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1. Introduction

In this Symposium concerned with ship

structure.s many papers on generai application of

finite element mthods are presented. To avoid

duplication of matter and discussion of well known

computational systems attention will be focussed here

on a special problem which has not been dealt with

previously in the literature and which in some asrects

is relevant te shibui1ding problems. The range of

anplicat.ion of the mchodology presented is obviously

much wider and has repercussions ranging from

oscillations in rocket fuel systems through earth-

quake response of water retaining structures to

electro magnetic vibration citt'ations.

The problem of incompressible motion of fluid

masses and of coupling SUCh effects to the structural

vibration response has been dealt with in the Finite

Element text 1
aid in some earlier publication2

An extension to dealing with oscillations

of compressible fluids has been achieved lacre

(3) ()recently

In this raper a review of this earlier work

is included in the context of solving the complete

fluid-structure interacti on roblori.

For inccmpressibc fluid problems the concept

of an influence matrix was intoduced by Zienkiewicz and

iIath6 using ar electric analogue solution.
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Alternative formulation of' influence coofuicientg from

exact source soiutionL has been employed recently

by Yugan et ai.
(8) coupling this with a finite element

structural matrix. Such concepts are difficult to

utilise in compressible solutions and 'ere a direct

finite eluent truatmt of both the fluid and

structurai continuum ±ll b outlined.

[ recent attempt to deal with the oscillation

of bodies submerged in corprossible fluid uses corplex

response functions for the fluid phase but assumes

mode shape invariance.

The structrc-discreti sation

The discrctisation of the structural problem

by the finite elerient process into the (assembled)

stiffness equation syst:a

[r]{} + [cj{ + [/í]{) (i)

is well known and described in texts In ahoye

rKJ is the structural stiffness matrix, {) are the

nodal displacecents and .H} the (generalised) nodal

loads. Matriccs [C] and [fl are the corresponding

d.npin' and mas s natrics of th structure calculated

in the proper, consistent, manner.

At tnis stare we need concern oursclves

only with the interaction fcrces duc to fluid pressure

*Dct, inicate time diffreatiation

3 .

etc.



p at the interfaces betecn the structure and tIe fluid.
If the total generalised nodal forces are

divided intc two parts
{R} {F} + P} (2)

where tue first are due to external forces and the
latter due to the fluid pres3ure on interface, can

write consistently for a node 'i'

P. 1 IL 'pdS (3)
i J i

s

where is the arnropriate shac function definin3
the displacement pattern in direction normal to the

boundary, p the pressure on interface , aid the

inteGration covers the whole interface usina the
shape function appropriate to the subregion.

3. The Fluid

3.1 Lasic theo:y

If the fluic ressnre p is considered as the
excess over stated Zra'rity pressure then the iavier-Etokes
equation of fluid motion in Cartesian co-ordinates can
i:e written in the x direction as

- = ir + i + U U ç 2 u - - ._t o x L x z J Jp x

(li)
x y z J

with similar exrressicns for the other co-ordinate
direction. In aLeve u, y and y stand. for Cartesie.n
v1oc1ty components and p and p for viscosity and

density cf the fluid resFectivell,r.



In addi ion to equation i4 continuity
relationship

- + - + - + - = O
Bx r z K t

U iV EJW 1 D (5)

has to be satisfied. The last terri, with k being

the bulk modulus of the fluid gives the storaga due

to co:pressibility.

On diffarentiation of (5) with respect to

tine and substitution of equation 'i4) with the small

convective, acceleration tersi in square brackets omitted

we have

- + . --:-- )4 V2 1i. + + .iÌ = o
- [aX y Z)

and on using equation (5) again and noting that

e
=

(tue sonic velocity) (6)

e obtain the final governing equation

2 i
V P - 2 P =

This eçuation, together îith thz necessary

boundary conditions defines the fluid phase problem.

Neglecting the viscous term we have on

tac oundary for ()

- -p
EJ.) t

- - o

0 (7)

q
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or quite gonerally i taking the normal, n,

n-.
- - p - -

n

when V io the velocity in the normal direction of

the bounlary.

On free surface in the absence of surface

wave s

p=O (9)

becomes a suitable condition.

This is generll;r adequate but if gravity

waves are gcnerated and it is important to take thise

into consideration a more elaborate condition can be

included. This is derived in ref. 5. If z is the

vertical direction and y the gravity acceleration

on z constant free surface

.; +*= O

supercedes the simpler con ion (9)

(upi..rard direction of z is implied).

