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Coupled-Wave Theory for Square-Lattice Photonic
Crystal Lasers With TE Polarization
Kyosuke Sakai, Member, IEEE, Eiji Miyai, and Susumu Noda, Fellow, IEEE

Abstract—We present a coupled-wave analysis for square-lat-
tice photonic crystal lasers with transverse electric polarization. A
model consisting of eight plane waves coupled by Bragg diffraction
is used to describe two-dimensional optical coupling. The resonant
frequencies and threshold criteria for the modes of oscillation have
been determined for the case of index periodicity with a lattice of
circular holes. The spatial intensity distributions of these resonant
modes have also been calculated. For the fundamental modes, we
have investigated how the intensity distribution varies as a function
of coupling strength. The dependence of the threshold gain of these
modes on hole size has also been elucidated. This semianalytical ap-
proach provides a comprehensive understanding of square-lattice
photonic crystal lasers and allows more effective optimization of
their cavity design.

Index Terms—Coupled mode analysis, distributed feedback de-
vices, laser cavity resonators, surface-emitting lasers.

I. INTRODUCTION

T
WO-DIMENSIONAL (2-D) photonic crystal (PC) lasers

have attracted much attention due to their capability of

large-area coherent oscillation based on the band edge effect

[1]–[7]. Single longitudinal and transverse mode oscillation in

two dimensions can essentially be achieved even with a large

lasing area, which allows high-power, single-mode operation.

The output power is coupled to the vertical direction by the PC

itself; these systems thus operate as surface-emitting lasers. The

surface-emitted beam resulting from a large lasing area has a

small beam divergence angle [8] and, moreover, both the polar-

ization and beam pattern can be controlled by appropriate de-

sign of the PC unit cell and/or lattice phase [3], [7]. The lasing

wavelength of 2-D PC lasers has recently been extended from

the visible and near infrared regime to the mid-infrared [9], ter-

ahertz [10], [11], and blue-violet regime [12], [13].
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Fig. 1. (a) Band structure for square lattice photonic crystal with TE polariza-
tion. (b) Magnified band structure in the vicinity of the �-point, which is the
point of interest in this paper.

Until now, theoretical analyses of PC lasers have been carried

out using the plane-wave expansion method (PWEM) [4], the fi-

nite-difference time-domain (FDTD) method [14] and the time-

domain Fourier–Galerkin (TDFG) method [6]. Fig. 1(a) shows a

typical photonic band structure for a square-lattice crystal with

transverse electric (TE) polarization, and Fig. 1(b) shows the

detailed band structure around the -point where surface emis-

sion is obtained. Resonant mode oscillations are formed at the

edges of the band structure, indicated by the three dots, and the

lasing oscillation occurs at the mode with the lowest threshold

gain, i.e., the smallest loss [15]. Therefore, it is essential to eval-

uate the threshold gain of the resonant modes at the band edges

in order to arrive at a comprehensive understanding of the de-

vice characteristics. Analysis of the threshold criteria for the

different modes of oscillation is difficult using the theoretical

methods mentioned above, because the PWEM is only valid

for infinite structures and the FDTD method requires enormous

computer resources to model the finite structures of actual de-

vices. An analysis based on the TDFG method concluded that

the square lattice with TE polarization is not a viable choice for

the realization of large-area coherent emission, which contra-

dicts the experimental results of [3], [7], and [8]. In contrast,

calculations based on a coupled-wave model [16] enable com-

pact analysis of the resonant mode threshold for finite-structure

PC lasers. We have recently performed coupled-wave analysis

for a square lattice structure with transverse magnetic (TM) po-

larization [17]. However, no analysis for TE polarization has

yet been reported. In this paper, we develop the coupled-wave

analysis method to include square lattice structures with TE po-

larization and give the threshold criteria for the modes of oscil-

lation. Our analysis employs the eight-wave model [18], which

is able to describe the coupling of two light waves propagating

in orthogonal directions, giving rise to large-area 2-D coherent

oscillation.

We derive coupled-wave equations and coupling constants for

a square lattice of circular holes in Section II. In Section III, the

0018-9197/$26.00 © 2010 IEEE
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Fig. 2. (a) Schematic illustration of a square lattice photonic crystal. (b) Corre-
sponding reciprocal lattice showing the wave vectors considered in this paper.

resonant mode frequencies, threshold gains and envelope profile

of the intensity distribution in the finite-size photonic crystal

cavity are numerically calculated. The threshold gains of the

fundamental modes are also investigated as a function of hole

size. A summary of the results is given in Section IV.

