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Abstract

Mini-batch stochastic gradient descent and

variants thereof have become standard for

large-scale empirical risk minimization like

the training of neural networks. These meth-

ods are usually used with a constant batch size

chosen by simple empirical inspection. The

batch size significantly influences the behav-

ior of the stochastic optimization algorithm,

though, since it determines the variance of the

gradient estimates. This variance also changes

over the optimization process; when using a

constant batch size, stability and convergence

is thus often enforced by means of a (manually

tuned) decreasing learning rate schedule.

We propose a practical method for dynamic

batch size adaptation. It estimates the vari-

ance of the stochastic gradients and adapts the

batch size to decrease the variance proportion-

ally to the value of the objective function, re-

moving the need for the aforementioned learn-

ing rate decrease. In contrast to recent related

work, our algorithm couples the batch size to

the learning rate, directly reflecting the known

relationship between the two. On popular im-

age classification benchmarks, our batch size

adaptation yields faster optimization conver-

gence, while simultaneously simplifying learn-

ing rate tuning. A TensorFlow implementation

is available.

1 INTRODUCTION

In parametric machine learning models, like logistic re-

gression or neural networks, the performance of a pa-

rameter vector w ∈ R
d on datum x is quantified by a
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loss function ℓ(w;x). Assuming the data comes from a

distribution x ∼ p, the goal is to minimize the expected

loss, or risk,

R(w) = Ex∼p[ℓ(w;x)]. (1)

We consider empirical risk minimization tasks of the

form

min
w∈Rd

F (w) =
1

M

M
∑

i=1

ℓ(w;xi), (2)

where the risk is approximated using a training set

{x1, . . . , xM} of data sampled (approximately) from p.

Typical optimization algorithms used to minimize (2) re-

peatedly evaluate the gradient

∇F (w) =
1

M

M
∑

i=1

∇ℓ(w;xi). (3)

For large-scale problems where M and/or d are large, it

is inefficient or impossible to evaluate the exact gradient

(3), and one typically resorts to stochastic gradients by

randomly drawing a mini-batch B ⊂ {1, . . . ,M}, |B| =
m ≪ M , at each step of the optimization algorithm and

using the gradient approximation

g(w) =
1

m

∑

i∈B

∇ℓ(w;xi). (4)

The simplest, but still widely used, stochastic optimiza-

tion algorithm is stochastic gradient descent (SGD, Rob-

bins & Monro, 1951), which updates

wk+1 = wk − αkg(wk), (5)

where αk ∈ R+ is the step size parameter, often called

learning rate in the machine learning context. Variants of

SGD include ADAGRAD (Duchi et al., 2011), ADADELTA

(Zeiler, 2012), and ADAM (Kingma & Ba, 2015). We

restrict our considerations to SGD in this paper.



1.1 THE EFFECT OF THE BATCH SIZE

If i is drawn uniformly at random from {1, . . . ,M},
∇ℓi(w) = ∇ℓ(w;xi) is a random variable with mean

E[∇ℓi(w)] =
1

M

M
∑

i=1

∇ℓi(w) = ∇F (w), (6)

and covariance matrix

Σ(w) := cov [∇ℓi(w)] =

1

M

M
∑

i=1

(∇ℓi(w)−∇F (w))(∇ℓi(w)−∇F (w))T .
(7)

Likewise, a stochastic gradient g(w) computed on a

randomly-drawn mini-batch B is a random variable with

mean ∇F (w). Assuming that it is composed of m sam-

ples drawn independently with replacement, its covari-

ance matrix is

cov[g(w)] =
Σ(w)

m
(8)

and, by the Central Limit Theorem, g(w) is approxi-

mately normally distributed:

g(w) ∼ N

(

∇F (w),
Σ(w)

m

)

. (9)

When sampling without replacement, as is usually done

in practice, the same holds approximately as long as

m≪M .

In practice, the batch size m is often set to a fixed value,

which is chosen ad hoc or by simple empirical tests. But

it is actually a crucial variable, which poses an intricate

trade-off that affects the optimizer’s performance. On

the one hand, the variance of the stochastic gradients de-

creases linearly with m, so small batches give vague gra-

dient information, thus slow convergence in the number

of optimization steps. On the other hand, the cost per

step increases linearly with m. (This assumes that batch

sizes are large enough to fully utilize the available paral-

lel computing resources, which can easily be guaranteed

by enforcing an appropriate minimal batch size.) While

we can thus linearly trade off variance and cost, the gra-

dient variance does not linearly affect the performance of

the optimizer; its effect depends on the local structure of

the objective and interacts with other parameter choices

of the optimizer, notably the learning rate. In general,

there should thus be an optimal batch size that balances

these two aspects. Choosing such good batch sizes is an

important aspect in the design of a numerical optimizer.

