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Introduction

In this Syrposium concerned with ship
structures many papers on gererzl applicetion of
finite element mcthods ere presented. To avoid
duplication of matter and discussion of well known
computational systcms attention will be focusscd here
on e special problem which has not beern dealt with
previously in the literature and which in some zspects
is relevant to shipbuilding problems. The range of
application of the methodoloéy presented is obviously
nuch wider and has repercussions ranging from
oscillations in rocket fuel systems through earth-
quake response of wator retaining structures to
electro magnetic vibration sitvations.

The problem of inconpressible motion of fluid
nasses and of coupling such effects to tne structural
vibration response has been dealt with in the Fianite

n some earltier publicationke)

(SN

Elenent text(l) and
An extension %o dealing with oscillations
of compressible fluids has been achieved more
recently{3)(h).
In this paper a2 review of this earlier work
is included in the context of solving tﬁe couplete
fluid-strﬁcture interaction problemn.
For incompressibic fluia problems the concept -
of an influence matrix wos infioduced by Zienkiewiczand

using ear electric analogue solution.




Alternative formulation of influence coefficients from

(7)

exact source solution has bteen employed recerntly

by Yugen et al.(s) coupliﬁg this with a finite element
structural matrix. Suck concepts are difficult to
utilise in compressible solutions and “iere & direct
finite elonent treatmeat of both the fluid and
structurcel continuum will be outlined.

A recent attempt to deal with the oscillation
of bcdies submerged in compressible fluid uses complex

(9) but

response functions for the fluid phase assumes
mode shape invariance.

The structure-discretisation

+3

he discretisation of the structural problemnm
by the finite element process into the (assembled)

stiffness equation systom

- o .. '
K]{e} + [C]{e} + MJ{&} = (R} (1)
] .
is well known and descrited in textg(‘)._ In ahove

[K] is the structural stiffness matrix, {&} arec the
nodal displacemcnts and {R} tike (gezerelised) nndecl
loads. Matrices [C] and [¥] are the corresponding
aunmpin:s and meass matrices of the st;ucture calculated
in .the proper, consistent, manner.

At this stage we need coﬁccrn oursclves

only with the interaction forces due to fluid pressure

¥Dots incdicate time diff:rertiation
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4 ete,
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P at the interfaces between the structure anrnd the fluid.

If the total generalised nodal forces are

divided into two parts

{R} = {(F} + (P} (2)
wvhere the first are due to external forces and the
latter due to the fluid pressure on interface, wve can
write consistently for a node 'i!

P, = I €, 'pds (3)

S
vhere Ni' is the appropriate shane function defining
the displacement pattern in direcction normal to the
boundary, p the pressure on interface C, and the

integration covers the whole interface using the

shape function approprizte to the subregion.

The Fluig_

3.1 Easic theory

If the flui¢ pressure p is ccusidered as the
excess over stated gravity pressure then the Zavier-Stokes
equation of fluid motion in Cartesian co-ordinates can

te written in the x direction as

du _ 1 3p du du du ]l u g2 T
- —_—= = 2 4 — S — = £V ~ H_ 9
ot c ox L}a" * Vay * by J o} b 3p 8x
3 v 3w |
Y& LAS 2 L
90X + Yy * 9z - (k)

with similar exrressicus for the other co~ordinate
direction. In slove u, v and v stand for Cartesien
velocity components and y and £ for viscosity and

density c¢f the fluid resrectively.
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In addition to equation k continuity

relationship
ou oV oW 1czp _
5x T3y T3z Tk 3t - © (5)

has to be satisfied. The last term, with k being
the dbulk modulus of the fluid gives the storage due
to coxpressibility.

On difrfarentiation of (5) with respect %o
tine end substitution of equation ’b4) with the small
convective accecleration term in sgquare brackets omittcd

.we have

2
g2 o 32p, ) g2f2m , By, dw) _
i i 3t %uv [ax * y * Az 0

and on using equation (5) again and noting that

I

c = /= (the sonic velocity) (6)

we obtain the final governing equation

" )4 . l .
Vipes £ v2p o szp =0 (7)

- i
This equation, together with the necessery
boundary conditions defires the fluid phase prcblem.
Neglecting the viscous term we have on

th2 boundary for (&)
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or quite gcnerally i teking the normeal, 1,

3P - _ . Do _ .3 ' 8)
™ 0 c V (8)

the veloecity in the normal direction of

n

when V_ 1
n
the boundary.

n the absence of surface

e

On free surface
waves

becomes a suitable condition.

=]

his is gener:1ly adequate but if gravity
waves are'generated zand it 1s important to teke these
into consideration a more elaborate condition can be
included. This is derived in ref. 5. If z is the

vertical dircction and y the gravity acceleration

on z = cohstant free surrace
95 2
A 5D .
C p+ Az 2

supercedes the simpler condition (9)

(upward direction of z is impliead).

