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We apply coupled-wave theory to describe the lateral modes of semiconductor lasers with a periodic gain and
refractive-index variation across their widths. The model is relevant to devices whose complex index of refraction is
determined by current injection from closely spaced parallel electrodes. Good agreement is observed between the
analytical modes and those computed numerically for comparison.

By design, semiconductor laser arrays consist of a
number of single-mode waveguides placed in close
proximity, so that distributed coupling occurs through
modal overlap. The lateral modes of the array are
ideally described by superposition of the modes of the
uncoupled waveguides, or supermodes.l? Indeed, ar-
rays formed from index-guided elements are accurate-
ly modeled by using supermode (i.e., coupled-mode)
theory. However, arrays formed from gain-guided el-
entents, such as oxide-isolated or proton-bombarded
stripes, are not. Since the interelement coupling is
inherently stronger than coupling in the index-guided
case,>* the modes of individual gain-guided wave-
guides do not constitute a good basis from which to
construct the lateral modes of the composite wave-
guide. Numerical modeling predicts mode numbers
greater than the number of array elements.56 Fur-
thermore, with the advent of injection-seeding tech-
niques® and external grating-tuned cavities,’ the exis-
tence of these higher-order modes has been verified
experimentally.

In this Letter, we describe an analytical model of
multiple-stripe lasers based on laterally counterprop-
agating plane waves that are coupled by the periodic
gain and index variation across the device width. The
coupling is similar to that within distributed-feedback
lasers,® except that here the feedback takes place in
the lateral direction rather than along the laser axis.
In addition to describing the low-order modes (v < N),
our model correctly predicts the existence of lateral
modes of orders higher (» > N) than the number of
injection electrodes N. Furthermore, these higher-
order modes agree well with those found experimen-
tally by injection seeding.’

The waveguide prototype for this research is shown
in the inset of Fig. 1; it is a 10-stripe laser with 4.5-ym-
wide stripes situated on 9-um centers. An antiguiding
factor of 1.5 and an outer loss of 85 cm™! are assumed;
we estimate these to be appropriate for the low-
threshold single-quantum-well wafers grown in our
laboratory by molecular-beam epitaxy. The inter-
channel gain of 0 cm™! is intended to model devices
with shallow (if any) proton implantation—this model
can be inferred from spontaneous emission profiles? or
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from diffraction effects in diode-array traveling-wave
amplifiers.?

Figure 1 plots the eigenvalues (mode index and
modal gain) for the first 14 modes of this waveguide, as
obtained by direct numerical integration of the wave
equation. While the » = 10 mode has the highest
modal gain, the next-highest modal gains belong to the
v=11and v = 12 modes. This shows the inadequacy
of supermode theory as applied to gain-guided de-
vices, since modes with y > 10 cannot be accounted for.
Also note that the gains of the first 14 modes exceed
the interchannel gain. Hence, even if the gain outside
the laser matched the interchannel gain (as in a deeply
proton-implanted laser), the cutoff would be greater
than v = 14 (this has been verified numerically). The
near-field and far-field intensities of selected modes
are shown as solid lines in Figs. 2 and 3.

We begin the theoretical analysis by assuming trav-
eling waves in the +z direction of the form
E(x}exp(tkonz), where x is the lateral dimension, &g =
2m/\o is the free-space propagation constant, and kon
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Fig. 1. Plot of the lowest 14 eigenvalues (mode index and
modal gain) found by numerical integration for the wave-
guide shown in the inset.
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Fig. 2. Near-field and far-field intensities for the v = 1, 9,
and 10 lateral modes found by numerical solution (solid
lines) compared with the analytical solution (dashed lines).

is the (unknown) propagation constant of the lateral
mode E(x). To model the multiple-stripe laser, we
take an effective index distribution

ny + 2n,2 cos(drx/A)  lxl < x,
n*(x) =

2
x| > X

1

so that A/2 is the period of the perturbation, 2n2is its
amplitude, and 7y is the index of refraction outside the
laser. With these assumptions, the wave equation for
the lateral modes can be rendered dimensionless and
written as

d2E , .
—+ [A+ (X + e 2X)E =0, (2)
i [ ]
where X is the normalized lateral dimension X = 2rx/
A, and A and « are the normalized eigenvalue detuning
and effective index perturbation, respectively:
A2 A?
= -7, «k==5n’ (3)
A A2
We take E(X)} as the following sum of two counterprop-
agating waves:

E(X) = a(X)eX + b(X)e . 4)

