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The paper aims to study a plane system with bars, with certain symmetries. Such
problems can be encountered frequently in industry and civil engineering. Con-
siderations related to the economy of the design process, constructive simplicity,
cost and logistics make the use of identical parts a frequent procedure. The paper
aims to determine the properties of the eigenvalues and eigenmodes for trans-
verse and torsional vibrations of a mechanical system where two of the three
component bars are identical. The determination of these properties allows the
calculus effort and the computation time and thus increases the accuracy of the
results in such matters. © 2017 Author(s). All article content, except where oth-
erwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). [http://dx.doi.org/10.1063/1.4985271]

I. INTRODUCTION

Symmetries appearing in engineering systems can lead, in some cases, to the simplification of the
dynamic analysis made for these structures. The consequence would be shortening the design time
and lowering the costs. The information provided by a repetitive structure can help the computational
effort. The static analysis for such a system is presented in strength of the material. In dynamic case,
in which the elastic elements lead to vibrations, some properties have been observed for a long time1

(Meirovitch) but a systematic study of the problem has not yet been made. Particular cases have been
studied in Refs. 2–6. In the following we will study a mechanical system composed of 3 bars of which
two are identical, situated in a plane. It will study the transverse out of plane and torsional vibrations
of such a system that is strongly coupled.

II. DESCRIPTION OF THE SYSTEM

The mechanical system considered (Fig. 1), is made of two identical cantilever beams AC and
BC which are rigidly connected, perpendicular (egg, by welding in a system engineering) with a third
cantilever beam CD (with constant cross section too). The three beams which are found in a plane can
have transversal vibrations in a perpendicular direction on the plane ABD and torsional vibrations.
The endpoints A and B are free: it results that the bending moment, the torque and the shear force
are null in these two points (6 boundary conditions). The endpoint D of the beam CD is clamped; it
results that the deflection, the tangent slope and the torsion angle are null (three conditions).

For the intermediary point C the deflections of the C point of the three beams are equal (two
conditions). The torsion angle of the beam DC in C is equal with the tangent slope of the beam AC and
BC in C (two conditions). The torsion angle of the beams AC and BC in C are equal with the tangent
slope of the beam DC in C (two boundary conditions). If we consider the balance of an infinitesimal
element surrounding the point C, the shearing forces in the two identical beams, together, must be
equal with the shearing force in the beam CD. A similar relationship is obtained for the equilibrium
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FIG. 1. The sketch of the mechanical system.

of the moments. The bending moments appearing in the beams AC and BC in the point C must be
equal with the torque of the beam CD in C and the torques appearing in the beams AC and BC in C
must be equal with the bending moment in C for the beam CD. These considerations will define the
last three boundary conditions. Finally we have 18 boundary conditions that offer us 18 integration
constants.

III. MOTION EQUATIONS OF THE TRANSVERSE AND TORSIONAL VIBRATIONS

For a continuous beam with constant cross section, the vibrations of the system are described,
in the absence of distributed loads along the bar, by the classical equations (i.e. References 7–9)

∂4v

∂x4
+
ρA
EIz

∂2v

∂t2
= 0. (1)

In relation (1) we use the following notations: v is the beam deflection, x is the ordinate of the point
with the deflection v, ρ represents the density of the beam material, A - the cross section, E is Young’s
modulus, Iz is the second moment of the area with respect to the z axis.

According to the classical procedure for solving differential equations10,11 we are looking for a
solution in the form:

v (x, t)=Φ (x) sin(pt + θ). (2)

Putting relation (2) to verify (1) at any moment, we get:

∂4Φ

∂x2
− p2 ρA

EIz
Φ= 0. (3)

If we denote with:

λ4 =
ρA
EIz

, (4)

(1) becomes:

∂4Φ

∂x4
− p2λ4Φ= 0, (5)

where Φ represents the function that offers the deformed beam (eigenmode) that will vibrate with
the eigenvalue p. Using the rel. (5) for the cantilever beams AC, BC, CD we obtain:

For the beam AC :
∂4ΦAC

∂x4
−
ρ1A1

E1Iz1
p2ΦAC = 0. (6)

For the beam BC :
∂4ΦBC

∂x4
−
ρ1A1

E1Iz1
p2ΦBC = 0. (7)

For the beam CD :
∂4ΦCD

∂x4
−
ρ2A2

E2Iz2
p2ΦCD = 0. (8)