3.2 TFirite elcment discretisation of the fluid problem

by the Galerkin process

The spatial discretisation cof equaticn {7)
and the aﬁpropriate boundary conditions can be
acccmplished ©y a veristiornal process as described in
rof.1. Alternatively a direct approach vie “he use of

the Galerkin wecighted residual process cen be used.
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The viscous terms will be neglected 2t this stage

due to their relative uwninportance.
If quite generally we write that =2t any
instant
)
ho =._Z.1Nipi’ I‘Ii(}:,y,Z) (ll)
in which Py is a set of nodal pressure values which
are time dependant we have for the ith weighted

residual equation (7) !Selerkin)

Ol
X
e

zx.ﬁ.]dn: 0 ~ (12)

. [v2zr.p. - % -
J 1[ iP; k J

R

wvhere R is the regicn under consideration.

Using Green's theorcic these can be transformed to

P L BN, AN oW,

— +

TRET: 57 L3t T I 55%| ar Py
R.
-1 | ik, az 7. ' (13)

8 i3 - J
R
aN.
+ . =
L) 3;i a8 p, = 0
S
in which j = 1 to m(the total node nunber)

The last term can be written as

J~ y, 22 as (14)

i on

and through this the boundary condition on the normal

pressure gredient {(8) incorporated.




The whole system of equations (13) can be

vritten in a metrix fornm

[E](p} + [Q]{p} = (B} (15)

iee. in the form familiar in finite element

"analysis in which

15 5 Iy
Qij = zq’ij (16)
B1 = Zbi

in vkhich the summation is carried cver all the
subregions or elements and the lower case latters
show the contributions of each element to the terms

of integral(13)

hij = [[Bhi anj BHi .BNJ aNi BNJ aR

3x " 9x T ay " 8y TR T
Re
=L | n.w.ar
%5 T 2 i3 (17)
Re
= 32 Q
bl le an 45
Se

vhere Re and Se denote region and external boundary
of an elemént.
(These expressions are achieved in an alternative

way in Chapter 10 of reference 1).
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Surfoce wave -oncration

Yhile prescribed bounderr zcceleration or
indeed prescribed pressures lead to a vector {3} on
/
& frece surface the condition given by zquaticn (10)
leads to another form of contribution,

Now

e — ™

n

&=

and substituting into the expression (1%) we find that a
contribution of the form

1 - 1 (. w“
- = S = - = [W,RN.4S 7. 18
Jni( ;_ p)as = JA.I NJ@ P (18)
s

arises leading to a term

[Qo](;} augmenting the Q . (7o)

matrix in which

1
= - = |[N.N.&F
Q. 5 JJlNJd
< °

‘]_J
vhere Se is the free surface of an zlement.
In general this additicnal term is of

minor importance.

The coupling of structure end fluid

The 'fqrce' terms {P} of equation (1)
and {B} of equation (15) determi-e the counling
between the fluid ard structure perts of the rrotlem,
This céupling occurs via the interfacs and sttertion
to the disﬁlacements and pressu;es there has row to

be given.

—
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The nodal forces Pi due to pressures are
by equatior (3)

P. = (N.' g = {N.'z¥.»n.aS

P Jhl pd Itl I Jpﬂd

' S S
or

{Pk = |L]{p} (20)

i .. = q ¢ .. o= |H."N.c

with ng 2213 113 J 5 JdS

| Se

| €imilary, noting that on thz interf=mce

.92 - v 2 - '"’
n an pXNj &)

| we have for the forecing torm of equatiorn 15

o . - - ' g .
B, = - INipXﬂj 83 (21)

or writing {B} = [s]{s}

with S.. = Is..
13 12

[
('Y

and s = - p JN fnjtéas
S

Thus .quite an important cbsarvation can
be made that
. T

o[L] = - [¢] (22) .
A11 the integrationsin above matrices arz ccnfined
to the interface surfaces =znd it should ke obscrved
that in general Hi' is in fact & two or threce cecmponent
vaetor, decpending on the relative dir:ctions of the

normal and global co-ordinates of the structure.
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Radiation damping - infinite boundary.

While the viscous damping term vwas deliberately
exéluded as its effcct in comprcssion oscillations is
krown to be small arother form of damping occurs in
the fluid phese if thc extent of this is large. Waves
originating at the hull of a_vibrating ship, for irstance,
travel far and are finally absorbed without their
reflection having any effect on the responsc of the
structurc.

Thus in problams not cenclosed by full~r
roflecting boundaries an energy loss always occurs and
it is inappropriate to have fres undamnad oscillatiors
under such conditions.