When ¢ and b are constant, the wave vector of E
satisfies the Bragg condition; since this does not corre-
spond to wave propagation, we must allow a(X) and
b(X) to be slowly varying in X. Whenk=0,cand b

g2

A=

are simple exponentials and reflect the constant gain
under the stripe. When « £ 0, the spatially modulat-
ed carrier distribution acts as a grating to couple the
counterrunning waves, and ¢ and b are more compli-
cated. By substituting Eq. (4) into Eq. (2), making
the usual adiabatic approximation (neglecting a”, %),
keeping only the synchronous terms, and setting the
slowly varying coefficients of /X and e~X equal to
zero, we get the following coupled-mode equations in a
and b:

2ia’ = (1 — A)a — «b,
=2’ = —ka + (1 — A)b. 5)

This is a standard eigenvalue problem, whose general
solution is

a(X) = A eTX + A_e X
b(X) = B,eT™X + B_e X, ®)

where A and B, are complex constants and T' = T'(A)
is given by

T(A) =% A-A2— i )

Strict observation of the slowly varying approxima-
tion requires that |T'| « 1 in the solution; however, we
see that reasonable results are obtained even as || —
1. Finally, substitution of Egs. (6) into Eq. (4) gives
the general expression for the lateral mode as

E(X) = [r e 0FDX 4 o=il-DX) 4 5
B_ i1-MX —i(14+T)X
X B [e +r.e 1, (8)
+

where r; are the eigenvectors of the system [Egs. (5)]:
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Fig. 3. Near-field and far-field intensities for the » = 8 and
v = 11 lateral modes found by numerical solution (solid
lines) compared with the analytical solution (dashed lines).



At this point there are two unknown complex con-
stants, B_/By and the eigenvalue A [or, equiva-
lently, T'(A)]. Matching our solution [Eq. (8)] for
E(X) inside the laser to solutions of the form E;
exp(—iyA — Ag |1X — Xol) outside the laser, where the
index is assumed constant, gives the following two
boundary conditions:

E I —

where A is the complex constant defined by

A2
A?
Equation (10) represents two equations for the two
unknowns B_/B; and I'(A). For the case of a symmet-
ric device, B-/B; = %ry, corresponding to even and
odd modes, respectively. Since, from Eq. (9), ryr— =
1, Eq. (8) reduces to

Een(X) = cos(1 —T)X +r, cos(1 + )X,
E4(X) =sin(l —=T)X —r,sinl+)X. (12

Ay == (ny — D). (11)

As k — 0, r; — 0 and we recover the modes of the box
waveguide. Thus the second term embodies the dis-
tributed feedback and T'(A) gives the detuning from
the Bragg wave vector.

To illustrate the result of this approach, we compare
the modes of Eqgs. (12) with those obtained earlier by
direct numerical integration of the wave equation.
The appropriate parameters to model the device of
Fig. 1 are k = 0.3 + i0.2 and Ay = —4.0 — i2.67. We
have superimposed the analytical results (dashed
lines) onto the numerical results in Figs. 2 and 3.
Good agreement is observed for the » = 8,9, 10, and 11
modes, for which [T « 1. However, even as [T| — 1
the agreement is still reasonable, as illustrated by the »
= 1 mode.

As expected, there is a resonance between the » = 9
and » = 10 modes because their lateral wave vectors
bracket the Bragg wave vector, 7/A. The peaks of the
near field lie almost exactly under the stripes for the »
= 10 mode, while for the r = 9 mode they lie between
the stripes. Thus the greatest gain discrimination is
achieved between these two modes. Both modes have
a half-cosine or first-order envelope, however, being
nearly symmetrically displaced from the Bragg wave

July 1988 / Vol. 13, No. 7 / OPTICS LETTERS 573

vector.® Likewise, we expect the » = 8 and » = 11
modes to share second-order envelopes, since together
they undergo a gain splitting similar to the » = 9 and v
= 10 modes. Figure 3 illustrates that this is indeed
the case. Further, the » = 1 mode has nine secondary
peaks in the near field (not 10, as would be expected
from coupled-mode theory) because it is displaced
nine modes from the Bragg wave vector.

In conclusion, we have presented an analytical mod-
el that accounts for the lateral modes observed in N-
stripe semiconductor injection lasers. By making an
analytical expansion around the Bragg wave vector, we
are able to describe lateral modes of order v = 1 tor =
2N — 1. Modes of higher orders could be accounted
for (if they exist) by expansion around integer multi-
ples of the Bragg wave vector. We conclude that the
lateral modes of multiple-stripe semiconductor lasers
are determined by distributed-feedback resonances of
the carrier-induced lateral gain and index perturba-
tion, rather than by superposition of the modes of
individual lasers.
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