The index 1 refers to the beams AC and BC and the index 2 to the beam CD. We denote:

ρ1A1

E1Iz1
= λ4

1;
ρ2A2

E2Iz2
= λ4

2. (9)
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The solutions of the differential equations (6), (7) and (8) will be:

ΦAC (x)=CAC
1 sinλ1

√
px + CAC

2 cosλ1
√

px + CAC
3 shλ1

√
px + CAC

4 chλ1
√

px; (10)

ΦBC (x)=CBC
1 sinλ1

√
px + CBC

2 cosλ1
√

px + CBC
3 shλ1

√
px + CBC

4 chλ1
√

px; (11)

ΦCD (x)=CCD
1 sinλ2

√
px + CCD

2 cosλ2
√

px + CCD
3 shλ2

√
px + CCD

4 chλ2
√

px. (12)

For the torsional vibrations the equation describing the vibration of the x section is:

∂2ϕ

∂x2
−

J
GIp

∂2ϕ

∂t2
= 0, (13)

where: ϕ – angle of torsion of the section, x is the ordinate of the point with the torsion ϕ, J = ρIp,
ρ represents the density of the beam material, Ip - the polar second moment of the area, G is shear’s
modulus.

We consider the solution ϕ under the form:

ϕ (x, t)=ψ (x) sin(pt + θ). (14)

Introducing in (13) we obtain:

∂2ψ

∂x2
+ p2δ2ψ = 0, (15)

where: δ2 = J
GIp

.
In our case we are dealing with three bars, so we get three differential equations, written for the

three parts, AC, BC, and CD. We have:
For the beam AC:

∂2ψAC

∂x2
+ p2δ2

1ψAC = 0. (16)

For the beam BC:

∂2ψBC

∂x2
+ p2δ2

1ψBC = 0. (17)

For the beam CD:

∂2ψCD

∂x2
+ p2δ2

2ψCD = 0. (18)

The solutions of the differential equations (16), (17) and (18) are:

ψAC (x)=DAC
1 sinδ1px + DAC

2 cosδ1px; (19)

ψBC (x)=DBC
1 sinδ1px + DBC

2 cosδ1px; (20)

ψCD (x)=DCD
1 sinδ2px + DCD

2 cosδ2px. (21)

The free vibrations of the mechanical system are obtained using the equations (10), (11), (12), (19),
(20), (21). We have 18 unknowns, the integration constants.

If we denote by Mb the bending moment of a beam in the section x, T the shear force and M t

the torque, the boundary conditions can be written:

a) For the beam AC the endpoint A is free, it results: Mb
AC (0, t)= 0 ; TAC (0, t)= 0; M t

AC (0, t)= 0;
b) For the beam BC the endpoint B is free, it results: Mb

BC (0, t)= 0 ; TBC (0, t)= 0; M t
AC (0, t)= 0;

c) For the beam CD the endpoint D is clamped, it results: vCD(l2, t) = 0; v′CD(l2, t) = 0;
ϕ(l2, t) = 0.
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Totally we have 9 boundary conditions. In the following we will express in an analytical form
these relations. The bending moment, the shear force and the torque can be expressed using the
relations:7,12–14

Mb (x)=−EIz
∂2v (x)

∂x2
; T (x)=EIz

∂3v (x)

∂x3
; M t (x)=GIp

∂ϕ (x)
∂x

. (22)

By differentiation it obtains (for the beam AC):

∂2v (x)

∂x2
=Φ′′AC(x) sin (pt + θ)=

=
(
λ1
√

p
)2

[
−CAC

1 sinλ1
√

px − CAC
2 cosλ1

√
px + CAC

3 shλ1
√

px + CAC
4 chλ1

√
px
]

sin (pt + θ) ;

(23)

∂3v (x)

∂x3
=Φ′′′AC (x) sin(pt + θ)=

=
(
λ1
√

p
)3

[
−CAC

1 cosλ1
√

px + CAC
2 sinλ1

√
px + CAC

3 chλ1
√

px + CAC
4 shλ1

√
px
]

sin (pt + θ) ;

(24)

∂ϕ (x)
∂x

=ψ ′AC sin (pt + θ)= δ1p
[
DAC

1 cosδ1px − DAC
2 sinδ1px

]
sin (pt + θ) , (25)

for the beam AC and similar relations for the beams BC and CD.
If we use the boundary conditions (23), (24) and (25) in (22) and, taking into account the 9

conditions a), b) and c) previously written, we obtain the relations:

−CAC
2 + CAC

4 = 0, (26)

−CAC
1 + CAC

3 = 0, (27)

DAC
1 = 0, (28)

−CBC
2 + CBC

4 = 0, (29)

−CBC
1 + CBC

3 = 0, (30)

DBC
1 = 0, (31)

CCD
1 sinλ2

√
pl2 + CCD

2 cosλ2
√

pl2 + CCD
3 shλ2

√
pl2 + CCD

4 chλ2
√

pl2 = 0, (32)

CCD
1 cosλ2

√
pl2 − CCD

2 sinλ2
√

pl2 + CCD
3 chλ2

√
pl2 + CCD

4 shλ2
√

pl2 = 0, (33)

DCD
1 sinδ2pl2 + DCD

2 cosδ2pl2 = 0. (34)

The continuity of the system in the point C leads to the following conditions: the deflections of the
three bars in the point C are equal: v AC (l1,t) = v BC (l1,t) = v CD (0,t) (two conditions), the tangent
slope in C of the bars AC and BC is equal with the torsion angle of the bar CD in C: v’ AC (l1,t)
= v’ BC (l1,t) = ϕ CD (0,t) (two conditions), the torsion angles of the bars AC and BC in C are equal
with the tangent slope of the bar CD in C: ϕ AC (l1,t) = ϕ BC (l1,t) = v’ CD (0,t) (two conditions).
These six conditions lead to the relations:

CAC
1 sinλ1

√
pl1 + CAC

2 cosλ1
√

pl1 + CAC
3 shλ1

√
pl1 + CAC

4 chλ1
√

pl1 =CCD
2 + CCD

4 , (35)

CBC
1 sinλ1

√
pl1 + CBC

2 cosλ1
√

pl1 + CBC
3 shλ1

√
pl1 + CBC

4 chλ1
√

pl1 =CCD
2 + CCD

4 , (36)
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λ1
√

p
(
CAC

1 sinλ1
√

pl1 − CAC
2 cosλ1

√
pl1 + CAC

3 shλ1
√

pl1 + CAC
4 chλ1

√
pl1

)
=DAC

2 , (37)

λ1
√

p
(
CBC

1 sinλ1
√

pl1 − CBC
2 cosλ1

√
pl1 + CBC

3 shλ1
√

pl1 + CBC
4 chλ1

√
pl1

)
=DAC

2 , (38)

DAC
1 sinδ1pl1 + DAC

2 cosδ1pl1 = λ2
√

p
(
CCD

1 + CCD
3

)
, (39)

DBC
1 sinδ1pl1 + DBC

2 cosδ1pl1 = λ2
√

p
(
CCD

1 + CCD
3

)
. (40)

To determine all 18 constants we need three more conditions. These are obtained by considering the
balance of an infinitesimal mass element around the point C.

We have: The sum of the shearing forces occurring in C for the beams AC and BC must be equal
to the shearing force in C corresponding to the beam CD:

T1 + T2 =T . (41)

The shear force in the section x, the bending moment and the torque are defined by rel. (22) and (24).
Replacing in (41) it is possible to obtain the condition for the balance of shear forces:

−
(
CAC

1 + CBC
1

)
cosλ1

√
pl1 +

(
CAC

2 + CBC
2

)
sinλ1

√
pl1 +

(
CAC

3 + CBC
3

)
chλ1

√
pl1 +

+
(
CAC

4 + CBC
4

)
shλ1

√
pl1 =

E2Ip2

E1Iz1

(
λ2

λ1

)3 (
CCD

1 + CCD
3

)
. (42)

With the notation:

a3 =
E2Ip2

E1Iz1

(
λ2

λ1

)3

,

it is possible to write:

−
(
CAC

1 + CBC
1

)
cosλ1

√
pl1 +

(
CAC

2 + CBC
2

)
sinλ1

√
pl1 +

(
CAC

3 + CBC
3

)
chλ1

√
pl1 +

+
(
CAC

4 + CBC
4

)
shλ1

√
pl1 = a3

(
CCD

1 + CCD
3

)
. (43)

Similarly, it is possible to write the balance of the moments:

Mb1 + Mb2 =M t ; (44)

M t1 + M t2 =Mb. (45)

