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Abstract. We investigate the well-posedness of a coupled Stokes-Darcy model with Beavers-
Joseph interface boundary conditions. In the steady-state case, the well-posedness is established
under the assumption of a small coefficient in the Beavers-Joseph interface boundary condition. In
the time-dependent case, the well-posedness is established via an appropriate time discretization of
the problem and a novel scaling of the system under an isotropic media assumption. Such coupled
systems are crucial to the study of subsurface flow problems, in particular, flows in karst aquifers.
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1. Introduction
Groundwater systems are of great importance to our daily lives. In many states

within the United States as well as in many other nations, groundwater is a major
source of drinkable and industrial water. Groundwater systems are so tightly bonded
with the lives of human beings that they are also very susceptible to contamination.
Great concerns have grown about the sustainability of groundwater systems and their
self-cleansing ability.

Among groundwater systems, karst aquifers are one important type. Such aquifers
are mostly made up of a matrix, i.e., a porous medium, that holds the water. This
is usually referred to as the first porosity. However, underground fissures, conduits,
surface sinkholes, and springs play a major role in fluid transport in karst aquifers,
even though they occupy a much smaller space relative to the more homogeneously
porous matrix in which the first porosity dominates. Traditional models for studying
groundwater such as dual porosity models oversimplify the intricate, heterogeneous
system and can accurately handle fluid transport mechanisms only in the matrix.
It is impractical to use them for studying complicated systems like karst aquifers.
The important second and third porosities are ignored from these models despite the
simple fact that they are the major underground highways for water. Now, scien-
tists are beginning to shed light on using the Navier-Stokes equations to tackle the
highly structured second and tertiary porosities which are prevalent in real-world karst
aquifers.

Numerous previous studies have endeavored to study the interaction between the
free flow in the second and tertiary porosity (say conduits) and the confined flow in
the matrices. Most of them are divided into three major categories: using the domain
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2 COUPLED STOKES-DARCY MODEL

decomposition method [1, 2, 3, 4], using the Lagrange multiplier approach [5, 6], or
the two-grid method [7]. To sum up, in free flow, the Navier-Stokes equations or
their linearized version, the Stokes equations, are commonly used. In the matrix,
one popular choice is to use Darcy’s law. For the coupled Navier-Stokes-Darcy or
the linearized Stokes-Darcy models, two boundary conditions are well-accepted: the
continuity of the normal velocity across the interface which is a consequence of the
conservation of mass and the balance of force normal to the interface (2.8). In the
three-dimensional case, two more interface conditions are needed. Here, we adopt the
classical empirical Beavers-Joseph interface boundary condition, which was proposed
in the seminal work [8]. Roughly speaking, Beavers and Joseph proposed that the
tangential component of the normal stress of the flow in the conduit at the interface
is proportional to the jump of the tangential velocity across the interface (2.8).

Although there is abundant empirical evidence supporting the validity of the
Beavers-Joseph interface boundary, we are not aware of any rigorous mathematical
work based on this interface boundary condition. The main mathematical difficulty
in adopting the Beavers-Joseph interface boundary condition seems to be the fact
that this condition makes an indefinite leading order contribution to the total energy
budget. Previous mathematical works on the coupled Stokes-Darcy system all used
simplified interface boundary conditions such as the Beavers-Joseph-Saffman-Jones
interface boundary condition [6] which basically neglects the contribution of the flow
in the porous media to the interface boundary condition (2.9), or an even simpler
interface boundary condition [3] (which is similar to a “free-slip” boundary condition)
which is obtained by setting a coefficient to zero in the Beavers-Joseph interface
boundary condition (2.8). All these simplified interface boundary conditions imply
that the contribution of the interface boundary condition to the total energy budget
is dissipative and hence analysis are possible. One of the main contributions of this
paper is a novel scaling (which may be interpreted as pre-conditioning) for the coupled
system so that the indefinite contribution from the interface term is controlled by the
dissipation terms to the leading order (a G̊arding type estimate). This essentially
leads to the well-posedness of the system.

There exists substantial evidence supporting the usage of simplified interface
boundary conditions. For instance, Saffman [9] and Jones [10] proposed the simplified
interface boundary condition which bears their names based on consideration of very
special cases and an ad hoc asymptotic analysis. Saffman considered one-dimensional
flow under a uniform pressure gradient (which means no mass exchange between the
conduit and the matrix) in uniform media (isotropic and homogeneous and hence
constant hydraulic conductivity) and in the zero permeability limit. The simplified
interface condition was mathematically validated by Jäger and Mikelic̀ [11] in the sense
that the leading order interface boundary condition is the Beavers-Joseph-Saffman-
Jones boundary condition in the zero permeability limit under the similar assumptions
as in Saffman’s work plus the additional assumption that the flow is periodic in the
horizontal direction (2D case). However, these assumptions may not necessarily hold
in the sophisticated system such as a real-world karst aquifer. Fluid exchange be-
tween the conduit and the matrix, heterogenous and not necessarily small hydraulic
permeability, and non-periodic boundary conditions are common in real-world prob-
lems and thus must be incorporated into the modeling to obtain useful results. We
are not sure if the simplified Beavers-Joseph-Saffman-Jones interface boundary condi-
tion remains true in this kind of environment. Therefore it is natural to consider the
coupled Stokes-Darcy system with the complete Beavers-Joseph interface boundary
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condition.
We also point out that all previous works emphasized the time-independent,

steady state case. With real-world application in mind, especially the influence of
precipitation which is reflected in the time dependent inflow-outflow boundary condi-
tions in the conduit (see (2.7)), we mainly focus on time-dependent problems, although
the time-independent case is also considered. It turns out that the time dependency
is a blessing in our analysis since the dissipation terms are only able to control the
leading order indefinite contribution from the Beavers-Joseph interface term.

The rest of the paper is organized as follows. We present the linear Stokes-Darcy
model in their primitive variables as well as its weak formulation in section 2 with the
full Beavers-Joseph interface boundary conditions. Section 3 is devoted to the station-
ary case. The well-posedness as well as a brief discussion of error estimates for finite
element approximations are given in section 3 when the coefficient in the Beavers-
Joseph interface boundary condition is small enough. We tackle the time-dependent
case in section 4 where a backward-Euler time discretization and a suitable scaling of
the Darcy system are utilized to show the well-posedness. As a byproduct, we also
derive a fully discrete scheme and show that it converges. However, a convergence
rate is not given here. We consider convergence rates for finite element approximation
in [12].

2. The Stokes-Darcy system with the Beavers-Joseph interface condi-
tion

We begin with giving a full description of the problem we consider. figure 2.1

Fig. 2.1. Typical components of a karst aquifer.

depicts a simplified typical karst aquifer system. The free flow is confined in the
underground conduit, denoted by Ωc, which connects a sinkhole to a spring. Sur-
rounding the conduit are porous media such as soil, gravel, sand, etc. The porous
media as a whole is regarded as the matrix that holds water. The region occupied by
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the matrix is denoted by Ωm. The flow in the matrix Ωm is governed by

S
∂φm
∂t

+∇·vm = 0

vm = −K∇φm

 in Ωm, (2.1)

which includes, in the first equation, the saturated flow model and, in the second
equation, Darcy’s law [13]. In (2.1), S denotes the mass storativity coefficient, K(x)
denotes the hydraulic conductivity tensor of the porous media, which is assumed to be
symmetric and positive definite but could be location dependent (heterogeneous), and
the unknown φm denotes the hydraulic (piezometric) head, defined as φm :=z+ pm

ρg ,
where pm represents the dynamic pressure, z the height, ρ the density, and g the
gravitational constant. Here the subscript m emphasizes that these variables are for
the matrix. We may omit this subscript where the context is clear. Combining the
two equations in (2.1), we recover the heat equation for the hydraulic head:

S
∂φm
∂t

+∇·(−K∇φm) = 0 in Ωm. (2.2)

In the following, we will refer to (2.2) simply as the Darcy equation. We impose the
following boundary conditions along the boundary of the matrix:{

φm = fg on Γg
(K∇φm) ·n = 0 on Γ0,

(2.3)

the first of which naturally implies that the hydraulic head is specified to be fg at
the ground surface and the second, by virtue of Darcy’s law (the second equation in
(2.1)), is the condition of no-flow across the boundary that is presumably a reasonable
fictitious boundary condition useful for analysis and simulation purposes. We will
consider the simple case of

fg≡0 (2.4)

in this manuscript. The general case can be handled by subtracting a background
hydraulic head profile that fits the specified head at the ground surface. This will
lead to a heat equation for the translated head with a source term which impose no
difficulty in terms of analysis or computation.

