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Coupling a Numerical Optimization Technique with a Panel Method or a Vortex Lattice

Method to Design Cavitating Propellers in Non-Uniform Inflows

Weikang Du∗and Spyros Kinnas

Ocean Engineering Group, Department of Civil, Architecture and Environmental Engineering, University of Texas at Austin,

Texas, TX 78712, USA

Abstract

In this study, a nonlinear optimization method, which is coupled with either a panel method or a

vortex lattice method, is used to design open propellers in uniform, circumferentially averaged or

non-uniform inflow. A B-spline geometry with 4× 4 control points is used to ensure that the pro-

peller blade is accurately defined with fewer parameters. The optimization objective is to maximize

the efficiency of the propeller while satisfying the given propeller thrust, and different cavity area or

pressure constraints are applied. The influence of those constraints are studied, and propeller geome-

tries are designed in different cases. The optimal efficiency as a function of the thrust coefficients

are compared with those from other references, and the optimal circulations from this method are

compared with those predicted from the lifting line optimization theory. It is shown that this method

satisfies the optimization objectives and can be used in the practice of designing cavitating propellers.

Keyword: optimization; panel method; vortex lattice method; cavitating propeller design

Introduction

The preliminary design of marine propellers has been gradually developing in the past. Generally, the methods used

can be categorized into two types [Kerwin and Hadler, 2010]. The first one involves using systematic series of pro-

pellers, whose open water characteristics are already known, either from experimental tests or from computational

fluid dynamic simulations [Yeo et al., 2014]. A widely known example is by using the Wageningen B-screw series

[van Lammeren et al., 1969]. The second type of methods do not require and are not limited to the known propeller se-

ries, but are based on the optimal radial distribution of circulation. These methods need the circumferentially averaged

inflow, and are more adapted to the nominal wake field downstream of the ship hull.

An alternative approach can be seen as an improvement of the second type of methods. Mishima and Kinnas [1997]

developed a numerical optimization method which is coupled with a Vortex Lattice Method (VLM) to design the cav-

itating propellers in the non-uniform inflow. A major advantage of this method is that it considers the circumferential

variance of the inflow, which is important in predicting the periodic pressure fluctuations and the vibrations on the

ship hull caused by the propeller in unsteady non-axisymmetric inflows. This method uses a B-spline to represent the

blade geometry, and the optimization objective and constraints (thrust, torque, cavitation area, etc.) are approximated

via second-order Taylor expansions. This method allows a constrained amount of cavitation in the design and thus can

be applied to design propellers working under a moderate or even high loading. A numerical code called CAVOPT-3D

(3-Dimensional CAVitating propeller blade OPTimizaiton) was developed and later improved by Griffin and Kinnas

[1998] to include the minimum pressure constraints and a one-variable quadratic skew optimization.

In the Ocean Engineering Group of University of Texas at Austin, the prediction of flows around propellers has

been studied intensively in the past decades. The two major codes are MPUF-3A, which uses the VLM, and PROPCAV

(PROPeller CAVitation), which uses the Boundary Element Method (BEM, more commonly known as the panel

method). Some major improvements in MPUF-3A include: the thickness loading coupling scheme by Kinnas [1992],

the unsteady wake alignment scheme and the non-linear terms in pressure evaluation by He [2010], etc. In PROPCAV,

Kinnas et al. [2007] coupled the panel method with a boundary layer solver XFOIL [Drela, 1989] and developed the

viscous/inviscid interaction method; Tian and Kinnas [2012] introduced a pseudo-unsteady wake alignment scheme
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(full wake alignment scheme, or FWA) to improve the accuracy of the predicted propeller performance, especially at

low advance ratios.

In this paper, the nonlinear optimization method is coupled with the newest version of MPUF-3A and PROPCAV

to design cavitating propellers. Different constraints will be applied, and various inflows, including uniform, circum-

ferentially averaged and non-uniform inflow will be used. The efficiency and optimal circulation from the current

method will be compared with those from other references [Kerwin and Hadler, 2010] or the lifting line optimization

method [Menéndez Arán and Kinnas, 2014].