The bending moment and the torque in the section x are obtained by considering relations (22), (23)
and (25). Replacing (22) in (44) and (45) it is possible to obtain the balance of the moments:

E1Iz1
∂2ΦAC (l1)

∂x2
+ E1Iz1

∂2ΦBC (l1)

∂x2
=G2Ip2

∂ϕ (x)
∂x

; (46)

G1Ip1
∂ϕ (x)
∂x

+ G1Ip1
∂ϕ (x)
∂x

=E2Iz2
∂2ΦCD (0)

∂x2
. (47)

Using rel. (23) and (25) the balance of the moment’s equation (46) and (47) leads to:

−
(
CAC

1 + CBC
1

)
sinλ1

√
pl1 +

(
CAC

2 + CBC
2

)
cosλ1

√
pl1 +

(
CAC

3 + CBC
3

)
shλ1

√
pl1 +

+
(
CAC

4 + CBC
4

)
chλ1

√
pl1 =

G2Ip2

E1Iz1

(
1
λ1

)2

δ1

(
−DAC

1

)
; (48)

DAC
1 + DBC

1 =
(λ2)
δ1

2 (
−CCD

2 + CCD
4

)
. (49)

If we denote: a2 =
G2Ip2

E1Iz1

(
1
λ1

)2
δ1 and a1 =

λ2
2

δ1
rel. (48) and (49) become:

−
(
CAC

1 + CBC
1

)
sinλ1

√
pl1 +

(
CAC

2 + CBC
2

)
cosλ1

√
pl1 +

(
CAC

3 + CBC
3

)
shλ1

√
pl1 +

+
(
CAC

4 + CBC
4

)
chλ1

√
pl1 = a2

(
−DAC

1

)
; (50)
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DAC
1 + DBC

1 = a1

(
−CCD

2 + CCD
4

)
. (51)

To determine the integration constants that obey the boundary conditions it is necessary to solve the
linear homogeneous system (26)–(40), (43), (48), (49) in order to determine the constants CAB

1 , CAB
2 ,

CAB
3 , CAB

4 , CAC
1 , CAC

2 , CAC
3 , CAC

4 , CCD
1 , CCD

2 , CCD
3 , CCD

4 , DAB
1 , DAB

2 , DBC
1 , DBC

2 , DCD
1 , DCD

2 .
We denote:

{C} =



CAC

CBC

CCD



=

=
[

CAB
1 CAB

2 CAB
3 CAB

4 DAB
1 DAB

2 CAC
1 CAC

2 CAC
3 CAC

4 DBC
1 DBC

2 CCD
1 CCD

2 CCD
3 CCD

4 DCD
1 DCD

1

]T
.

To have a no null solution the determinant of the system must be null. This condition offers us first
the eigenfrequencies and, using these, it is possible to obtain the constants defining the eigenmodes
of vibration. If we denote:

A11 =



0 −1 0 1 0 0
−1 0 1 0 0 0
0 0 0 0 1 0

sinλ1
√

pl1 cosλ1
√

pl1 shλ1
√

pl1 chλ1
√

pl1 0 0
cosλ1

√
pl1 −sinλ1

√
pl1 chλ1

√
pl1 shλ1

√
pl1 0 0

0 0 0 0 sinδ1pl1 cosδ1pl1



; (52)

A13 =



0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

0 −1 0 −1 0 0
0 0 0 0 0 1

λ1
√

p

λ2
√

p 0 λ2
√

p 0 0 0



; (53)

A31 =



−cosλ1
√

pl1 sinλ1
√

pl1 chλ1
√

pl1 shλ1
√

pl1 0 0
−sinλ1

√
pl1 cosλ1

√
pl1 shλ1

√
pl1 chλ1

√
pl1 0 0

0 0 0 0 1 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0



; (54)

A33 =



−a3 0 −a3

0 0 0
0 a1 0

0 0 0
0 az 0
−a1 0 0

sinλ2
√

pl2 cosλ2
√

pl2 shλ2
√

pl2 chλ2
√

pl2 0 0
cosλ2

√
pl2 −sinλ2

√
pl2 chλ2

√
pl2 shλ2

√
pl2 0 0

0 0 0 0 sinδ2pl2 cosδ2pl2



. (55)

The matrix of the whole system is:

S18×18 =



A11 0 A13

0 A11 A13

A31 A31 A33


, (56)

and (26)–(40), (43), (48), (49) becomes:

[S] {C} = {0} . (57)
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The condition:
det (S)= 0 (58)

offers the eigenvalues of the differential system (26)–(40), (43), (48), (49).