In the conduit Ωc, the other domain of the problem, the Navier-Stokes equations
govern the free flow:

∂vc
∂t

+(vc ·∇)vc = ∇·
(
−pI+2νD(vc)

)
−gk

∇·vc = 0

 in Ωc, (2.5)

where vc denotes the flow velocity, p the kinematic pressure, D(v) = 1
2 (∇v+(∇v)T )

the deformation tensor, and k the unit vector in z direction. Here the subscript c
emphasizes that these variables are for the conduit. We may omit this subscript where
the context is clear. In this paper, we assume that the value of the Reynolds number
is small so that we are able to replace the Navier-Stokes system by the linear Stokes
system

∂vc
∂t

= ∇·(−pI+2νD(vc))−gk,
∇·vc = 0,

}
in Ωc. (2.6)



Y. CAO, M. GUNZBURGER, F. HUA AND X. WANG 5

At the sinkhole and the spring, we use nonhomogeneous Dirichlet boundary con-
ditions to specify inflow and outflow velocities:{

vc×n=0 and vc ·n=γsi(t)ηsi(x) =fsi on Γsi
vc×n=0 and vc ·n=γsp(t)ηsp(x) =fsp on Γsp,

(2.7)

where γ,η, and f are given functions defined at the spring and the sinkhole, and n is
the unit vector outer normal to Γsi and Γsp. These boundary conditions are usually
what is measured in the field or in the lab. The time dependence built into the data
in (2.7) allows one to model flood and drought seasons.

In addition to the boundary conditions (2.3) and (2.7) imposed along the bound-
ary of the matrix or conduit, respectively, we apply the following interface boundary
conditions that couple the solutions in the two domains:

vc ·ncm = vm ·ncm
−nTcmT(vc,p)ncm = g(φm−z)

−τTi T(vc,p)ncm =
αν
√

3√
trace(Π)

τTi (vc−vm), i= 1,2

 on Γcm, (2.8)

where {τ 1,τ 2} represents a local orthonormal basis for the tangent plane to Γcm, ncm
denotes the unit normal to Γcm pointing from the conduit to the matrix, T(vc,p) :=
−pI+2νD(v) denotes the stress tensor, α denotes a constant and Π represents the
permeability, which has the following relation with the hydraulic conductivity, K=
Πg
ν . It should be noticed that Π and K differ by a factor of a constant. Thus, all

assumptions on K such as symmetric positive definiteness also carry over to Π. In
short, Π and K are equivalent in terms of analytical purpose.

The first two interface boundary conditions in (2.8) are quite natural, as we
discussed earlier. The first condition guarantees the conservation of mass, i.e., the
exchange of fluid between the two domains is conservative. The second condition
represents the balance of two driving forces, the kinematic pressure in the matrix and
the normal component of the normal stress in the free flow, in the normal direction
along the interface.

The last interface equation in (2.8) is the complete form of the well-known
Beavers-Joseph condition [8]

τTi (−2νD(vc))ncm=
αν
√

3√
trace(Π)

τT1 (vc−vm), i= 1,2,

that addresses the important issue of how the porous media affects the conduit flow
at the interface. This empirical condition essentially claims that the tangential com-
ponent of the normal stress that the free flow (the flow part governed by the Stokes
equations, i.e., the conduit in our setting.) incurs along the interface is proportional
to the jump in the tangential velocity over the interface. Here, α is a parameter
depending on the properties of the porous material as well as the geometrical setting
of the coupled problem. However, whether the Beavers-Joseph interface condition
leads to a well-posed problem is still unclear. Simplified variants of Beavers-Joseph
interface conditions are prevalently used, among which the most accepted one is the
Beavers-Joseph-Saffman-Jones condition [10, 9]. This interface condition drops the
term τTi (vm) on the right hand side and reads as

τTi (−2νD(vc))ncm=
αν
√

3√
trace(Π)

τTi vc, i= 1,2. (2.9)
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The interface condition above is used in previous work; see [6]. In [3], the authors
omit the whole right hand side of the Beavers-Joseph interface boundary condition.
Saffman’s simplification is deduced in the case of a simple geometrical setting with
a straight interface and statistically one dimensional flows (solutions homogeneous in
the direction tangent to the interface in the statistical average). In this specific case
suggested by Saffman, under the further assumptions of uniformity of the pressure
gradient in the porous medium and the free flow, and the homogeneity of the hydraulic
conductivity, the ad hoc asymptotic analysis of the linear Stokes-Darcy model will
arrive at the conclusion that, along the interface, the velocity of the porous medium
side is a higher-order term compared to the velocity on the conduit flow side as the
permeability in the porous medium tends to zero. This simplification is also justified
in a more mathematically rigorous way in [11] under a similar setting and assumptions,
and the additional hypothesis of periodicity in the horizontal direction. Nevertheless,
we will not invoke any of the simplifying assumptions so that we will use the full form
of the Beavers-Joseph condition included in (2.8); this will allow us to investigate the
reasonableness of various simplifications later.

2.1. Weak formulation of the time-dependent Stokes-Darcy model.
From now on we will drop all subscripts (original notation with subscript c denot-
ing conduit, and subscript m denoting matrix) for all functions involved, since the
associated domain is always clear within each context.

To define the weak formulation of the coupled problem, we need to define the
affine space

Hc,f :={w∈ (H1(Ωc))3 | w ·n=fsi on Γsi, w ·n=fsp on Γsp,
and w×n=0 on Γsi∪Γsp}

and the function spaces

Hc,0 :={w∈ (H1(Ωc))3 | w =0 on Γsi∪Γsp},

Hp :={ϕ∈H1(Ωm) | ϕ= 0 on Γg},

Q :=L2(Ωc),

W :=Hc,0×Hp,

and

V :=Hc,div×Hp, (2.10)

where Hc,div :={w∈Hc,0 | divw = 0}. Here, W and V are Hilbert spaces with respect
to the norm

‖w‖W :=
1√
2

(‖w‖2H1 +‖ϕ‖2H1)1/2, ∀w = (w,ϕ)∈W. (2.11)

On Γcm, we consider the trace space (see [14, vol. I, p. 66])

Λ :=H1/2
00 (Γcm).
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This space is a non-closed subspace of H1/2(Γcm) and has a continuous zero extension
to H1/2(∂Ωc). The space H1/2

00 (Γcm) could instead be equivalently defined as the
restriction of Hc,0(Ωc) to Γcm, i.e., H1/2

00 (Γcm) =Hc,0(Ωc)|Γcm . For H1/2
00 (Γcm), we

have the following continuous imbedding result:

H1/2
00 (Γcm)$H1/2

0 (Γcm) =H1/2(Γcm)$H−1/2(Γcm)$
(
H1/2

00 (Γcm)
)′
,

where H1/2
0 (Γcm) is the closure in H1/2(Γcm) of the space C∞c (Γcm) of infinitely

differentiable compactly supported functions. In order to understand the dual of
H1/2

00 (Γcm), we need to note that1

H−1/2(∂Ωc)|Γcm *H−1/2(Γcm) and

H−1/2(∂Ωc)|Γcm ⊂
(
H1/2

00 (Γcm)
)′
.

(2.12)

Henceforth, we use the notational convention that u= (u,φ), v = (v,ψ) and w =
(w,ϕ). They all belong to W.

In order to introduce the weak formulation of the coupled Stokes-Darcy system,
we first define the bilinear form aη(·,·) :W×W→R by

aη(u,v) = 2ν
∫

Ωc

Du :DvdΩc+
η

S

∫
Ωm

(K∇φ) ·∇ψdΩm

+g
∫

Γcm

φv ·ncmdΓcm−
η

S

∫
Γcm

u ·ncmψdΓcm

+
∫

Γcm

να
√

3√
trace(Π)

Pτ (u+K∇φ) ·vdΓcm,

(2.13)

Pτ (·) is the projection onto the local tangential plane that can be explicitly defined
as Pτ (v) :=v−(v ·ncm)ncm and where η is a scaling parameter that we will exploit
in the sequel.