II. COUPLED-WAVE MODEL

The PC structure investigated here consists of a square lattice

of circular holes in the – plane with period , as shown in

Fig. 2(a). The dielectric constants of the circular holes and the

background material are and , respectively. The structure

is assumed to be uniform in the -direction. The circular holes

form a 2-D Bravais lattice with sites given by the vectors:

(1)

Here, and are the two primitive translation vectors of the

lattice, while and are any two integers. The area enclosed

by the primitive unit cell of this lattice is .

The corresponding reciprocal lattice is shown in Fig. 2(b); the

reciprocal lattice vectors are given by

(2)

Here, and are any two integers, denoted collectively by ,

and the primitive translation vectors of this lattice are given by

(3)

(4)

where is the Cartesian component, or , of ( 1 or

2). If we express the primitive translation vectors as

and , as shown in Fig. 2(a), the primitive reciprocal

lattice vectors are and , as

shown in Fig. 2(b). The shaded arrows indicate the wave vectors

of the plane waves that have significant intensity at the band

edges shown in Fig. 1(b). For the analysis of other band edges,

we would first need to find the specific wave vectors that have

significant contributions at those points.

The scalar wave equations for the magnetic field for TE

polarization are written in the form [19]

(5)

Fig. 3. Diffraction diagram for each coupling constant. Shaded arrows indicate
pairs of wave vectors and black arrows indicate the corresponding reciprocal
lattice vectors.

Here, the constant is given by [20]

(6)

We note that the sign of the second term was negative in [20].

In the above expression, is the wavelength of light in free

space, is the Fourier coefficient of the modulated dielectric

constant , is the averaged dielectric constant,

and is the Fourier coefficient of the modulated gain constant

. It is assumed that the gain is small over distances of the

order of a wavelength and that the modulations of the dielectric

constant and gain constant are small, such that

(7)

These assumptions allow us to express the constant in the form

(8)

Here, is the averaged gain constant and is

the coupling constant defined as

(9)

In the present analysis, we consider the resonance at the -point

shown in Fig. 1(b), in which the coupling constants for

, and contribute significantly. We list the

corresponding coupling constants as follows:

(10)

(11)

(12)

where . Fig. 3 shows a schematic illustration of

the pairs of wave vectors that are coupled in each of these

three cases. Coupling constant describes the intensity of the

coupling of two plane waves propagating at 45 to each other,

whereas describes the intensity of the coupling of plane

waves propagating in directions perpendicular to each other.

Coupling constant describes the intensity of the coupling

of counterpropagating waves, which corresponds to the back-

ward scattering in second-order distributed feedback (DFB)

lasers. In the case of a square lattice with TE polarization, the

coupling constant does not exist. This is because the electric
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fields of two waves propagating in perpendicular directions are

orthogonal to each other and the overlap integral vanishes. The

2-D coupling is therefore described by the coupling constant

.

In a periodic structure, the magnetic field is given by the

Bloch mode [19]

(13)

where is the amplitude of each plane wave, and is a

wave vector in the first Brillouin zone that becomes zero at the

-point. In principle, a periodic perturbation of the medium gen-

erates an infinite set of diffraction orders. However, at the spe-

cific -point discussed in this paper, the amplitudes with

are significant and plane waves with

play a significant role in 2-D coupling [18]. Therefore, eight

waves with and are considered in our

model, indicated by the shaded arrows in Fig. 2(b). Using these

eight waves, we rewrite the expression for the magnetic field as

the following sum:

(14)

where , , , and are the complex amplitudes of the

waves propagating along the or directions, whereas

( 1 to 4) are the complex amplitudes of the waves prop-

agating along the – directions, as illustrated in Fig. 2(b).

These eight waves propagating in the PC structure interfere with

each other due to diffraction by the circular holes. As a result,

the amplitudes of the waves are position dependent and we can

express these amplitudes as a function of position; this model

is thus able to treat the finite structures. In order to simplify

the equations, we write the amplitudes as instead of .

