they cross zero. This effect may
have bearing on self-governing, which, in our simula-
tions, tends to take advantage of these single-sign
configurations (e.g., Figure 9). However, not all of our
self-governing objects rely on such configurations; and
furthermore, eliminating the single-sign cases does not
preclude the possibility of self-governing at a different
obliquity, or of the object finding a different nearby pair
of configurations that are self-governing. Settling the
issue of whether self-heating prevents self-governing will
require calculating the full self-consistent evolution with
all relevant thermal effects included.

3. Friction and cohesion: the hard-sphere approach to
contact physics is only one of several alternatives, and
there are indications that it may not be the optimal choice
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for the dense regime in which particles spend more time
in contact than apart (Richardson et al. 2011). One
recently developed approach is the soft-sphere discrete
element method (SSDEM), newly implemented in
pkdgrav by Schwartz et al. (2012). SSDEM permits a
more accurate treatment of multicontact physics, includ-
ing self-consistent treatment of sliding and rolling friction
and interparticle cohesion. New numerical experiments
on disruptive collisions using SSDEM (Ballouz
et al. 2014) are, so far, largely in accord with earlier
experiments using HSDEM (Leinhardt et al. 2000). As a
check on our results, we have re-run simulations 8, 10,
and 13 using SSDEM. These re-runs also give us the
opportunity to gauge the effects of altering the material
parameters to make the aggregates less deformable. Yu
et al. (2014) provide sets of SSDEM parameters
(coefficients of static and rolling friction) that reproduce
laboratory experiments on systems of glass beads and
terrestrial gravel. These parameter sets produce simulated
granular media with friction angles of approximately 20
and 40 , respectively. Figure 18 shows the spin
evolutions of the object in simulation 10 using HSDEM
(thick lines) and SSDEM with gravel (medium lines) and
glass bead (thinnest lines) parameters. The top panel
shows the rigid-body evolution as black lines; because of
the differences in the friction parameters, the initial
settling results in slightly different initial shapes, which
imply slightly different rigid-body YORP cycles. Colored
lines show the evolution of the aggregates on the same
scale. As in the HSDEM case, the SSDEM-simulated
objects evolve through a sequence of shape changes that
limit the spin and prevent the YORP cycle from
completing. The bottom panel shows the aggregate
evolution on an expanded scale to show the differences

between the simulations in detail. The HSDEM spin
evolution is stochastic for the full 15 Myr duration, while
each of the SSDEM simulations goes through an initial
stochastic phase followed by a sequence of low-torque
configurations that results in near-stagnation. Although a
long-term, slow increase in the spin rate can be seen in
the SSDEM simulations, the rate of spin-up is nearly two
orders of magnitude slower than in the rigid-body cases.
This confirms that the basic phenomenon of YORP self-
limitation is not an artifact of the HSDEM approach. The
aggregate evolutions, while differing in detail, show the
same major types of behavior in the SSDEM re-runs as
we have seen in the HSDEM simulations. Whether these
particular SSDEM aggregates may continue to accelerate
on a long timescale is a moot point, since by the end of
the simulation they have already exceeded the mean NEA
lifetime by 50%. Results are similar for the re-runs of
simulations 8 and 13, suggesting that the same basic
phenomena that we have found in highly deformable
aggregates using HSDEM will persist in aggregates with
greater rigidity and higher friction angles. More work
targeting these regions of parameter space will be needed
to reveal the relative frequencies of stochasticity, self-
governing, stagnation, or modified YORP cycles. How-
ever, a full exploration of the SSDEM parameter space is
beyond the scope of this paper. In future work we plan to
take advantage of the capabilities of SSDEM in order to
explore a wide range of material properties, to more
realistically account for the effects of irregular particle
shapes, and, especially, to test strength models for
cohesive aggregates (e.g., Schwartz et al. 2013; Sán-
chez 2014). Recent observational results strongly suggest
that cohesive forces are important both in maintaining the
integrity of rapidly rotating objects (Rozitis et al. 2014)
and in influencing the mode of mass loss (Hirabayashi
et al. 2014).

4. Tangential YORP: Golubov & Krugly (2012) and
Golubov et al. (2014) have drawn attention to an
important asymmetry in how heat is conducted across
small exposed surface features on rotating bodies. This
asymmetry results in a tendency for the time-average
recoil forces on the westward-directed faces of these
features to be larger than those on the eastward-directed
faces, and will always act in the direction of increasing
the spin rate. Golubov et al. (2014) calculate the
magnitude of the tangential YORP (TYORP) effect for
an isolated surface patch, and estimate that the TYORP
torque can approach the same order of magnitude as the
ordinary (normal to the surface) YORP torque. These
early results do not guarantee that the TYORP tendency
to accelerate the spin will always dominate over normal
YORP, especially for objects with large-scale shape
asymmetries. In cases where the tangential bias is not
dominant, we would expect shape changes to result in a
similar amount of variation in the YORP torques to that
found here, leading to the same phenomena of self-
limitation, stochasticity, self-governing, and stagnation.
Even in cases where TYORP is dominant, continued spin
up will still generate shape changes, and objects may still
random-walk to self-limited configurations in which the
positive tangential bias is, on average, cancelled by the
shape-generated normal torque.