Without further assumptions on the regularity of the domain spaces of aη(·,·), we
have that ∇φ∈L2(Ωm) and thus it does not have a well-defined trace on ∂Ωm for a
general hydraulic conductivity tensor K. Nevertheless, if the hydraulic conductivity
is isotropic everywhere, i.e., when the permeability tensor Π(x) =k(x)I, where k is a
scalar function and I is the identity matrix, then the last term of aη(·, ·) is well defined
in the sense that

√
3να

∫
Γcm

1√
trace(Π)

(Pτ (u)+Pτ (K∇φ)) ·Pτ (v)dΓcm

=
√

3να
∫

Γcm

1√
trace(Π)

(Pτ (u)+
g

ν
kPτ (∇φ)) ·Pτ (v)dΓcm

=να

∫
Γcm

1√
k
Pτ (u) ·Pτ (v)dΓcm+gα

∫
Γcm

√
k∇τφ ·Pτ (v)dΓcm,

where we have used the fact that the tangential projection of the gradient is the
tangential derivative of a function defined on the boundary, and the last integral is

1The space H−1/2(∂Ωc)|Γcm is defined in the following way: ∀f ∈H−1/2(∂Ωc)|Γcm and g∈
H1/2(Γcm), <f,g>H−1/2(∂Ωc)|Γcm ,H

1/2(Γcm):=<f,eg>H−1/2(∂Ωc),H1/2(∂Ωc)
, where eg is the zero

extension of g to ∂Ωc.
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understood as an (H1/2
00 (Γcm))′,H1/2

00 (Γcm) duality. More specifically, the gradient
of φ restricted on ∂Ωm can be represented by ∂φ

∂nn+ ∂φ
∂τ1

τ 1 + ∂φ
∂τ2

τ 2, where n is the
local normal direction and τ 1 and τ 2 are the chosen orthonormal basis of the local
tangential plane. Thus, the projection of the gradient to the tangent plane is given
by ∂φ

∂τ1
τ 1 + ∂φ

∂τ2
τ 2 which is exactly the tangential derivative, i.e., it is the gradient of

the function φ|∂Ωm . Since φ∈Hp, we have that φ|∂Ωm ∈H1/2(∂Ωm) and ∇τφ(∂Ωm)∈
H−1/2(∂Ωm). This further implies that ∇τφ(Γcm) =∇τφ(∂Ωm)|Γcm ∈ (H−1/2

00 (Γcm))′,
according to 2.12.2 We will frequently refer back to this relation in the rest of this
work.

Note that the contribution of the Beavers-Joseph term (the last term in (2.13))
is indefinite and of leading order (since, formally, we need ‖φ‖H1‖v‖H1 to bound this
term) which is one of the main difficulties in the mathematical analysis. However, if
one adopts the simplified Beavers-Joseph-Saffman-Jones interfacial boundary condi-
tion, the second part of the last term (which is the indefinite one) drops out and hence
the contribution of the simplified interface term to the bilinear form aη(·, ·) decreases
the energy and therefore subsequent analysis is substantially simplified; see [3, 6].

We also need to introduce the bilinear form b(·,·) :W×Q→R associated with the
pressure, which is given by

b(w,q) :=−
∫

Ωc

q∇·wdΩc,

and the modified duality pairing < ·, ·>η,H′c,0×H′p,W :H′c,0×H ′p,W→R associated
with the time derivative given by

<ut,v>η,H′c,0×H′p,W :=<ut,v>H′c,0,Hc,0 +η<φt,ψ>H′p,Hp .

We will use the more economical notation < ·, ·>η=< ·,·>η,H′c,0×H′p,W in the sequel.

Remark 2.1. Note that the above bilinear forms remain well defined if u∈Hc,f .
Actually, this is the affine space in which we want to find the solution of the problem
with inhomogeneous Dirichlet boundary conditions at the sinkhole and spring.

Finally, we define the linear forcing functional F (·) :W→R defined by

<F,w>:=−
∫

Ωc

gk ·wdΩc+g

∫
Γcm

zw ·ncmdΓ,

where k is the unit vector in z direction and the second term on the right-hand
side comes from the second interface condition in (2.8), which is a natural boundary
condition.

The weak formulation of the coupled, time-dependent Stokes-Darcy system can be
formally derived by multiplying the Stokes system (2.6) by a velocity test function v
then integrating the result over Ωc, multiplying the Darcy equation (2.2) by a scaling
parameter η and a scalar test function ψ and integrating the result over Ωm, and
then taking the sum. Formally, the weak formulation of the coupled time-dependent
Stokes-Darcy problem is then given as follows: find u and p such that

{
<ut,v>η +aη(u,v)+b(v,p) =<F,v> ∀v = (v,ψ)∈W

b(u,q) = 0 ∀q∈Q.
(2.14)

2We could follow another route to reach this conclusion. We know that φ(Γcm)∈H1/2(Γcm),

then taking the derivative, we have ∇τφ(Γcm)∈ (H
−1/2
00 (Γcm))′; see [14].
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We further assume that the shapes of Γsi and Γsp are regular enough to guarantee
the existence of a continuous extension operator E :H1/2(Γsi∪Γsp)→Hc,f (Ωc) such
that ∇·E(f) = 0 and E(f) ·n=f on Γsi and Γsp, where f =fsi and f =fsp on Γsi
and Γsp, respectively. Then, the solution we seek is u−E(f) which belongs to Hc,0.
The above weak formulation can be formally rewritten, denoting (E(f),0) by ũ, as
follows: find u and p such that{

<ut,v>η +aη(u,v)+b(v,p) =<F̃ ,v>η ∀v = (v,ψ)∈W

b(u,q) = 0 ∀q∈Q,
(2.15)

where the linear functional F̃ :W→R is defined by

<F̃ ,v>η:=<F,v>−< ũt,v>−aη(ũ,v).

The equivalence for smooth solutions between this weak formulation and the
classical form can be verified directly; see the appendix.

In order to avoid the difficulty associated with the pressure, we take the Leray-
Hopf approach [15] and look for solutions in the div-free space for u only. More
precisely, we look for u∈L2(0,T ;V), ut=u′∈L2(0,T ;V′) such that

<ut,v>η +aη(u,v) =<F̃ ,v>η,∀v = (v,ψ)∈V. (2.16)

3. Well-posedness and approximation of the steady-state Stokes-Darcy
problem

In this section, we want to show that the steady-state Stokes-Darcy problem is
well-posed (without requiring that the extension E(f) be div-free) when the coefficient
(α) in the Beavers-Joseph interface boundary condition is sufficiently small. Such an
assumption is physically relevant since α is expected to scale like the square root of
the porosity n (a small quantity for most porous media) [16, 17]. In the steady-state
case, the rescaling of the Darcy part is not helpful to the well-posedness. To see this,
note that although the rescaled diffusion term could control the indefinite contribution
from the Beavers-Joseph interface condition (in the tangential direction), resulting in
a G̊arding type inequality, in the absence of the time derivative term the rescaling
would result in an higher-order indefinite contribution from the term that matches the
normal velocities. Thus, the rescaled Darcy equation does not lead to the coercivity
of the coupled system. This is also heuristically true because there is no same time
scale that we can bring the two different physical problems to in the steady state
case. Since the effect of η is nullified, we choose η=Sg to simplify the discussion of
the well-posedness of the steady problem. Then, aη(·, ·) defined in (2.13) reduces to

a(u,v) = 2ν
∫

Ωc

Du :DvdΩc+g

∫
Ωm

(K∇φ) ·∇ψdΩm

+g
∫

Γcm

φv ·ncmdΓcm−g
∫

Γcm

u ·ncmψdΓcm

+
∫

Γcm

να
√

3√
trace(Π)

Pτ (u+K∇φ) ·vdΓcm.

Furthermore, in the steady state case, the isotropy of the hydraulic conductivity is
not required by the mathematical treatment in order for the last boundary integral to
be well-defined, i.e., we may lift the restriction that requires Π=k(x)I and let Π(x)
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(and thus K(x)) be an arbitrary (location dependent) symmetric, positive definite
matrix and the last integral in a(·, ·) remains well defined. To see this, first note that,
in the steady state case, the Darcy equation becomes ∇·(K∇φ) = 0 which implies
that K∇φ∈Hdiv(Ωm) :=

{
w∈L2(Ωm) :∇·w∈L2(Ωm)

}
; then, by the trace theorem,

(K∇φ) ·n∈H−1/2(∂Ωm). But we actually can show that K∇φ∈H−1/2(∂Ωm). To
this end, we decompose K∇φ as

K∇φ=K
(
∂φ

∂n
n+

∂φ

∂τ1
τ 1 +

∂φ

∂τ2
τ 2

)
.

We just need to show K ∂φ
∂nn∈H−1/2(∂Ωm). In fact, K

(
∂φ
∂τ1

τ 1 + ∂φ
∂τ2

τ 2

)
readily be-

longs to H−1/2(∂Ωm) when K(x) is smooth enough, as we argued in the previous
section. If the interface is smooth enough, i.e., if n(x) is a smooth function, we have
that (

nTKn
) ∂φ
∂n

=nT
{

K∇φ−K
(
∂φ

∂τ1
τ 1 +

∂φ

∂τ2
τ 2

)}
=nTK∇φ∈H−1/2(∂Ωm).