Methodology

The vortex lattice method and the panel method

In the VLM, line vortices and sources are placed on the mean camber surface of the blade and the trailing wake, and

the strengths of those singularities are determined by solving the potential flow which satisfies the kinematic boundary

condition and dynamic boundary condition. The resultant velocity
−→
V can be written as the summation of the individual

contributions as:
−→n ·

−→
V =−→n ·

(−→
VΓ +

−→
VQ +

−→
VI +

−→
VB +

−→
VO

)

= 0, (1)

where
−→
VΓ is the velocity induced by the line vortices on the key blade and wake,

−→
VQ the velocity induced by the cavity

sources on the key blade and wake,
−→
VI the inflow velocity,

−→
VB the velocity induced by the line sources, which represents

the thickness of the blade, and
−→
VO the induced velocity by the other blades and wakes.

In the panel method, the total flow velocity −→q is decomposed into an incoming flow −→qin and a propeller-induced

flow
−−→
Uind (the perturbation velocity),

−→q =−→qin +
−−→
Uind . (2)

−−→
Uind can be treated as the potential flow which is governed by the Laplace’s equation

−−→
Uind = ∇φ , ∇2φ = 0, (3)

where φ is the perturbation potential.

The Kutta condition is required which means the velocity must remain finite

|∇φ |< ∞ at the trailing edge. (4)

By using the Green’s identity, (3) can be written in the boundary integrated form:

2πφp =
∫∫

SH

[

φp

∂G(p, p′)

∂np′
−G(p, p′)

∂φp

∂np′

]

dS+
∫∫

SW

∆φW

∂G(p, p′)

∂np′
dS, (5)

where SH is the surface of the hydrofoil or propeller blade, duct, and hub, SW the surface of the trailing wake, G the

Green’s function, which is defined as 1/R(p, p′) in 3D and 2lnR(p, p′) in 2D, and R the distance between the two

points p and p′.

More details of the VLM and the panel method can be found in Lee [1979] and Lee [2002] respectively.

The B-splines propeller blade geometry

The camber of the propeller blade geometry is represented as a B-spline surface, as shown in figure 1. 13 parameters

are chosen to determine the movement of each vortex at each optimization iteration to specify the improved blade

geometry. The advantage of using B-spline geometry is that much fewer variables are needed in the optimization

(compared with the traditional geometry definition by the distribution of chord length, skew, rake, pitch etc.), while

each point on the blade surface is uniquely specified. The non-uniform B-spline surface is defined as

P(u,w) = [x(u,w),y(u,w),z(u,w)] =
Nu−1

∑
i=0

Nw−1

∑
j=0

di jNi,4(u)N j,4(w), (6)

where di j are the B-spline control points, Ni,4(u) and N j,4(w) B-spline basis of order 4, u and v parameters for B-

splines, and Nu and Nw are number of B-spline control points in u-direction and w-direction.
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(a) cubic B-spline camber surface with 4×4 polygon net (b) initial B-spline vertices and the vertex movements

Figure 1: The B-spline blade geometry from Mishima and Kinnas [1997]

The numerical optimization method

The general constrained optimization problem is defined as

minimize f (x) (7)

sub ject to gi(x)≤ 0 i = 1,2, . . . ,m (8)

hx(x) = 0 i = 1,2, . . . , l (9)

where f (x) is the optimization objective function, gi(x) the inequality constraints and hi(x) the equality constraints. In

the present method, the design objective is to minimize the torque for a given thrust so that the propeller can achieve

the highest efficiency. The equality constraint function is the thrust coefficient and the inequality constraints can be the

maximum allowable back/face cavity area (CA), the maximum allowable blade rate cavity volume velocity harmonics,

the maximum allowable cavity length at the tip and the minimum difference between the lowest pressure and the vapor

pressure, shown as

σ −MAX(−Cp)≥ BTOL (10)

where σ is the cavity number, defined as

σ =
P0 −Pv
ρ

2
n2D2

(11)

where P0 is the pressure far upstream, Pv the vapor pressure, ρ the fluid density, n the propeller rotational frequency

and D the propeller diameter. The pressure coefficient is defined as

Cp =
P−P0
ρ

2
n2D2

(12)

where P is the pressure on the propeller surface.

The objective function and the constraint functions are approximated as second-order Taylor expansions. More

details of this method can be found in Mishima and Kinnas [1996] and Mishima and Kinnas [1997].
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Results and discussion

Case 1. Uniform inflow, unconstrained

This method is first applied to design a 5-blade cavitating propeller subject to uniform inflow, without any constraints.

The hub radius over the blade radius is 0.3. The target KT is 0.35, and the cavity number is 3.5. The advance ratio

equals 1.0, which is defined as

Js =
Vs

nD
, (13)

where Vs is the ship speed. The Froude number, defined as

Fr =
n2D

g
, (14)

where g is the acceleration of gravity, is taken as infinitely large. A large Froude number means that the cavitation is

not influenced by the gravity.