In view of (7), these amplitudes vary slowly enough that their

second derivatives can be neglected. By substituting (8) and (14)

into (5), then using (10) and (12) and comparing the exponential

terms, we obtain eight equations of the form:

(15a)

(15b)

(15c)

(15d)

(15e)

(15f)

(15g)

(15h)

The parameter is a normalized frequency defined by

(16)

where is the averaged refractive index, which is equal to

and is the speed of light in free space. The parameter is a

measure of the deviation of the oscillation frequency from the

Bragg frequency . The Bragg frequency corresponds to the

wavelength of light within the PC structure that equals

the period . Because this frequency deviation is assumed to be

small, we have set in the above derivation.

The above set of equations expresses the coupling of waves

propagating in the square-lattice PC structure. For example,

(15a) describes the coupling of waves and that travel in

opposite directions; the intensity is given by coupling constant

. The same equation also describes the coupling of waves that

propagate in oblique directions. That is, wave propagating

along the -axis couples to waves and with the coupling

constant . Equations (15f) and (15h) describe the coupling

of wave to wave and wave to wave , respectively,

both with an intensity given by coupling constant . Waves

and propagate along the -axis. Therefore, these oblique

couplings with constant provide 2-D optical feedback,

which gives rise to coherent 2-D oscillation. We note that

coupling constant , which describes the intensity of the direct

coupling of waves propagating perpendicular to each other

along the and axes, does not exist in the set of (15), as also

pointed out in [18]. On the left-hand side of (15e)–(15h), we

can neglect both the first two derivatives and the third terms in

each case, because the amplitudes vary only slowly and and

are much smaller than for the lower-order resonant modes.

Subsequently, by substituting (15e)–(15h) into (15a)–(15d) and

including diffraction in the direction vertical to the PC plane

represented by the coupling constant [6], [22],1 we obtain

four equations of the form

(17a)

(17b)

(17c)

1� corresponds to � in this reference.
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Fig. 4. (a) Gain required for threshold as a function of frequency deviation from the Bragg condition. (b) Magnified plot for modes � � ��, and (c) for � � �.

(17d)

By numerically solving this set of (17) under some boundary

conditions, the eigenvalues and provide the threshold gain

and the frequency deviation from the Bragg condition, respec-

tively, for the resonant mode in a square-lattice PC cavity with

TE polarization. We note that for other crystal geometries such

as triangular-lattice PCs, a different set of equations, as shown

in [21], is required.

The coupling constants for the circular holes are given in the

form

(18)

Here, and are the dielectric constants and and are

the gain constants of the circular holes and the background ma-

terial, respectively. The quantity is a hole-filling factor given

by , is the radius of the circular hole, and is

a Bessel function of the first kind for integer order one. The aver-

aged dielectric constant is given by .

We exclusively define the vertical coupling constant using

the relation ,2 where is the length of the

PC cavity.

In this work, we assume a square PC region with a side

of length , and apply the boundary conditions of zero re-

flectivity and zero gain perturbation . In order

to solve the set of (17), we multiplied these equations

by length and used the finite difference method as de-

scribed in the Appendix. The magnetic field distribution

can be obtained by substituting the resultant complex

amplitudes of the waves into (13), whereas the electric

field distribution

is calculated using the time-dependent magnetic field

and Maxwell’s equation

(19)

The intensity envelope (mode pattern) of the resonant mode

throughout the PC structure is determined using the sum

.

2This relation was determined empirically. Details will be discussed else-
where.

III. NUMERICAL RESULTS

In this section, we describe the results of numerical calcula-

tions based on the coupled wave equations (17). We have ob-

tained data for the frequency, threshold gain and intensity pat-

tern of the resonant modes in the square PC cavity. The PC

structure was defined by the following parameters: the dielec-

tric constants and , the gain perturba-

tion (index coupling), the hole-filling factor

, the lattice period 290 nm, and the PC cavity

length 50 m. The corresponding input parameters for (17)

are , , , and .

These input parameters express the feedback strength of the PC

cavity, which should greatly affect the mode patterns and the

threshold gain. Thus, we have also calculated the mode patterns

for several different coupling strengths and have evaluated the

threshold gain as a function of the hole-filling factor.

A. Mode Spectra

Fig. 4(a) shows the threshold gain and the frequency

deviation from the Bragg condition for the resonant modes.

The threshold gain increases for larger frequency deviations.