Now that nTKn is a smooth and strictly positive scalar function, by virtue of the
symmetry and positivity of K and the assumptions on the smoothness of K and n,
we conclude that ∂φ

∂n ∈H
−1/2(∂Ωm). Then, it is straightforward to see that ∇φ|∂Ωm

as well as K∇φ|∂Ωm belong to H−1/2(∂Ωm). Finally, K∇φ|Γm ∈
(
H1/2

00 (Γm)
)′.

Now that a(·,·) is well defined, we state the weak formulation for the steady state
problem: find u∈W and p∈Q such that:{

a(u,v)+b(v,p) = <F,v>−a(ũ,v) ∀v∈W

b(u,q) = −b(ũ,q) ∀q∈Q,
(3.1)

where ũ= (E(f),0) is the extension of the nonhomogeneous boundary condition. To
show the well-posedness, we need to use the well known saddle-point theory [18], i.e.,
we need to show the following.

1. The bilinear form a(·,·) is V-elliptic, i.e., there exists a constant α3>0 such
that

a(v,v)≥α‖v‖W ∀v∈V,

where the space V is the defined in (2.10).
2. The bilinear form b(·, ·) satisfies the inf-sup condition, i.e., there exists a

constant β>0 such that

inf
q∈Q

sup
u∈W

b(u,q)
‖u‖W‖q‖L2

≥β>0. (3.2)

We first show that the inf-sup condition holds.

Lemma 3.1. The bilinear functional b(·, ·) is continuous on W×Q and satisfies the
inf-sup condition (3.2).

3This α is not the same as the parameter in Beavers-Josephs conditions. We will use α to denote
both as long as there is no confusion.
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Proof. It is obvious that b(·, ·) is continuous. In fact,

|b(u,q)|=
∣∣∣∣∫

Ωc

q∇·udΩc

∣∣∣∣≤‖q‖L2 |u|H1 ≤‖q‖L2 ‖u‖H1 ≤‖q‖L2 ‖u‖W .

Furthermore, for any q∈Q, we can find a u∈Hc,0 such that∫
Ωc

qdivudΩc≥β∗‖u‖H1 ‖q‖L2 with β∗>0;

see [1]. In our coupled problem, let u= (−u,0); then

b(u,q) =
∫

Ωc

qdivudΩc≥β∗‖q‖L2 ‖u‖H1 =β‖q‖L2 ‖u‖W

with β>0.

We now move on to show the continuity and coercivity of a(·, ·).

Lemma 3.2. The bilinear functional a(·, ·) is continuous and coercive on W×W
(W-elliptic) when the coefficient in the Beavers-Joseph interface boundary condition
α is small enough.

Proof. The continuity is a natural result of the trace theorem and the Cauchy-
Schwarz inequality. As for the coercivity, we have

a(v,v) = 2ν
∫

Ωc

D(v) :D(v)dΩc+g

∫
Ωm

(K∇ψ) ·∇ψdΩm

+να
√

3
∫

Γcm

1√
trace(Π)

(Pτ (v)+Pτ (K∇ψ)) ·Pτ (v)dΓcm

≥2ν‖Dv‖2L2 +gλmin(K)‖∇ψ‖2L2 +
να√

λmax(Π)
‖Pτ (v)‖2L2(Γcm)

− να√
λmin(Π)

‖K∇ψ‖“
H

1/2
00 (Γcm)

”′ ‖Pτ (v)‖
H

1/2
00 (Γcm)

≥C1ν‖v‖2H1 +C2λmin(K)‖ψ‖2H1−
ναλmax(K)√
λmin(Π)

‖ψ‖H1(Ωm)‖v‖H1(Ωc)

≥ C1

2
ν‖v‖2H1 +

C2

2
λmin(K)‖ψ‖2H1 .

Here, the Ci’s are strictly positive constants independent of K, ν, or α and K is
strictly positive definite. The λmax(K) and λmin(K) denote the largest and smallest
eigenvalues of K, and λmax(Π) and λmin(Π) denote the largest and the smallest
eigenvalues of Π respectively. The second inequality holds by applying the classical
Poincaré inequality, the Poincaré-like inequality in [19, Equ. 4.20], Korn’s inequality
[20, Thm. 2.4], and the trace theorem and dropping the third term. The last inequality
holds if {

ν
1
2αλmax(K)√
λmin(K)

}2

≤C1C2νλmin(K).

This is true when α2 is small enough.

Remark 3.3. If we instead use the Beavers-Joseph-Saffman interface condition for
the steady Stokes-Darcy problem, we could obtain, in an easier manner, the coercivity.
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We omit the proof due to the similarity to the proof of the problem considered in [21].

The following result follows from Lemmas 3.1 and 3.2; see, e.g., [22].

Proposition 3.4. The steady-state Stokes-Darcy problem with either the Beavers-
Joseph (when the coefficient α associated with it is small enough) or Beavers-Joseph-
Saffman interface conditions is well-posed.

We then give an error estimate for the convergence rate of the finite element
methods. First, we introduce the following discrete spaces:

Wh=Hh
c,0×Hh

p ⊂W, Qh⊂Q

Vh=
{
vh∈Wh | b(vh,qh) = 0, ∀qh∈Qh

}
,

and

Vh
f =

{
vh∈Wh | b(vh,qh) =−b(ũ,qh), ∀qh∈Qh

}
.

The spatially discretized problem is to find uh∈Wh and ph∈Qh such that{
a(uh,vh)+b(vh,ph) = <F,vh>−a(ũ,vh) ∀vh∈Wh

b(uh,qh) = −b(ũ,qh) ∀qh∈Qh.
(3.3)

We assume that the assumptions of Lemma 3.2 are satisfied, i.e., for the discrete case
we have

a(vh,vh)≥α‖vh‖2W ∀vh∈Wh,

where α is independent of h, and that the finite element spaces satisfy the discrete
inf-sup or div-stability condition

inf
06=qh∈Qh

sup
06=vh∈Wh

b(vh,qh)
‖vh‖W‖qh‖L2

≥β>0 ∀h. (3.4)

Proposition 3.5. Under the above assumptions of coercivity and div-stability, we
have the following error estimate for the solution of problem (3.3):

‖u−uh‖W +‖p−ph‖L2 ≤C
(

inf
vh∈Wh

‖u−vh‖W + inf
qh∈Qh

‖p−qh‖L2

)
, (3.5)

where u is the solution of problem (3.1).

Proof. Given in the appendix.

Remark 3.6. If the unique solution pair (φ,ξ) of the adjoint problem{
a(vh,φ)+b(vh,ξ) = <e,vh>L2×L2,L2×L2 ∀vh∈Wh

b(φ,qh) = 0 ∀qh∈Qh,
(3.6)

where e=u−uh, is sufficiently regular, then by the classical duality argument (see
[22, pp. 119-120]) we have the estimate for the error e in L2×L2 given by

‖u−uh‖L2×L2 ≤Ch(‖u−uh‖W +‖p−ph‖L2).



Y. CAO, M. GUNZBURGER, F. HUA AND X. WANG 13

4. The time dependent coupled Stokes-Darcy problem
Although the steady-state problem does provide some practical insights, station-

ary phenomena in the types of flows we are interested in are rare compared with
transient ones. Many common factors drive practical aquifer flows to be time depen-
dent. For instance, seasonal precipitation is a prevalent time-dependent factor that
dominantly affects the groundwater flows. The well-posedness of the coupled Stokes-
Darcy model with the Beavers-Joseph interface boundary condition poses difficulties
even for isotropic hydraulic conductivity K, i.e., when K= g

ν k(x)I. However, in the
transient case, the time derivative term together with the dissipative terms enable us
to control the interfacial term which leads to the well-posedness.

To this end, we recall the weak formulation (2.16) which is derived by adding
the Stokes system (2.6) and η times the Darcy system (2.2) and homogenizing the
boundary condition at Γsi and Γsp with the re-scaling parameter η at our disposal.
Here, we will further exploit this parameter. Indeed, we will show that for large
enough η, the bilinear term (2.13) is essentially coercive in the sense of satisfying a
G̊arding type inequality (4.2) under the assumption that we have isotropic4 (but not
necessarily homogeneous) porous media, i.e., K(x) = g

νΠ= g
ν k(x)I. This essentially

leads to the well-posedness. In retrospect, the choice of a large rescaling parameter
η makes sense since the flow in porous media evolves on a relatively slow time scale
compared to that of the flow in the conduit, and the re-scaling will essentially bring
them to the same time scale for easy comparison.