3.2 Fiui t: elo:ient discretisation cf the fluid problem

by the Galerkin nrocess

The spatial discretization cf equation (ï)

and the appropriate boundary conditions cun be

acccnlishcd by a variational process as described in

r:f.l. i\itcrnatively a direct apiroac1i via the use of

tìi Galerkin woighted rciduo,l prncc-ss can be used.
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The viscous terms will be neglected at this stage

due to thcLr relative uaiLportance.

If quite generally we write that at any

instant

p N.p., IL (x,y,z) (II)

in which r. is a set of nodal rressure values which-

are time depondant we have for the weighted

residual equation (7) Calerkin)

- - 0
(12)

where R is the region under consideration.

Using Greens theoro these can be transformed to

N. N. 3N. N.
V + _J V -a- + __!..
L.. - y

- -z NZ CJ .

R

I
+ N.----- dSn. =0

j i dn
s

in which j 1 to i(the t3tal node number)

The last terr can be written as

I N. dS (1)4)i dfl

s

and through thi s the boundary condition on the normal

pressure gradient (8) lncorporated.

dR p.

('3)



T

The whole system of equations (13) can be

written in a matrix forni

[H]{p} + = {B} (15)

i.e. in the form familiar in finite element

analysis in which

H. . Zh.
'J 'J

Q- . =1J

B. Zb.
i i

in which ttie summation is carried ever all the

subregions or elements and the lower case 1ntters

show the contributions of each element to the terms

of integral(l3)

i.e.

I a. 3N. N. N. 3N.h
_-_J.. + i j dR

J 3x 3x y 3z
Re

1 f N N.dRq1 = 2
j

Re

b. = [N.
j i a

Se

where Re and Se denote regìon and cxternal boundary

of an element.

(These expressions are achieved in an alternative

way in Chapter .10 of reference i).

(16)
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Surfncc '.r-r 1ration

rhile roscrihed bounr-' cceleratiOr or

indeed prescribed pres3ures i.ea. to a vector } en

a free surface the condition giver. by equation. (lo)

leads to another form of contribution.

N ow

and ubstitutin into the exrression (ìY) we find that a

arises leading to a tern

matrix i. T11iCh

., r
q = - -. PT.N.dEC.. F)1

1

where Se ± the free surface of an clement.

In general this additional term is cf

minor importance.

5. The couplinß of structure and fluid

The Tforce' terms {P} of equation (i)

and B} of equation (15) detornüe the coupling

between the fluid a-d structure parts of the problem.

This coupling occurs via the interface and. attention

to the displacements and r2ssures there has ow to

be given.

p (o)

s

contribution

ji

of the

I i»- r)dS =

form

11
- -:Ji r.

s

(IP)

[Q0] {p} augmenting the Q (9)
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The nodal forces P. du3 to nrcs5ure3 are
i -

by equation (3)

JNÎ? pdS =

or

= LLJ{p}
(20)

with L.. = E. . t.. = IN. 'TT.dS
13 13 )ì 3

Sc

Simliary, noting that on the interfce

=
- = - PEN1' j

wo have for the forcing trm cf equation. 1

Bi = JEi.t j (21)

or writing {P} [s}
TÎth S. . = Es.

and s. . = - p
13 J

1 '

Se

Thus quite ari iniportrrt hírvtion cn

be !ade thrt

p[L] (22)

Lll th integrati ons in abov3 matri ces ar co.fec

to the interface surfaces and it should ho observed

that in generai
.

' is iì fact a two or three ccnnonnt

vctor, depending on the rclatire dir:ctions of the

normal and global co-ordinatci of the trutirc.
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6. Radiation dampinr - infinita boundary.

While the viscous danping term was delibcrately

excluded as its effect in compression oscillations 13

known to be small another form of darnDin occurs in

the fluid phase if the extent of this i largc-. Waves

originating at the hull of a vibrating shir, for ir.stance,

travel far and arc finally absorbed without their

reflection having any effect on the reonoc of the

structui'o.

Thus in problems not enclosed by full

reflecting boundaries an energy loss always occurs ar.d.

it is inapiropriate to have free undamo. oc4 ilations

undr such conditions.

In a numerical reresenteticn an infinito

boundary has always to be tru:cated at sono sufic±ntly

large' distance Fig. 1.

At such a boundary a uitahle cmr.diti'n has

to be imposed ensuring that nc wa-îes ara reflect'd.