We classify the groups of resonances as

according to their frequency deviation from the Bragg condi-

tion, where is the mode number in [16]. Modes with a larger

absolute value of consist of a higher order longitudinal mode

(i.e., a standing wave formed by and possesses a higher

order profile along the direction). Fig. 4(b) and (c) shows

more detailed plots for modes and , respec-

tively. Modes A, B, and E are fundamental modes that have a

single-lobed intensity pattern throughout the photonic crystal.

These fundamental modes correspond to the resonant modes at

the band edge in Fig. 1(b). Mode A has the lowest frequency

of these three modes, and mode E is doubly degenerate. Modes

A and B have twin modes and , respectively, which have

zero intensity at the center of the structure. The other points in

Fig. 4(b) and (c) correspond to higher order modes that are all

doubly degenerate. These higher order modes consist of a higher

order transverse mode (i.e., a standing wave formed by and

possesses a higher order profile along the direction). We

note that there are many higher order modes in the vicinity

of mode E, but they are hardly distinguishable in Fig. 4(c).

The threshold gain of modes A, B, and E are ,

, and , respectively. Because it has

the lowest threshold gain, lasing oscillation is expected to occur

at mode A.
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Fig. 5. (a) Threshold gain as a function of frequency deviation with � � �. (b) Electric field distributions around the air hole for the fundamental modes A, B,
and E.

Experimentally, we have previously observed lasing oscilla-

tion at the lowest frequency band edge, which corresponds to

mode A [15].

The threshold gain of each resonant mode originates in the

emission loss from the photonic crystal cavity, i.e., both emis-

sion from the edges of the square crystal region and surface

emission. To elucidate the origin of the threshold difference

among the fundamental modes, we first calculated the threshold

gain for zero surface emission (we set ). In this case, the

threshold gain of mode E greatly decreased and became com-

parable to that of modes A and B ( , ,

), as shown in Fig. 5(a). Thus, the major source

of loss for mode E is surface emission. The degree of surface

emission is strongly dependent on the symmetric nature of the

electric field with respect to the center of the lattice hole [23].

Fig. 5(b) shows the electric field distribution of each funda-

mental resonant mode around the hole. Modes A and B are an-

tisymmetric in nature, which leads to destructive interference

in the direction vertical to the crystal plane and thus reduces the

surface emission. In contrast, modes E are symmetric and hence

the resulting constructive interference gives rise to a larger de-

gree of surface emission. The difference in threshold gain be-

tween modes A and B in Fig. 5(a) indicates that the emission loss

from the edges of the cavity differs. In order to understand the

origin of this difference, we performed calculations with

and , where both the 2-D coupling and the surface emis-

sion vanish. In this case, modes A and B become degenerate

( , ) and all the fundamental

modes possess the same threshold gain

. This result indicates that the 2-D coupling induces the

splitting between modes A and B. Therefore, with stronger 2-D

coupling we can expect a higher mode selectivity, i.e., a larger

difference in threshold gain of modes A and B. The splitting in

frequency between mode A (or B) and mode E is induced by

backward coupling . This splitting corresponds to the stop-

band in 1-D DFB lasers, which is induced by coupling between

the counterpropagating waves.

B. Mode Pattern

The eigenvectors of (17) provide the complex amplitudes ,

, , and , which are functions of the positions and

. The intensity envelope (mode pattern) of the resonant mode

throughout the PC structure can be determined from these am-

plitudes using the sum . Fig. 6

Fig. 6. Spatial intensity distributions for the fundamental modes.

illustrates the intensity envelopes of the fundamental modes (A,

B, and E). Modes A and B show single-peak profiles, whereas

the doubly degenerate mode E shows a saddle-shaped pattern. In

contrast, modes and exhibit vase-like patterns with zero

intensity at the center of the structure, as shown in Fig. 7(a).

Fig. 7(b) illustrates the intensity envelope for the higher order

modes around mode E, which have several nodes and antinodes.

The envelopes of other higher order modes also exhibit a series

of nodes and antinodes.