With eventual full discretization involving finite element approximation in mind,
we approximate (2.15) instead of (2.16) via a backward-Euler discretization in time.
Letting δ= ∆t, we have the semi-discrete system for um∈W and pm∈L2(Ωc)

1
δ

〈( um+1−um

η(φm+1−φm)

)
,v
〉

+aη(um+1,v)

+b(v,pm+1) =<Fm,v> ∀v∈W

b(um+1,q) = 0 ∀q∈Q,

(4.1)

where

Fm=
1
δ

∫ (m+1)δ

mδ

F̃ (t)dt.

This scheme may be also viewed as a time discretization of the div-free formulation
(2.16) when we take um,v∈V.

We may rewrite the first equation in (4.1) as

1
δ

〈( um+1

ηφm+1

)
,v
〉

+aη(um+1,v)+b(v,pm+1)

=<Fm,v>+ 1
δ

〈( um

ηφm

)
,v
〉
∀v∈W

and denote the sum of the first two terms on the left-hand side of the above equation
by aδ,η(um+1,v), i.e.,

aδ,η(u,v) :=
1
δ

〈( u
ηφ

)
,v
〉

+aη(u,v).

4The isotropy assumption is not needed if we use the Beavers-Joseph-Saffman-Jones interface
boundary condition.
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In order to show the solvability of um+1, we again do the same as we did in the last
section, i.e., we invoke the general theory for saddle-point problems. For the bilinear
form b(·,·), both the inf-sup condition (Lemma 3.1) and its continuity are verified in
the last section. It remains to show that aδ,η(·,·) is continuous and V-elliptic. In fact,
we are going to show a stronger result, namely that it is W-elliptic.

Firstly, it is obvious that aδ,η(u,v) is bilinear and continuous. In fact, when the
hydraulic conductivity is isotropic, we have

|aδ,η(u,v)|
≤C1

(
‖Du‖L2 ‖Dv‖L2 +‖∇φ‖L2 ‖∇ψ‖L2

+‖φ‖L2(Γcm)‖v ·n‖L2(Γcm) +‖ψ‖L2(Γcm)‖u ·n‖L2(Γcm)

+‖u‖L2(Γcm)‖v‖L2(Γcm) +‖∇τφ‖“
H

1/2
00 (Γcm)

”′ ‖v‖
H

1/2
00 (Γcm)

)
≤C2

(
‖u‖W‖v‖W +‖φ‖H1/2(∂Ωm)‖v‖H1/2(∂Ωc)

)
≤C3‖u‖W‖v‖W ,

where C1, C2, and C3 are generic constants independent of the unknown functions.
Therefore, aδ,η(·,·) is continuous on W×W.

As for the coercivity (the W-ellipticity), we have, thanks to the Korn and Poincaré
inequalities and various trace estimates5:

aδ,η(u,u)

=
1
δ

(
‖u‖2L2(Ωc)

+η‖φ‖2L2(Ωm)

)
+2ν‖Du‖2L2(Ωc)

+
ηg

Sν

∫
Ωm

k∇φ ·∇φdΩm+
(
g− η

S

)∫
Γcm

φu ·ndΓ

+
∥∥∥√ αν√

k
Pτ (u)

∥∥∥2

L2(Γcm)
+<αg

√
k∇τφ,Pτu>“

H
1/2
00 (Γcm)

”′
,H

1/2
00 (Γcm)

≥ 1
δ

(‖u‖2L2(Ωc)
+η‖φ‖2L2(Ωm))+2νC1‖∇u‖2L2(Ωc)

+
ηgCk,1
Sν

‖∇φ‖2L2(Ωm)−
∣∣∣ η
S
−g
∣∣∣‖φ‖L2(Γcm)‖u ·n‖L2(Γcm)

+
√

3αν
Ck,2

‖Pτ (u)‖2L2(Γcm)−αgCk,3‖φ‖H1/2(∂Ωm)‖u‖H1/2(∂Ωc)

≥ 1
δ

(‖u‖2L2(Ωc)
+η‖φ‖2L2(Ωm))+2νC1‖∇u‖2L2(Ωc)

+
ηgCk,1
Sν

‖∇φ‖2L2(Ωm)

−
( η
S

+g
)
C2‖φ‖1/2L2(Ωm)‖∇φ‖

1/2
L2(Ωm)‖u‖

1/2
L2(Ωc)

‖∇u‖1/2L2(Ωc)

−C3αgCk,3‖∇φ‖L2(Ωm)‖∇u‖L2(Ωc)

≥ 1
δ
‖u‖2L2(Ωc)

+
η

δ
‖φ‖2L2(Ωm) +2νC1‖∇u‖2L2(Ωc)

+
ηgCk,1
Sν

‖∇φ‖2L2(Ωm)

−νC1

2
‖∇u‖2L2(Ωc)

− ηgCk,1
4Sν

‖∇φ‖2L2(Ωm)

5One trace inequality used here is ‖u‖2
L2(Γcm)

≤C‖u‖L2(Ω)‖u‖H1(Ω), which can be verified easily

using the calculus identity f2(0)=f2(x)−2
R x
0 f(s)f ′(s)ds.
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−
S1/2( ηS +g)2C2

2

(Ck,1gηC1)1/2
‖φ‖L2(Ωm)‖u‖L2(Ωc)

−νC1

2
‖∇u‖2L2(Ωc)

− (C3αCk,3)2g2

C1ν
‖∇φ‖2L2(Ωm) ,

where the Ci’s are generic constants depending on the geometry of the domain but
independent of the other parameters such as k, η, ν, S, g, α, and δ. The Ck,i’s are
constants related to the permeability k. Roughly speaking, Ck,1 is proportional to k,
while Ck,2 and Ck,3 are proportional to

√
k. These constants are obtainable by virtue

of the smoothness of k.
Now, it is easy to see that aδ,η(·, ·) is coercive for small enough δ and large enough

η. Indeed, with all other parameters fixed, we may choose the time step δ small enough
and the rescaling parameter η large enough so that the following inequalities hold:

ηgCk,1
4Sν

≥ (C3αCk,3)2g2

C1ν
η

δ2
≥
( S1/2

(Ck,1gηC1)1/2

( η
S

+g
)2

C2
2

)2

.

Then, we have the coercivity of aδ,η:

aδ,η(u,u)≥ 1
2δ
‖u‖2L2(Ωc)

+
η

2δ
‖φ‖2L2(Ωm)

+
νC1

2
‖∇u‖2L2(Ωc)

+
ηgCk,1

2Sν
‖∇φ‖2L2(Ωm) .

Therefore we have established the existence of the discrete problem (4.1).
As a byproduct, we have also derived a G̊arding type inequality indicating that

aη is essentially coercive in the sense that there exists C0>0 and αη>0 such that
aη(u,v)+C0(u,v) is coercive, i.e.,

aη(u,u)≥αη ‖u‖2W−C0‖u‖2L2×L2 . (4.2)

Our next goal is to show that the solutions of the backward-Euler scheme converge
to a solution to the weak formulation (2.15). We start with the derivation of a priori
estimates for the approximate solutions. We estimate um+1 by using the fact (see for
instance [23, 15]) that the solution to (4.1) is also the unique solution to the following
problem: find um+1 in V such that

1
δ

〈( um+1−um

η(φm+1−φm)

)
,v
〉

+aη(um+1,v) =<Fm,v> ∀v∈V. (4.3)

Setting v =
(

um+1

φm+1

)
in (4.3) and using the identity (a−b,a) = 1

2 (|a|2−|b|2 + |a−b|2),

we have ∥∥um+1
∥∥2

L2−‖um‖
2
L2 +

∥∥um+1−um
∥∥2

L2

+η(
∥∥φm+1

∥∥2

L2−‖φm‖
2
L2 +

∥∥φm+1−φm
∥∥2

L2)+2δaη(um+1,um+1)

= 2δ(Fm,um+1)≤2δ‖Fm‖V′
∥∥um+1

∥∥
V
.
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Hence, ∥∥um+1
∥∥2

L2−‖um‖
2
L2 +

∥∥um+1−um
∥∥2

L2

+η(
∥∥φm+1

∥∥2

L2−‖φm‖
2
L2 +

∥∥φm+1−φm
∥∥2

L2)+αηδ
∥∥um+1

∥∥2

V

≤2δC0

∥∥um+1
∥∥2

L2 +
δ

αη
‖Fm‖2V′ ,

where C0 is independent of δ, provided δ is small enough. Summing from m= 0 to
N−1, with T :=Nδ=N∆t, we have

∥∥uN∥∥2

L2 +
N−1∑
m=0

∥∥um+1−um
∥∥2

L2

+η
(∥∥φN∥∥2

L2 +
N−1∑
m=0

∥∥φm+1−φm
∥∥2

L2

)
+αηδ

N−1∑
m=0

∥∥um+1
∥∥2

V

≤2δC0

N−1∑
m=0

∥∥um+1
∥∥2

L2 +
δ

αη

N−1∑
m=0

‖Fm‖2V′+
∥∥u0

∥∥2

L2 +η
∥∥φ0

∥∥2

L2

≤2δC0

N−1∑
m=0

∥∥um+1
∥∥2

L2 +
∥∥u0

∥∥2

L2 +η
∥∥φ0

∥∥2

L2 +
δ

αη

∫ T

0

∥∥∥F̃ (s)
∥∥∥2

V′
ds.