Considering a direction nral t the

boundary the wavo ecuation gcveroin the prob.om (T)

lead for piane Tavos to a form

p = F(n - Ct) + F2(n + Ct) (23)

In this F1 stands for a Iravo avarcinr with vJrcity

e towards the boundary and F2 fer the roturri-g wave

which by cur requirements should «t e:-4t.
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Differentiating with respect to il a:a. t
and taking

2
ns zero v have

=
and = . e F1

which gives

i T)- - e t

as the 'non reflecting' bcundary cc«1t40n.* Tie c"rres-

pending boundary integral (iii) is now

- !IN. -- dS - -'N.T. dS .

ej i t ej . 3

This leads to an additcna1 term i' the

matrix equation (15)

[D] (2)

with

D. . = d. . and elerent contriThticn of13 13

d. . = - ;. lILI:. c
13 C

J
i ,1

Se
7. The assembled robien

The coiplete rohlen cf fluid' structure

dynamic interaction has now been formulated a'd can

be s'immarised.

Equat.cn (i) is rewritten us4.:r (20) a

[K] f6) + LJ{} + EMJ) [L{} + F} (27)

stating the structure behaviour.

Similarly equation (15) shcrs the f'uid

behaviour and by uing (2TL),(22) and (26) car. be

written as

(2e)



*Foo tn ote

This derivation is exactly valid only for

plane wave situations. In a real situation a test
must be made to detemine if the 'infinite' boundary

has been placed 'far enough'. This is the case if the

position of the boundary is far enougi not to affect

the results at the focus of interest and, generally,

two or more trial solutions should be attempted.

lia
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[ip} + + = p[.LJT (28)

in which conhines and O t.rms.
These relations whi ch ar easi r

by standard orerations once the e1eme'.t a1isatin

has been decidcd govern the full reson3e of th

syster2 which can nc be .i sciss.d in det

7.1 Structures in an inccnrr2ssib1 fluid w

no surface waves

In this case equatio: (2A) bec-mes simnly
= - (29)

and we havu on inversion

{r} = [iI]_1 [T{
(30)

Substitution into (27) gives

+ + (L + rLJEr1LLrn){} T} (31)

i. e a standard structurez problem nded only r the

additi-n of an aditiona1 mass atri; (ac1ed nass).

Treatment of such prob1nis i standard and

has been described in in ref. (1).

It should be noted that in fact crirI te
inversior. of rHi is nct necessary as t'i' 'ouli:z

occurs only via interface nodes. Thus pertitioning

of {6} and {p} should he adooted.

By orlittinC and {r} terms the ntura1

freciucncie of the structure-fluid cor'.p1e: can be

found.
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7.2 Frequency resronse of the total system

If the excitation force is written in the

complex form

{F} =

then in steady state response

iwt iwt
{p} = {p }e and {6} = { }e

o o

where in general all quantities are corLplex.

Substitution into equation (28) permits

once again the determination of to òe achieved

from equation (27) now oeratin in real and complex

parts of the various quantities (ref. 1. p.179).

Thus numerically response to ar.y frequency

input can be obtained and full characteristics

obtained.

7.3 Free vibrations of the system

Natura]. frequencies of the whole system are

obviously important in the analysis of coupled problems.

Omitting thus the forcinß and damrinC ternu from (27)

and (28) ve can write a combined ecuation for simple

sinusoidal response of frequency w, as

1!; O
21-w

l.1 LPL 4 =
(33)

which leads to an eigenvalue problem in principle

allowing the determination of the modes and natural

frequencies. Unfortunately the above equation leads to

a non standard, unsymnetric eìgenvalue problem, for

-L

OH



which spccialiscd arprcaches rould be necc3s:r;

this iespit the inherent rritry rf th
[1:1 rz.fl [:1 :n

1 mntri ces)

A simple mdificatin surçgest: b

E. M. Irons allows a snmetric frn t b

Fron the soccnc equation íe hav
-1 ru

p = H w2 (p Qr)

which is substitut into tho first ror. NutirJ.yin
th aboe by gives the new socond. ow rL:i. the

moiified synì'.eric system beìm
ri Oi 11

I) I -
o

r0 + p2LlLT
--1 T
Qd pL

pLIi 1i fo

- if oJ

In thi s for:., not. standord, e nvalues

C.1i DC found.

E
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8. Some apications

A few illustrative problems are attached here to

show the scope of the process. Only rather simple examples

are given but obviously problems of any comrlexity cu.n be

treated.