The optimization process converges in about 500 iterations, as shown in figure 2c. Since there are no constraints

on the optimization, there is some cavitation in the design, as shown in figure 2b. The propeller geometry and the

optimal distribution of the pitch (P), chord length (c) and maximum camber ( f ), are shown in figure 2a and figure 2d.
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(a) blade geometry
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Figure 2: A 5-blade cavitating propeller is designed in uniform inflow without any constraints

Case 2. Circumferentially averaged inflow, constrained as no cavitation

In the inflow shown in figure 3a, there a low axial velocity region where blade angle equals 0 (12 o’clock), which can

be considered as the influence of the ship hull boundary layer. The axial velocity is normalized by the ship speed. In

this case, the inflow is circumferentially averaged, and the target KT is 0.5. The constraint is chosen so that the lowest

pressure is greater or equal to the vapor pressure (i.e., setting BTOL = 0 in equation 10). All the other conditions

are the same as in Case 1. These design conditions and constraint lead to a square tip propeller blade without any

cavitation, as shown in figure 3b. However, some information of the non-uniform inflow is missing in averaging,

especially when the variation in the circumferential direction is big. Consequently, even the optimal design satisfies

the no cavitation constraint, there might be some cavitation at some blade angles in the non-uniform inflow, especially

where the axial velocity is low, as shown in figure 3c and figure 3d.
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Figure 3: Propeller blade designed with no-cavitation constraint in the circumferentially averaged inflow might still show some undesirable

cavitation in non-uniform inflow where the axial velocity is low.
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Case 3. Non-uniform inflow with constraint on the cavity area

In this case, the cavitating propeller is designed in non-uniform inflow, which is one of the advantages of the presented

method. The cavity number is 2.5, and the Froude number is 5.0. All the other design conditions are the same as

in Case 1, except that the inflow in figure 3a is used (non-uniform, without being circumferentially averaged). The

constraint is to limit the cavity area (non-dimensionalized by the blade area) as 0.2 or 0.3, as shown in figure 4a. If the

maximum allowable cavity area is 0.2, the efficiency of the optimal propeller is 71.2%, while if the maximum cavity

area is 0.3, the efficiency is 72.4%. Those efficiencies are close, however, the case with a smaller maximum cavity

area will have wider blade near the hub, as shown in figure 4b. The pitch distributions of those two cases are similar.
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(a) different constraints on the cavity area will lead to different designs
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Figure 4: Wider blade near the hub is needed in the case with more strict constraint on cavity area.

Optimal efficiency and circulations compared with other references or methods

For a given advance ratio, Kerwin and Hadler [2010] showed the ideal efficiency from the actuator disk model in

uniform inflow, with the effect of swirl included (Js = 1.0). These efficiencies are compared with those of the optimal

propeller blades designed by the current method, both in the uniform inflow and non-uniform inflow, as shown in

figure 5. The efficiency curve from the optimal blades are lower than those from the actuator disk model, as expected.

The circulations from the optimal propeller agree well with the results from the lifting line optimization method

[Menéndez Arán and Kinnas, 2014], as shown in figure 6.
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Figure 5: The efficiencies from the current method are compared

with the results from the actuator disk model (Js = 1.0). The

thrust coefficient CT is defined as CT =
T hrust
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Figure 6: The optimal circulations from the current method agree

well with the results from the lifting line optimization method for

two cases with different hub radius and number of blades.
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Conclusion

In this paper, a numerical optimization method, which is coupled with a vortex lattice method or a panel method,

is applied to design cavitating propellers in uniform, circumferentially averaged or non-uniform inflows. Outputs of

this method include the 3-dimensional propeller blade geometries, together with the optimal distribution of the chord

length, maximum camber, pitch and skewness. Results show that the design objectives (minimize the torque for given

thrust) and constraints (maximum cavity area, minimum pressure, etc.) can be satisfied. It is also shown that with a

smaller allowable cavity area, the optimal propeller has a wider blade near the hub. The efficiencies as a function of

the thrust are compared with the ideal value from the actuator disk model, and a reasonable trend is observed. The

circulations of the optimal propeller blades agree well with those predicted from the lifting line optimization method.

Finally, this numerical technique can be a useful and reliable tool in designing marine propellers with controlled

amount of cavitation.
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