Therefore, we have the following a priori estimates

N−1∑
m=0

∥∥um+1−um
∥∥2

L2×L2 ≤C

‖um‖L2×L2 ≤C for 1≤m≤N

δ

N−1∑
m=0

∥∥um+1
∥∥2

V
≤C,

where C is a constant independent of m and we have applied the discrete Gronwall
type inequality, which states that if yn≤A+Bδ

∑n−1
j=0 yj for 1≤n≤N and δ=T/N ,

then max1≤j≤N yj≤AeBT .
Furthermore, by using the inf-sup condition and (4.1), we have an estimate for

the pressure at each time step. For each pm+1, there exists a vm+1 such that

β
∥∥pm+1

∥∥
L2

∥∥vm+1
∥∥
W
≤ b(vm+1,pm+1)

≤|1
δ
<um+1−um,vm+1>+

η

δ
<φm+1−φm,ψm+1> |

+|aη(um+1,vm+1)|+ |<Fm,vm+1> |

≤2
∥∥1
δ

( um+1

η(φm+1)
)∥∥

L2×L2

∥∥vm+1
∥∥
L2×L2

+C
∥∥um+1

∥∥
W

∥∥vm+1
∥∥
W

+‖Fm‖W′

∥∥vm+1
∥∥
W
.

Hence, ∥∥pm+1
∥∥
L2 ≤Cη

(1
δ

∥∥∥∥( um+1

η(φm+1)

)∥∥∥∥
L2×L2

+
∥∥um+1

∥∥
W

+‖Fm‖W′

)
.

However, we note that the {pm} may not be uniformly bounded in L2 as δ→0.
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Next, we define two approximate solutions for u on [0,T ], T =Nδ:

u∗δ((m+1)δ) =um+1, u∗δ piecewise linear on [0,T ],

i.e., u∗δ is linear on (mδ,(m+1)δ], and

u∗∗δ ((m+1)δ) =um+1, u∗∗δ piecewise constant on [0,T ],

i.e., u∗∗δ is constant on (mδ,(m+1)δ], and one approximate solution for p:

p∗∗δ ((m+1)δ) =pm+1, p∗∗δ piecewise constant on [0,T ].

We may then rewrite (4.1) as,

〈( du∗δ
dt

η
dφ∗δ
dt

)
,v
〉

+aη(u∗∗δ ,v)+b(v,p∗∗δ ) = <Fm(t),v>

b(u∗δ ,q) = 0.

(4.4)

The a priori estimates we derived imply that

u∗δ ,u
∗∗
δ ∈L2(0,T ;V), u∗

′

δ ∈L2(0,T ;V′), and u∗δ ,u
∗∗
δ ∈L∞(0,T ;L2×L2) (4.5)

are uniformly bounded independent of δ. Therefore, we may extract a sub-sequence
(without changing the notation) such that

u∗δ
w−−−→
δ→0

u(1),u(1) and u∗∗δ
w−−−→
δ→0

u(2)

weakly in L2(0,T ;V),

u∗
′

δ
w−−−→
δ→0

w∗

weakly in L2(0,T ;V′) and

u∗δ
w∗−−−→
δ→0

u(1) and u∗∗δ
w∗−−−→
δ→0

u(2)

weak * in L∞(0,T ;L2×L2).
It is easy to see that u(1) =u(2) =u= (u,φ) (see (4.6)) and w∗=u′ which implies

that

u∈L2(0,T ;V), u′∈L2(0,T ;V′).

We also have Fδ(t)→ F̃ (t) in L2(0,T ;V′), where

Fδ(t) =
1
δ

∫ (m+1)δ

mδ

F̃ (s)ds with t∈ [mδ,(m+1)δ].

Now we derive the uniform a priori estimates on the pressure by utilizing the
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approximation equation and the a priori estimate for u∗ and u∗∗. Indeed,

‖p∗∗δ ‖H−1(0,T ;L2)

= sup
ζ∈H1

0 (0,T ),‖ζ‖H1=1

< sup
q∈L2,‖q‖L2=1

(p∗∗δ (t),q),ζ(t)>H−1,H1
0

≤C sup
ζ∈H1

0 (0,T ),‖ζ‖H1=1

< sup
v∈Hc,0,‖v‖H1=1

(p∗∗δ (t),∇·v),ζ(t)>H−1,H1
0

=C sup
ζ∈H1

0 (0,T ),‖ζ‖H1=1

< sup
v∈W,‖v‖W=1

−b(p∗∗δ (t),v) ,ζ(t)>H−1,H1
0

=C sup
ζ∈H1

0 (0,T ),‖ζ‖H1=1

〈
sup

v∈W,‖v‖W=1

(〈( du∗δ
dt

η
dφ∗δ
dt

)
,v
〉

+aη(u∗∗δ ,v)+<Fm,v>
)
,ζ(t)

〉
H−1,H1

0

≤C sup
ζ∈H1

0 (0,T ),‖ζ‖H1=1

(〈
sup

v∈W,‖v‖W=1

−
〈( u∗δ
ηφ∗δ

)
,v
〉
,ζ ′(t)

〉
+
〈

sup
v∈W,‖v‖W=1

aη(u∗∗δ ,v),ζ(t)
〉

+
〈

sup
v∈W,‖v‖W=1

〈Fm,v〉,ζ(t)
〉)

≤C
(∥∥ sup

v∈W,‖v‖W=1

〈( u∗δ
ηφ∗δ

)
,v
〉∥∥

L2(0,T )

+
∥∥ sup

v∈W,‖v‖W=1

aη(u∗∗δ ,v)
∥∥
L2(0,T )

+
∥∥ sup

v∈W,‖v‖W=1

<Fm,v>
∥∥
L2(0,T )

)
≤C

(
‖u∗δ‖L2(0,T ;L2×L2) +‖u∗∗δ ‖L2(0,T ;W) +‖Fδ‖L2(0,T ;W′)

)
≤C,

where, in the second step, we have used the fact that the divergence operator is an
isomorphism from V⊥ in Hc,0 to L2, which is equivalent to the inf-sup condition
proven in Lemma 3.1; see [22, Lem. 4.1, pp. 58]. Here, V⊥ denotes the orthogonal
complement of V in Hc,0 with respect to the inner product (∇·,∇·). The isomorphism
gives that ‖∇·v‖L2 ≥β‖v‖H1 for all v∈V⊥. Thus, the ball {q :‖q‖L2 ≤1} is a subset
of {∇·v :‖v‖H1 ≤1/β}.

The uniform bound on {p∗∗δ } in the Hilbert space H−1(0,T ;L2) implies that we
can extract a subsequence (without changing the notation) such that

p∗∗δ
w−−−→
δ→0

p

weakly in H−1(0,T ;L2).
Next, we pass the limit in (4.4). For this purpose, let ζ ∈C1([0,T ]) with ζ(T ) = 0

and v∈W. We have∫ T

0

(〈
−
( u∗δ
ηφ∗δ

)
,vζ ′(t)

〉
+aη(u∗∗δ (t),v)ζ(t)+b(vζ(t),p∗∗δ )

)
dt

=
〈( u0

ηφ0

)
,v
〉
ζ(0)+

∫ T

0

〈Fδ(t),v〉ζ(t)dt.