A simple rectangular element of linear type

with corner nodes is used generally though in areas of

particular interest an additional node is &dded on center-

line of oe side.

8.1 Example 1. Vertical motion of a ship in a

rectangular channel

The added mass contributed by the water to a rigid

ship undergoing vertical harmonic oscillation can be found

by application of Eq. 15. The two-dimensional system con-

si dered is illustrated in Fi g. 2 As shown, the wate r is

represented by fi fteen rectangular elerents with a finer

mesh adiacent to the hull. Two elements, iios. 12 and 15,

have a mid-side node on the face in contact with the hull.

The remaining elements have only corner n Ddes

Eesults are given in Fig. 3 for two channel sizes.
In Case A t1e channel is 24O feet deep and 8o feet wide and

in Case B it is )480 feet deep and 960 feet wide. The

separate frequency scales for the tuo cases are chosen so

that fluid resonances, in the absence of a ship, occur at the

same abscissae. Approximate locations of vertical asymptotes

are indicat,ed.

I.
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A study of' the curves of Fia. 3 discloses that, at

freouencies of practical cOflCcrfl for a ship of this size,

the channel dimensions and fluid compressibility have little

effect on the added nass. It is of interest to obseriTe that,

for the larger channel of Case B, the effects of resonance

are confined to very narrow frequency bands.

8.2 Example 2. Fluid eressures penei'ated by structural

de fo rrtati on

The riCid ship hull of Lxample 1 nay be renaced by

a flexible hull which is allowed to deflct laterally nd

the resuting fluid nrcssures. at the hull can be deduced

from the fluid discretisation used above. Hull displacements

are represented by the nodal coordnatcs shown in Fig. 14 w$th

parabolic interpolation used to den ve values between nodes.

As befo'e, the governing equation is i.q. 15.

Table 1 presents results for nodal pressures

resulting from mit nodal accelerations, i.e. gives the

effective mass 'influence' matrix. In consideration of

the conclusions drawn from Example 1, data are renorted only

for w = O (incoressib1e case, IG.] = O). The channel

dimensions are those cf Case A. Because of geometric

symmetry, no data are given for c.cce.eratic,ns at nodes 6 to 9.



2 . 2i'otes: Pressures in lb./ft ., accelerations in ft./sec.

Geometric arrangement as in Fig. 2, Case A.

Wode numLering according to Fig. 14.

8.3 Example 3. Principal modes of a coupled fluid -

s tructure sys ter.

The principal modes of an idealized coupled systeri,

Fig. 5, are found from Eq. 33. The system illustrated

represents, in tIro-dimensional idealization, a dry dock

160 feet wide with tapered concrete walls 80 feet high. For

analysis the wall is represented by two tapered Euler-

Eernoulli LeaLI elements. The fluid is diseretised as four

square elements with corner nodes. The two elements,

Nos. 3 and 14, in contact with the wall each have a mid-side

node on the. fluid-structure interface.

Table 1. Pressures on ship hull for unit nodal accelerations.

L3 113 1114 115

pl o 0 0 0 0 0

p2 2.2 214.9 5.9 3.5 9.6 3.2

p3 -0.14 15.5 9.0 9.0 23.8 7.5

-0.2 9.8 5.5 1.8 1414.6 18.14

p5 -0.1 6.9 3.8 3.14 314.1 29.5

p6 o 0 0 0 0 0

PT 0.0 1.3 0.7 0.7 14.8 3.2

p8 0.0 3.0 i.6 1.7 11.3 7.5

p9 -0.1 5.0 2.7 2.1 21.0 i8.14

r
17
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The lowest frequencies for the symmetric modes of

this system arc summarised in Table 2.

Table 2. Frecuencies of symmetric modes, xamp1e 3.

Frequencies in radians/second

Wall modes, fluid absent

X . -

Fluid mode, rigid walls

Examination of these data clearly shows the marked effect

of the fluid in reducing the frequencies of the bare structure,

especially in the fundamental mode. At these frequencies the

compressibility cf the fluid has little effect. This has

been conf.rmed by analyzing the system with an incompressible

fluid (placing [Q] 0 in Eq. 33).

+

.----.----.--.------.-- - ------

Ilode no. Coupled modcs
(compressible)

Coupled modes
(incompressible)

Uncoupled
mcdes

1 18.1 18.2 29.7k

2 62.9 65.9 83.3k

3 110.2 l5.8
159.0 368.2 l8l.8
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