IV. EIGENVALUES

In the following we will present a property of the eigenvalues of such a system. Consider only
one of the beams AC (or BC), free at the end A (or B) and clamped in the end C. The transverse
vibrations of this are described by relation (1), written under the form:

∂4v

∂x4
+
ρ1A1

E1Iz1

∂2v

∂t2
= 0 (59)

If we choose for v the function:
v(x, t)=Φ (x) sin(pt + θ) (60)

then by introducing it in (59) we obtain:

∂4Φ

∂x4
− p2 ρ1A1

E1Iz1
Φ= 0 ; λ4

1 =
ρ1A1

E1Iz1
, (61)

with the solution:

ΦAC (x)=CAC
1 sinλ1

√
px + CAC

2 cosλ1
√

px + CAC
3 shλ1

√
px + CAC

4 chλ1
√

px (62)

Considering the torsional vibrations, the equation describing the vibration of the x section of the bar
is (13):

∂2ϕ

∂x2
−

J
GIp

∂2ϕ

∂t2
= 0 (63)

Choosing the solution ϕ under the form:

ϕ (x, t)= ϕoψ (x) sin(pt + θ) (64)

and introducing it in (63) it obtains:

∂2ψ

∂x2
+ p2δ2Φ= 0 (65)

The solution of the differential equation (65) will be:

ψAC (x)=DAC
1 sinδ1px + DAC

2 cosδ1px (66)

The end point A is free while the end C is clamped. From these conditions it results: Mb
AC (0, t)= 0

TAC(0, t) = 0 M t
AC (0, t)= 0; vAC(l1, t) = 0; v′AC(l1, t) = 0; ϕ(l1,t) = 0.

Using these boundary conditions in (62) and (66) the integration constants C1, C2, C3, C4, D1

and D2 are determined from the homogenous linear system:

[A11] {C} = 0 (67)

The condition det (A11) = 0 determine the eigenvalues of the AC (or BC). After some calculus it
results that:

cosλ1
√

pl1 chλ1
√

pl1 = 1 and tgλ1
√

pl1 = 1 (68)

from where it is possible to obtain the eigenvalues of a single bar AC or BC, clamped in C and free
in A (or B).

We will prove the following:

T1. The eigenvalues for the beam AC, clamped at the end C and free in A are eigenvalues
for the whole system too (represented in Fig. 1)

Proof: We must prove that det (A11)=0 implies det (S)=0. In paper15 the property is proved for
a more general case. It results that the property is valid for our case too.
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Hence, the eigenvalues for a single beam, clamped at one end and free in the other end are
eigenvalues for the whole system of beams, clamped in D and free in A and B.

V. EIGENVECTORS

If we calculated the eigenvalues of the matrix (56) then the eigenmodes can be obtained using
rel. (57) written in the form:

[s] {Φ} = {0}

We denoted with:

{Φ} =



Φs

Φd

Φm




the vector of integration constants obtained from the condition (24’), which provides finally the
eigenmode. The componentsΦs,Φd andΦm correspond to the beams AC, BC and CD. We can prove
the following two results:

T2. For the eigenvalues that are the same for the beam AC (or BC) (Fig. 2) and for the
whole system (Fig. 1) the eigenmodes have the form:

Φ =


−

Φ1
Φ1
0




(69)

(The existence of these eigenvalues is ensured by the theorem T1).

Proof: For the eigenvalues offered by relation (68) the following homogeneous system must be
solved:



A11 0 A13

0 A11 A13

A31 A31 A33






Φs

Φd

Φm



=




0
0
0




(70)

with

det A11 = 0 (71)

Condition (71) implies that a vectorΦs can be found such that:

A11Φs = 0 (72)

Rel. (70) becomes:

A13Φm = 0 (73)

A11Φd + A13Φm = 0 (74)

A31 (Φs +Φd) + A33Φm = 0 (75)

From (73), because det A13 , 0 it results that:

Φm = 0 (76)

and introducing it in (75) we will get Φs = �Φd . This relation verifies (74) too, using (72). If we
denoteΦs =Φ1 than it results (69).