Letting δ→0 and utilizing the convergence of u∗δ ,u
∗∗
δ , p∗∗δ , and Fδ, we have∫ T

0

(〈
−
( u
ηφ

)
,vζ ′(t)

〉
+aη(u,vζ(t))+b(vζ(t),p)

)
dt

=
〈( u0

ηφ0

)
,v
〉
ζ(0)+

∫ T

0

〈F (t),v〉ζ(t)dt
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which formally leads to the weak formulation (2.15) with the desired initial condition.
In the case of v∈V, we recover the weak formulation (2.16). 6

Thus, we have proven (2.16) and established the existence of the solution of u.
Uniqueness of the solution (the velocity and hydraulic head) is straightforward due
to the quasi-coercivity and the Gronwall inequality.

We may improve the weak convergence of the approximate solutions to strong
convergence by invoking a compactness theorem due to Témam [24, Thm. 13.3]
that states the following. Let X and Y denote two (not necessarily reflexive) Ba-
nach spaces with Y ⊂X, the injection being compact. Suppose G is a set of func-
tions in L1(R;Y )∩Lp(R;X), p>1, with G being bounded in Lp(R;X) and L1(R;Y );∫ +∞
−∞ ‖g(a+s)−g(s)‖pX ds→0 as a→0 uniformly for g∈G; and the support of

the functions g∈G is included in a fixed compact set of R, say [−L,+L]. Then,
the set G is relatively compact in Lp(R;X).

For the application we consider, we set X=L2×L2, Y =V and p= 2. We take
{u∗δ} as G. We extend {u∗δ} by zero from the interval [0,T ] to the real line R. Their
boundedness in L1(R;V) and L2(R;L2×L2) is already shown by (4.5). It remains to
show that ∫ +∞

−∞
‖u∗δ(a+s)−u∗δ(s)‖

2
L2×L2 ds→0 as a→0

uniformly for all δ. Without loss of generality, we assume a>0. Then,∫ +∞

−∞
‖u∗δ(a+s)−u∗δ(s)‖

2
L2×L2 ds

=
∫ T−a

0

‖u∗δ(a+s)−u∗δ(s)‖
2
L2×L2 ds+

∫ a

0

‖u∗δ(s)‖
2
L2×L2 ds

+
∫ T

T−a
‖u∗δ(s)‖

2
L2×L2 ds

≤2a‖u∗δ‖
2
L∞(0,T ;L2×L2) +

∫ T−a

0

‖u∗δ(a+s)−u∗δ(s)‖
2
L2×L2 ds.

We are thus done with the proof of the strong convergence of {u∗δ} in L2(0,T ;L2×L2)
if we can show that the last integral goes to 0 as a→0. For this purpose, we integrate
(4.3) in time from s to a+s to yield〈( u∗δ(a+s)−u∗δ(s)

η(φ∗δ(a+s)−φ∗δ(s))
)
,v
〉

=
∫ a+s

s

<Fδ(t),v>−aη(u∗∗δ (t),v)dt.

Due to the continuity of aη(·,·) and the Hölder’s inequality, we know∫ a+s

s

|aη(u∗∗δ (t),v)|dt≤Cη
∫ a+s

s

‖u∗∗δ (t)‖V‖v‖V dt

≤Cη
(∫ a+s

s

‖u∗∗δ (t)‖2V dt
)1/2(∫ a+s

s

‖v‖2V dt
)1/2

≤Cηa1/2‖v‖V‖u
∗∗
δ ‖L2(0,T ;V) .

6To show that the above duality is equivalent to (2.16) with the proper initial condition, we
actually need to justify the integration by parts (or the Green’s formula) we have used and to show
the continuity of the solution u with value in L2×L2. This requires the estimation of ‖ut‖L2(0,T ;V′)
which is derived earlier; see [23, 15] for a very similar context.
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Likewise, we have∫ a+s

s

|<Fδ(t),v> |dt≤Ca1/2‖v‖V‖Fδ‖L2(0,T ;V′) .

Now we can set v =u∗δ(a+s)−u∗δ(s) in the time integration of (4.3), to deduce that7

∫ T−a

0

‖u∗δ(a+s)−u∗δ(s)‖
2
L2×L2 ds

≤Cηa1/2
(
‖u∗∗δ ‖L2(0,T ;V) +‖Fδ‖L2(0,T ;V′)

)∫ T−a

0

‖u∗δ(a+s)−u∗δ(s)‖V ds

≤Cηa1/2‖u∗δ‖L1(0,T ;V)≤Cηa
1/2‖u∗δ‖L2(0,T ;V)≤Cηa

1/2.

For the strong convergence of u∗∗δ to u, we look at the difference between u∗δ and
u∗∗δ :

‖u∗δ−u∗∗δ ‖
2
L2(0,T ;L2(Ωc)×L2(Ωm)) =

N−1∑
m=0

∫ (m+1)δ

mδ

‖u∗δ−u∗∗δ ‖
2
L2×L2 dt

=
N−1∑
m=0

∫ δ

0

∥∥∥∥um+1
δ −umδ

δ

∥∥∥∥2

L2×L2

t2dt

=
N−1∑
m=0

∥∥um+1
δ −umδ

∥∥2

L2×L2

∫ δ

0

(
t

δ

)2

dt≤Cδ.

(4.6)

strongly in L2(0,T ;L2(Ωc)×L2(Ωm)). To summarize, we have the following result.

Theorem 4.1. The weak formulation of the coupled Stokes-Darcy system with
Beavers-Joseph interfacial boundary condition (2.16) is well-posed under the assump-
tion of isotropic (but not necessarily homogeneous) hydraulic conductivity. Moreover,
the solution to the backward Euler scheme (4.1) converges to the solution of the con-
tinuous system (2.16) as the time step δ approaches zero, i.e., u∗δ and u∗∗δ converge
to u in L2(0,T ;L2(Ωc)×L2(Ωm)) as the time step δ approaches zero.

Proof. We have already shown the existence and the convergence of the numerical
solution to a solution to the continuous-in-time system. We only need to show the
continuous dependence on the initial data and forcing term F .

Let u=u1−u2, where u1 and u2 are two solutions to the weak formulation (2.16)
with initial data u01 and u02 and forcing term F̃1 and F̃2, respectively. Then, u
satisfies (2.16) with initial data u0 =u01−u02 and forcing term F̃ = F̃1− F̃2. Formally
setting v to u in (2.16) and utilizing the G̊arding type estimate (4.2) we have

1
2
d‖u‖2L2

dt
+
η

2
d‖φ‖2L2

dt
+αη ‖u‖2V−C0‖u‖2L2×L2 ≤‖F‖V′ ‖u‖V ,

which leads to continuous dependence of the solution (in particular uniqueness) on the
initial data and external forcing term after we apply the Cauchy-Schwarz inequality,
the Poincaré inequality, and the Gronwall inequality.

The semi-discrete scheme that we used in our existence analysis can be further
discretized in space if we are interested in a fully discrete numerical scheme. Indeed,

7The C’s and Cη ’s may denote different constants from inequality to inequality.



Y. CAO, M. GUNZBURGER, F. HUA AND X. WANG 21

at each time step we also know the convergence of spatially discretized solution of
(4.1) according to the finite element analysis conducted in section 3. Although the
stationary problem and the backward Euler discretization are slightly different, the
same analysis given in that section carries over if we just take aδ,η(·,·) as a(·, ·). Then,
we have solutions to the spatially and temporally discretized problem. They actually
converge to the solution of the continuous problem as h and δ are reduced. To show
this, for a fixed N , we denote the piecewise constant interpolation of solutions of the
fully discretized problem by u∗∗h,δ, i.e.,

u∗∗h,δ(t) =um+1
h,δ for t∈ (mδ,(m+1)δ],

where um+1
h,δ is the solution of the following fully discretized problem with mesh size

h,

1
δ

〈( um+1
h,δ −umh,δ

η(φm+1
h,δ −φmh,δ)

)
,vh
〉

+aη(um+1
h,δ ,vh)

+b(vh,p
m+1
h,δ ) = <Fm,vh> ∀vh∈Wh

b(um+1
h,δ ,qh) = 0 ∀q∈Qh.

We know that um+1
h,δ → ûm+1

δ strongly in W as h→0, where ûm+1
δ is the exact solution

of the above problem for a given umh,δ. We denote ‖um+1
h,δ − ûm+1

δ ‖W by τm+1 and
‖um+1

h,δ −um+1
δ ‖W by εm+1. Then, by the stability of problem (4.1), we know that

εm+1 =‖um+1
h,δ −um+1

δ ‖W

≤‖um+1
h,δ − ûm+1

δ ‖W +‖ûm+1
δ −um+1

δ ‖W≤ τm+1 +Cεm+1,
(4.7)

where C is independent of m. Then, the error between the fully discretized approxi-
mate solution and the temporally discretized approximate solution is given by

∥∥u∗∗h,δ−u∗∗δ
∥∥2

L2(0,T ;W)
=
N−1∑
m=0

∫ δ

0

(εm+1)2dt≤T (sup
m
εm+1)2. (4.8)

Now, for a fixed N , we simply denote supm τm+1 by τ . By induction on (4.7), the
error at time (m+1)δ will have the following upper bound:

εm+1≤ τ
m∑
i=0

Ci ∀m.