Fig. 8 illustrates the cross-sectional intensity distribution

along the -axis for mode A with various values of

coupling strength ; the difference in dielectric constants,

, is changed while maintaining the same hole-filling

factor of and lattice period of 290 nm. The

other two coupling constants and are calculated ac-

cordingly. We distinguish three different types of patterns that

depend on the coupling strength, analogous to the situation for

a 1-D DFB laser [16]. When the coupling is small, for example

, , and , the intensity pattern

decreases in the middle region of the structure and peaks at

the ends. In contrast, when the coupling is large, for example

, , and , the intensity pattern

peaks at the center of the structure and decays towards the

ends. These two types of behavior are balanced for a coupling

strength of ( , ), where the

intensity is more or less uniformly distributed throughout the

whole PC structure. These types of behavior also apply to the

other fundamental modes B and E.
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Fig. 7. Spatial intensity distributions for (a) mode � and mode � , and for
(b) higher order modes adjacent to mode E.

Fig. 8. Cross-sectional intensity distributions �� � �� along the �-axis for
mode A.

C. Threshold Gain as a Function of Hole Filling Factor

The analyses above were carried out for a constant hole filling

factor of . However, the coupling constants are a func-

tion of and hence the threshold gain should also be strongly

dependent on . Fig. 9(a) shows the coupling constants as a

function of the hole filling factor. We note that becomes zero

at approximately , which implies that the backward

diffraction vanishes. Fig. 9(b) shows the threshold gain of the

fundamental modes A, B, and E as a function of hole filling

factor. The threshold gain for modes A and B drastically in-

creases in the region of , at which point (17) diverge.

This occurs because the degree of backward diffraction becomes

very small and there is insufficient optical confinement. This

result indicates that the coupling constant is the dominant

factor determining the degree of optical confinement in the cur-

rent system, a square lattice with TE polarization. We note that

in a square lattice with TM polarization, even if the backward

diffraction vanishes in the vicinity of , sufficient optical

confinement is obtained due to the 2-D coupling constant

Fig. 9. (a) Coupling constants as a function of hole filling factor. (b) Gain re-
quired for threshold as a function of hole filling factor for the fundamental modes
A, B, and E.

[17]. Fig. 9(b) indicates that the lowest threshold gain switches

from mode A to mode B when the hole filling factor passes

. This allows mode selection between modes A and B

by controlling the hole-filling factor.

IV. CONCLUSION

We have presented a coupled-wave analysis for square-lattice

photonic crystal lasers with transverse electric polarization. We

have numerically calculated the resonant frequencies, threshold

conditions and the intensity patterns of the modes of oscillation

for the case of index periodicity with a lattice of circular holes.

We have demonstrated that the fundamental modes, which cor-

respond to oscillations at the band edge, have a single-peak or

saddle-like intensity pattern, whereas the higher order modes

exhibit more complex patterns of nodes and antinodes. The in-

tensity pattern of the fundamental modes was found to depend

on the coupling strength, with peaks in intensity at the ends

of the structure for weak coupling and maximum intensity at

the center for strong coupling. We have also investigated the

hole-filling factor dependence and found that a change in the

mode that has lowest threshold gain occurs at a value of 0.3. This

analysis provides a deeper understanding of photonic crystal

lasers and will allow more effective optimization of their de-

sign, such as varying the unit holes to include triangular and

elliptical as well as circular shapes, a prospect that we leave to

future work.
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Fig. 10. (a) Schematic illustration of calculation model for the photonic crystal
cavity. (b) Segmentation used for the finite difference method. The complex
amplitudes are defined at the positions of the black dots, and calculations are
carried out at the positions of the white dots.

APPENDIX

A set of coupled wave equations (17) was numerically solved

using the finite difference method. Fig. 10(a) illustrates the cal-

culation model, where a square photonic crystal cavity with a

side of length L is considered. We note that the typical number

of periods in the and directions of the actual devices is sev-

eral hundred, whereas for the calculations we segmented this

photonic crystal cavity into a 17 17 matrix (for Fig. 8, we

used a 9 9 matrix), as shown in Fig. 10(b). We define the

complex amplitudes at the positions denoted by

black dots, and we solve (17) for each white dot using the com-

plex amplitudes of the neighboring black dots. For example, the

difference equation corresponding to (17a) is written in the form

(A1)

where is the side length of one segment, and and denote

the index along the and directions, respectively. At all the

surrounding boundaries, we set the facet reflection to zero:

(A2)

By solving the eigenvalue problem for the sets of difference

equations, we obtain the eigenvalue and the eigenvec-

tors ( , etc.).
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