FIG. 2. One single beam.
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T3. For the other eigenvalues, not covered by theorem T2, the form of the eigenmodes is:

Φ =



Φ1
Φ1
Φ3




(77)

Proof: For the other eigenvalues, introducing in rel. (70), with det A , 0 we obtain:

AΦs + BΦm = 0 (78)

AΦd + BΦm = 0 (79)

C (Φs +Φs) + DΦm = 0 (80)

Subtracting (78) from (79) we obtain:

A(Φs −Φm)= 0 (81)

If det A , 0, it results thatΦs �Φm = 0 and thereforeΦs =Φm =Φ1.

For the eigenvalues of the system which coincide with those of a single beam clamped at one
end and free at the other, the component of the eigenmodes corresponding to the two identical bars
vibrates in opposite phase and the third bar is not moving. For other eigenvalues the components of
the eigenmodes are identical.

VI. CONCLUSIONS

In many engineering applications the structural symmetry which exists in such mechanical sys-
tems can be used to facilitate the calculation of the eigenvalues and eigenvectors of these systems.
It is a step necessary in order to solve the system of differential equations that offers the dynamical
response of a linear system. The paper outlines the state of a mechanical structure consisting of
two identical cantilever beams rigidly connected by a third, with two free end and a clamped ends.
For such kind of structure we have demonstrated properties of the eigenvalues and eigenvectors that
allow ease and simplify the calculation of real structures. This allows shortening the time and cost
calculations.

1 L. Meirovitch, Principles and Techniques of Vibrations (Pearson, 1996).
2 D. Mangeron, I. Goia, and S. Vlase, Symmetrical Branched Systems Vibrations, Scientific Memoirs of the Romanian

Academy, Bucharest, Serie IV, Tom XII, Nr.1, pp. 232–236 (1991).
3 S. Vlase and A. Chiru, “Symmetry in the study of the vibration of some engineering mechanical systems,” in Proceedings

of the 3rd International Conference on Experiments/Process/System Modeling/Simulation/Optimization (3rd IC-EpsMsO),
Athens, Greece, 8–11 July (2009).

4 C. Z. Shi and R. G. Parker, “Modal structure of centrifugal pendulum vibration absorber systems with multiple cyclically
symmetric groups of absorbers,” Journal of Sound and Vibration 332(18), 4339–4353 (2013).

5 D. N. Paliwal and R. K. Pandey, “Free vibrations of circular cylindrical shell on Winkler and Pasternak foundations,”
International Journal of Pressure Vessels and Piping 69(1), 79–89 (1996).

6 Z. Celep, “On the axially symmetric vibration of thick circular plates,” Ingenieur-Archiv. 47(6), 411–420 (1978).
7 Gh. Buzdugan, L. Fetcu, and M. Rades, Mechanical vibrations Ed. Did. si Ped., Bucharest (1982).
8 Th. Douglas, Structural Dynamics and Vibrations in Practice: An Engineering Handbook (CRC Press, 2012).
9 P. S. Timoshenko and J. M. Gere, Theory of Elastic Stability, McGraw-Hill, New York, London, 2nd Edition (2009).

10 T. Myint-U, Ordinary Differential Equations (Elsevier, 1977).
11 R. Ellahi and A. Zeeshan, Analytical solutions for nonlinear partial Differential Equations, Academic Publishing GmbH

& Co. (2011).
12 K. Sharma and M. Marin, “Effect of distinct conductive and thermodynamic temperatures on the reflection of plane waves

in micropolar elastic half-space,” U.P.B. Sci. Bull., Series A-Appl. Math. Phys. 75(2), 121–132 (2013).
13 M. Marin, “Harmonic vibrations in thermoelasticity of microstretch materials,” ASME J. Vibr. Acoust. 132(4), 044501-1

–044501-6 (2010).
14 M. Marin, “A domain of influence theorem for microstretch elastic materials,” Nonlinear Analysis: RWA 11(5), 3446–3452

(2010).
15 S. Vlase and M. Paun, “Vibration analysis of a mechanical system consisting of two identical parts,” Ro. J. Techn. Sci.

- Appl. Mechanics 60(3), 216–230 (2015).

http://dx.doi.org/10.1016/j.jsv.2013.03.009
http://dx.doi.org/10.1016/0308-0161(95)00010-0
http://dx.doi.org/10.1007/bf00538361
http://dx.doi.org/10.1115/1.4000971
http://dx.doi.org/10.1016/j.nonrwa.2009.12.005