Figure 18. Spin evolutions obtained for simulation 10 using HSDEM and
SSDEM with the coefficients of static and rolling frictions of gravel and glass
beads. Black lines show the rigid-body evolution (top). Colored lines show the
evolution of the aggregate (top and bottom). Small variations of the aggregate
evolution can be noticed in the bottom panels. Note that self-limitation of the
YORP effect still occurs in the SSDEM simulations. As in the HSDEM case,
the SSDEM-simulated objects evolve through a sequence of shape changes that
limit the spin and prevent the YORP cycle from completing.
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5. SUMMARY

We have presented the first self-consistent simulations of the
coupled spin and shape evolutions of small gravitational
aggregates under the influence of the YORP effect. Because of
the sensitivity of YORP to detailed surface topography, even
small centrifugally driven reconfigurations of an aggregate can
alter the YORP torque dramatically, resulting in spin evolution
that is, in the strong majority of cases, qualitatively different
from the rigid-body prediction.

One-third of the objects simulated follow a simple evolution
that can be described as a modified YORP cycle. Two-thirds
exhibit one or more of three distinct behaviors—stochastic

YORP, self-governed YORP, and stagnating YORP—which
together result in YORP self-limitation. Self-limitation has
the effect of confining the rotation rates of evolving aggregates

to far narrower ranges than would be expected in the YORP-

cycle picture, and greatly prolonging the times over which

objects can preserve their sense of rotation (direct or

retrograde).
The simulated asteroids we have tested are initially randomly

packed, disordered aggregates of identical spheres that

collectively have a low internal angle of friction. They are

highly deformable and lie near, but not on the Maclaurin/Jacobi

sequence. Their evolution in shape is charaterized by

rearrangement of the entire body, including the deep interior,

and not predominantly by movement of surface material.

Unlike the high-friction-angle initial configurations tested by

Walsh et al. (2008), they do not evolve to axisymmetric top

shapes with equatorial ridges. When they lose mass, they

generally do so in small amounts from the ends of a prolate-

Figure 19. Orchestration flowchart; colors indicate major code elements: TACO (blue), pkdgrav (orange), spin state evolution (yellow), transformation (purple) and
tiling (green).
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triaxial body, and always after crossing the Jacobi ellipsoid
sequence.

YORP self-limitation may inhibit the formation of top-
shapes, binaries, or both, by restricting the amount of angular
momentum that can be imparted to a deformable body.
Stochastic YORP, in particular, will affect the evolution of
collisional families whose orbits drift apart under the influence
of Yarkovsky forces, in observable ways.
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APPENDIX
DETAILS OF THE INTER-CODE ORCHESTRATION

Figure 19 shows a flowchart of the full simulation
procedure. Orchestration is handled by a python script,

Figure 19. continued.
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which runs and transfers data between the routines of TACO
that compute YORP torques (blue), those of pkdgrav that
integrate the particle dynamics (orange), and the additional
routines that evolve the spin and obliquity with time (yellow),
transform the object in orientation (purple) and tile the object
(green).

We start by dynamically evolving the original object for
several rotations at the initial spin rate using pkdgrav. Then
we obtain the tiling for the original object (Object 0) with its
center of mass as the origin and in principal axis orientation.
The YORP torques for the Object 0 are then obtained and we
evolve the obliquity and spin in time until the spin rate changes
by 0.5% or reaches an extremum. The object is run
dynamically with pkdgrav at the new spin rate for several
rotations; if there is a movement of spheres we let it evolve for
several more rotations until there are no more movements. If, at
any movement of material, more than half of the spheres move,
we take that as an indication that our increment in spin rate may
have been too large. In that case we go back and increment the
spin in time instead by 1/5 of the previous increment until a
movement occurs. Once the object has settled down, it is
defined as Object 1. We transform it to the orientation of Object
0 in order to obtain the tiling; this guarantees that the tiling is
altered only over the regions where motion occurred. Once the
tiling is obtained, Object 1 is transformed to its principal axis
orientation with its center of mass as the origin and the YORP
torques are obtained. The obliquity and spin are evolved in time
using the torques of Object 1 until the spin rate changes by
0.5% or reaches an extremum. The object is run dynamically
with pkdgrav at the new spin rate for several rotations until
there is another movement and a new object is defined,
repeating the whole process for each new object (Object n) as
was done with Object 1.
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