In a numerical representation 2n infinite
boundary has always to be truncated &t somez 'sufficicntly
large' distance Fig. 1.

At such a boundary a suitable e¢nnditinn has
to be impcsed ensuriﬁg that no waves are reflected.

Considering a dircctiecn - =msr=anl t- the

(B2

boundary the wevz cguation geverning the problam (7)

" lead for plane wvaves to & form

(2 + ct) (23)

) Fl(n - ct) + F,

In this Fl stands for & wave advancing with = velecity

¢ towards the boundory and F? for thz returrning wave

which by ocur requirements should nnt erist.
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Differentiaeting with respect to n and ¢

and taking F, os zero we have

2

.?.-B = ! 20 = . !

n © C1 P¢ 3% ¢ ¥
which gives

2p .1 23 (o)

9 ¢ 3t
as the 'non reflecting' boundary cendition.* Thas correcs-
ponding boundary integral (1k4) is now

1ig 22 = l-',7 I E =
- c!Hi. 51 ds = - cJAi.l..rj as P (2=}
S s

This lecads to an additional term ir the

matrixz equatioen (15)

[p] {p} - (26)
with

D.. = Id.. and eleront corntributiocn of

1) 13

d,, = - & JN.L’. ac

ij c [Ti%]

Se
The =2sscmbled problenm

The complete problem of fluid siructure
dynamic interacticn hes now been formulntad ard can
be summarised.

Equaticn (1) is rewritten using {20) as
[k]€s} + [c}4d} + DM1e) = [L)ip) + {F) (27)
stating the structure behaviour.

Similarly equaticn_(ls) shews the fluid
behaviour and by using (21),(22) and (26) can bve

vritten as




!

®Footnote

This derivation is exactly valid only for
pPlene wave situations. In a real situation a test
must be made to deterrmine if tae 'infinite' boundary
has been placed 'fer enough'. This is the case if the
position of the boundary is far enough not to affect
the results at the focus of interest and, generally,

two or more trial solutions should be attempted. |




12

[E]1p) + B] 3} + [A) (0} = - o[L]7(8) (28)
in which § coxbines N and N, terms.

These relations which arsz casily ahteined
by standard operations once the elomeont -
has been decided govern the full rosronse of th:‘

syster which can ncw be discussed in mare deta’l,

T.1 Structures in an incemprossible fluid with

no surface waves

In this case equation (28) becomes simply
[lipd = - o[1]TeE) (29)
and we havc on inversion

| {p} = - [1]7Y 0[] %1y (30) |
Substitution into (27) gives
KICe) + [c]e8) + (PO + [LI[0-1[) 00031 = (P} (31)
i.e. a standard structurzs problcm amonded onlv hy tha
addition of an a2ditinonal mass motrix (adcded nnss).

Treatnent of such probloms 3is stendard and
has been described in 24 ipn ref, {1).

It should be notad that in fact conrlate
inversior of [ﬁl is nct nocessary as tiha eounlirg
occurs only via interface nodes. Thus rertitioning
of {6} and {p} sﬁchld be ad-pteod.

By omitting [b] and {T'} terms the notural

frequencies of the structure-fluid complc: can be

found.
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7.2 Frequency response of the total system

If the excitation force is written in the
complex form
{F} = (F_)e*""
Lo]
then in steady state response

iwt

and {§} = {ao}ei“t

{p} = {p e

vhere in general all quantities Qre conplex.

Substitution into equation (28) permits
once again the determination of {60} to be achieved
from equation (27) now operating in real and complex
parts of the various quantities (ref. 1. p.179).

Thus numerically response to any frequency
input can be obtained and full characteristics
obtained.

7.3 Free vibrations of the systen

Natural. frequencies of the whole systen are
obviously important in the analysis of coupied problems.
Omitting thus the forcing and damping terms from (27)
and (28) we can write a combined eguation for simple

sinusoidal response of frequency w, as

Comw o = (33)
o H pr oL 3] ]p 10‘
vhich leads to an eigenvalue problem in principle
sllovwing the determination of the modes and natural

frequencies. Unfortunately the above eguation leads to

& non standard, unsynmetric eigenvalue prob.em, for




1h

vhich specialised approaches would be necess ry
( tnis despite the inherent svonunetry of tha
()] 1] end [7] matrices).

’ A simple modificatina susggest2d by
B. M. Irons allows a syrnmetric form to b roteira”,
From the seccnd equatisn we have

p =1t 2 (pnTs + §p)
vhich is substitutced inte the first row. Multinlying
the above by @ gives the nev szecond rovw and tho
nodified symmetric system becomes

v - =]
oK 0 5] Foi + p2rn i1t pLETT
l G

e

w3

0
= (3%)

0

i

6.,[6
1
-1

| S ——

In thisfor:, no. standord, ei envalues

c~n e founc.