Then, supmεm+1≤ τ
∑N−1
i=0 Ci→0 as τ→0, i.e., ‖u∗∗h,δ−u∗∗δ ‖2L2(0,T ;W)→0 as h→0

by estimate (4.8). To summarize, we have the following result.

Theorem 4.2. The fully discretized solutions u∗∗h,δ converge to u weakly in
L2(0,T ;W) and strongly in L2(0,T ;L2×L2) as h→0 and δ→0, with the limits taken
in that order. More precisely, we have

lim
δ→0

lim
h→0

u∗∗h,δ =u. (4.9)
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Similarly, we have the weak convergence of the pressure in H−1(0,T ;L2). The
convergence we have shown here is not associated with any rate. In [12], the con-
vergence rates of finite element approximations to the time-dependent Stokes-Darcy
problem are discussed.

We also point out that in the case for which the bilinear term aη is coercive (such
as is the case for sufficiently small α in the Beavers-Joseph condition; see section
3) and the external forcing term is time-independent, all time-dependent solutions
converge to the unique time-independent solution as time goes to infinity.

Appendix A. Equivalence. We briefly show the equivalence between the so-
lution to the classical formulation (2.2)–(2.8) and the solution to weak formulation
(2.14), provided that the latter is sufficiently smooth. In the following argument, we
follow the notational convention introduced earlier and assume that u= (u,φ), where
u∈Hc,f , v = (v,ψ)∈W, and p∈Q.

First, we investigate the time-dependent Navier-Stokes equations with gravita-
tional forcing:

ut+(u ·∇)u=∇(−pI+2νD(u))−gk.

This implies that

∫
Ωc

(ut+(u ·∇)u) ·vdΩc=
∫

Ωc

(∇(−pI+2νD(u))−gk) ·vdΩc

for all v = (v,ψ)∈W. Integrating by parts, we have:

R.H.S. =
∫
∂Ωc

[(−pI+2νD(u))n] ·vdΓc

−
∫

Ωc

(−pI+2νD(u)) :∇vdΩc−
∫

Ωc

gk ·vdΩc

=
∫

Γcm

[(−pI+2νD(u))n] ·vdΓcm−
∫

Ωc

(−pI+2νD(u)) :∇vdΩc

−
∫

Ωc

gk ·vdΩc

=
∫

Ωc

p∇·vdΩc−
∫

Ωc

2νD(u) :D(v)dΩc−
∫

Ωc

gk ·vdΩc

+
∫

Γcm

(nT (−pI+2νD(u))n)v ·ndΓcm

+
∫

Γcm

Pτ ((−pI+2νD(u))n) ·Pτ (v)dΓcm

=
∫

Ωc

p∇·vdΩc−
∫

Ωc

2νD(u) :D(v)dΩc−
∫

Ωc

gk ·vdΩc

+
∫

Γcm

(nT (−pI+2νD(u))n)v ·ndΓcm

+
∫

Γcm

Pτ ((−pI+2νD(u))n) ·vdΓcm.
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Substituting this into the interface condition, we arrive at∫
Ωc

(ut+(u ·∇)u) ·vdΩc=
∫

Ωc

p∇·vdΩc−
∫

Ωc

2νD(u) :D(v)dΩc

−
∫

Ωc

gk ·vdΩc−
∫

Γcm

g(φ−z)v ·ndΓcm

−
∫

Γcm

να
√

3√
trace(Π)

Pτ (u+K∇φ) ·vdΓcm.

Next, we write down the variational form for the Darcy equation (divided by S
and multiplied by the rescaling parameter η):

η

S

∫
Ωm

(φt+∇·(−K∇φ))ψdΩm

=
∫

Ωm

ηφtψdΩm+
η

S

∫
∂Ωm

(−K∇φ) ·nψdΓm+
η

S

∫
Ωm

(K∇φ) ·∇ψdΩm

=
∫

Ωm

ηφtψdΩm+
η

S

∫
Γcm

(−K∇φ) ·nψdΓcm+
η

S

∫
Ωm

(K∇φ) ·∇ψdΩm

=
∫

Ωm

ηφtψdΩm−
η

S

∫
Γcm

u ·ncmψdΓcm+
η

S

∫
Ωm

(K∇φ) ·∇ψdΩm,

where n=−ncm.
Now, summing up the above variational forms, dropping the non-linear term,

using the bilinear forms, linear functional, and the dual defined in section 2, and
including the div-free condition, we arrive at the weak formulation (2.14), i.e.,{

〈ut,v〉η+aη(u,v)+b(v,p) = 〈F,v〉
b(u,q) = 0.

Thus, we have shown that a solution to problem (2.2)–(2.8) is a solution to (2.14).
Next, we want to show that the solution to the weak formulation defined above is a
solution to problem (2.2)–(2.8), provided the weak solution is smooth enough. In
fact, we just need to reverse the above argument. Following the classical argument,
by setting v =0 in the test function and letting ψ∈Hp be arbitrary, we can show that
the equality (2.2) and the first condition in interface condition (2.8) hold in the proper
sense. By setting ψ= 0 in the test function v and letting v∈Hc,0 be arbitrary, we
have that equality (2.5) and the the other two conditions in (2.8) hold in the proper
sense as well.

Appendix B. Finite element approximations. In this subsection, we con-
tinue the discussion of section 3 and give an error bound for finite element approxi-
mations. Following the notations and spaces defined in section 3, we know that the
div-stability condition guarantees that Vh

f is not empty. We choose such a uh0 in Vh
f

and solve the problem: find zh in Vh such that

a(zh,vh) = 〈l,vh〉−a(uh0 ,v
h) ∀vh∈Vh.

By the Lax-Milgram theorem, this problem has a unique solution zh; then, uh :=
uh0 +zh, is the solution to the discrete problem.
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Now, for all wh∈Vh
f , let vh :=uh−wh∈Vh; then8

a(vh,vh) = 〈l,vh〉−a(wh,vh) =a(u,vh)+b(vh,p)−a(wh,vh)
=a(u−wh,vh)+b(vh,p−qh)
≤‖a‖‖u−wh‖W‖vh‖W +‖b‖‖vh‖W‖p−qh‖L2 ∀qh∈Qh.

By coercivity, we have

‖vh‖W≤
1
α

(
‖a‖‖u−wh‖W +‖b‖‖p−qh‖L2

)
.

Therefore, since
∥∥u−uh

∥∥≤∥∥u−wh
∥∥+
∥∥wh−uh

∥∥,

‖u−uh‖W≤
1
α

(
(1+‖a‖)‖u−wh‖W +‖b‖‖p−qh‖L2

)
∀wh∈Vh

f , q
h∈Qh.

Furthermore, div-stability gives the following bound:

inf
wh∈Vh

f

‖u−wh‖W≤
(

1+
‖b‖
β

)
inf

vh∈Wh
‖u−vh‖W.

Thus, we arrive at the following estimate:

‖u−uh‖W<C
(

inf
vh∈Wh

‖u−vh‖W + inf
qh∈Qh

‖p−qh‖L2

)
.

It remains to estimate ‖p−ph‖L2 . First, we have

b(vh,ph−qh) = b(vh,ph)−b(vh,qh) =<l,vh>−a(uh,vh)−b(vh,qh)
=a(u,vh)+b(vh,p)−a(uh,vh)−b(vh,qh)
=a(u−uh,vh)+b(vh,p−qh) ∀vh∈Wh, qh∈Qh.

Then, by div-stability, we have

‖ph−qh‖L2 ≤ 1
β

sup
vh∈Wh

1
‖vh‖W

(
a(u−uh,vh)+b(vh,p−qh)

)
≤ 1
β

(
‖a‖‖u−uh‖W +‖b‖‖p−qh‖L2

)
∀qh∈Qh.

Thus, by the triangle inequality
∥∥p−ph∥∥

L2 ≤
∥∥p−qh∥∥

L2 +
∥∥ph−qh∥∥

L2 , we have

‖p−ph‖L2 ≤ 1
β

(
‖a‖‖u−uh‖W +(β+‖b‖) inf

qh∈Qh
‖p−qh‖L2

)
.
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