Some applications

A few illustrative problems are attached hers %o
show the scope of the process., Only rether simple exanmples
are given but obviously problenms of eny conplexiiy can be

treated.

A simple rectangular element of linear type

" with corner nodes is usead generally though in areas of

particular interest an edditional node is added on center-
line of one sicde.

8.1 Example 1. Vertical motion of a ship in a

rectangular cheannel

The added mass contributed by the water to a rigid
ship undergoing vertical harmoniec oscillation can be found
by application of Eq. 15. The two~-dimensional system con-
sidered is illustrated in Fig. 2. As shown, the water is
represented by fifteen rectangular elerents vith a finer
nesh adjacent to the hull. Two elements, iios. 12 and 15,
have a mid-side node on the face in contact with the hull.
The remaining.elements have only corner nsdes.

Results are given in Fig. 3 for two chennel sizes.

In Case A the channel is 240 feet deep ard 480 feet wide and

"in Case B it is 480 feet deep and 960 feet wide. The

separate frequency scales for the tvo cases are chosen so
that fluigd resonances, in the absence of a ship, occur &t the
same abscissae. Approximate locations of vertical asymptotes

are indicated.
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A study of the curves of Fig. 3 discloses that, at
freguencies of practical concern for a ship of this size,
the channel dimensions and fluid compressibility ha%e little
effect on the added mass. It is %f interest to observe that,
for the larger channel of Casec B, the effects of resonance
are confired to very narrow freguency bands.

8.2 Example 2. Fluid pressures generated by structural

defornation

-

The rigid ship hull of Exemple 1 rray be replaced by
o flexible hull vhich is allowed to deflect leterelly znd
the resulting fluid pressures. at the hull can be deduced
from the fluid discretisation used sbove. Hull displocements
are represented by the nodal coordinates shown in Fig. 4 with
pParatclic interpolation used to derive values betwveen nodes.
As before, the governing equation is g. 15.

Table 1 presents results for nodal nressures
resulting ‘from unit nodal accelerations, i.e. gives the

(1)

effective mass 'influence' matrix . In considerestion of
the conclusions drawn from Example 1, datc are reported only
for w = 0 (incornressible case, |@] = 0). The channel

dimensions are those of Case A. Because of geometric

symmestry, no data are given for eccelerations at nodes 6 to 0O

-
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Table 1. Pressures on ship hull for unit noddl accelerations.

Y1 132 U3 :’3 ;h ;5
P, 0 0 o 0 o 0
P, 2.2 2k.9 5.9 3.5 9.6 3.2
38 ~0.b 15.5 ° 9.0 9.0 23.8 T.5
By -0.2 9.8 5.5 7.8 bh.6  18.L
Pg -0.1 6.9 3.8 3.4 3b.1  29.5
Pg 0 0 0 0 0 0
Py 0.9 1.3 0.7 0.7 4.8 3.2
Pg 0.0 3.0 1.6 1.7 11.3 7.5
Pg -0.1 5.0 2.7 2.7 21.0 18.k

. . q 2
Notes: Pressures in lb./fte., accelerations in ft./sec.
Geometric arrangement as in Fig. 2, Case A.

Hode numbering according to Fig. L.

8.3 Example 3. Principal modes of a coupled fluid -

structure systemnm.

The principal modes of an idealized coupled systemn,
Fig. 5, are found from Eq. 33. The systen illustrated
represents, in two-dimensional idealization, a dry dock
160 feet wide with tapered concrecte walls 80 feet high. For
analysis the wall is represented by two tapered Euler-
Bernoulli vean elements. The fluid is discretised es four
square elements with corner nodes. The tvo elements,
Kos. 3 and.4%, in contact with the wall each have & mid-side

node on the. fluid-structure interface.
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The lowest frequencies for the symmetric modes of

this system are summarised in Table 2.

Table 2. Frecuencies® of symmetric modes, Ixamnple 3.

lMode no. |Coupled modecs ! doupled modes | Uncougpled
(compressible) | (incorpressible) modes
1 18.1 | 18.2 | 29.7"
2 62.9 | 65.9 £3.3"
3 | 110.2 | 1s54.8 92.8%
4 | 159.0 | 368.2 - 181.8°

#Frequencies in radians/second
+ .
Wall modes, fluid absent

*Fluia mode, rigid walls

Examination of these data clearly shows the marked effect

of the fluid in reducing the frequencies of the bare structure,
especially in the fundamental mode. At these frequencies the
compressibility eof the fluid has little effect. This has

bgen confirmed by analyzing the system with an incompressible

fluid (placing [0] = 0 in Eq. 33).
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