Below, we propose an algorithm that adapts the batch

size based on the gradient variance observed by the opti-

mizer at runtime. The exact variance over the entire data

set (7) is prohibitively costly to compute, but it can be

estimated by the sample variance computed on a mini-

batch. As will be described below, we only require the

diagonal elements of Σ(w), corresponding to the vari-

ances of the individual components. These can be esti-

mated by

S(w) =
1

m

∑

i∈B

∇ℓi(w)
.2 − g(w).2 ∈ R

d, (10)

where .2 signifies an element-wise square.

1.2 NOTATION

The following discussion addresses the choice of batch

size for a single SGD step, assuming that we are currently

at some arbitrary but fixed point w in parameter space.

For notational convenience, we will thus drop w from

the notation and write F = F (w), ∇F = ∇F (w), et

cetera.

2 RELATED WORK

The dynamic adaption of batch sizes has already at-

tracted attention in other recent works. Friedlander &

Schmidt (2012) derive decreasing series of bounds on

the gradient variance that provably yield fast conver-

gence rates with a constant learning rate, showing that

an increasing batch size can replace a decreasing learn-

ing rate. To realize these bounds in practice, they propose

to increase the batch size by a pre-specified constant fac-

tor in each iteration, without adaptation to (an estimate

of) the gradient variance.

The prior works closest to ours in spirit are by Byrd et al.

(2012) and De et al. (2017), who propose to adapt the

batch size based on variance estimates. Their criterion is

based on the observation that −g is a descent direction if

‖g −∇F‖ ≤ θ‖g‖, with 0 ≤ θ < 1 (11)

(proof in Appendix A). While the left-hand side of (11) is

of course unknown, one can compute its expected square

E
[

‖g −∇F‖2
]

=

d
∑

j=1

E
[

(gj −∇Fj)
2
]

=

d
∑

j=1

σ2
jj

m
=

tr(Σ)

m
.

(12)

Consequently, (11) holds in expectation if tr(Σ)/m ≤
θ2‖g‖2 or (with equality)

m =
1

θ2
tr(Σ)

‖g‖2
. (13)



While this is a practical and intuitive method, the “de-

scent direction” criterion is agnostic of the actual step

being taken, which depends on the learning rate α in ad-

dition to the direction −g. Moreover, the method intro-

duces an additional free parameter θ. In this work we

strive to alleviate these issues, while the resulting batch

size adaptation rule will stay close to (13) in form and

spirit.

A somewhat related line of research aims to reduce the

variance of stochastic gradients by incorporating gradi-

ent information from previous iterations into the current

gradient estimate. Notable methods are SVRG (John-

son & Zhang, 2013) and SAGA (Defazio et al., 2014).

Both are not mini-batch methods, since they update af-

ter gradient evaluations on individual training examples

(which are then modified using stored gradient informa-

tion). However, two recent papers (Harikandeh et al.,

2015; Daneshmand et al., 2016) combine these variance-

reduced methods with increasing sample sizes, i.e., the

effective size of the training set is increased over time.

In both, a sample size schedule has to be pre-specified

and is not adapted at runtime.

We note that another recent line of work on non-uniform

sampling of training samples with the goal of variance

reduction (including, but not limited to, Needell et al.,

2014; Zhao & Zhang, 2015; Schmidt et al., 2015; Csiba

& Richtárik, 2016) is orthogonal to our work, since it is

concerned with the composition of batches rather than

their size.

More generally, our work fits into a recent effort to au-

tomate or simplify the tuning of parameters in stochastic

optimization algorithms, most notably the learning rate

(Schaul et al., 2013; Mahsereci & Hennig, 2015).

3 COUPLED ADAPTIVE BATCH SIZE

We will cast the problem of finding a “good” batch size

as maximizing a lower bound on the expected gain per

computational cost for an individual optimization step.

While the resulting rule is similar in form to (13), it pro-

vides a new interpretation and introduces an explicit in-

teraction with the learning rate. This criterion will subse-

quently be simplified, removing all unknown quantities

and free parameters from the equation.

3.1 MAXIMIZING A BOUND ON THE

EXPECTED GAIN

We define the gain of the SGD step from w to w+ =
w − αg as the drop in function value, F − F+, where

F+ = F (w+). In order to quantify this gain, we will

assume that F has Lipschitz-continuous gradients, i.e.,

there is a constant L > 0 such that

‖∇F (u)−∇F (v)‖ ≤ L‖u− v‖ ∀u, v ∈ R
d. (14)

This is a standard assumption in the analysis of stochastic

optimization algorithms, setting a not overly restrictive

bound on how fast the gradient can change when moving

in parameter space. As a consequence, the change in F
from v ∈ R

d to u ∈ R
d is bounded (see, e.g., Bottou

et al. (2016), Eq. 4.3) by

F (u) ≤ F (v) +∇F (v)T (u− v) +
L

2
‖u− v‖2. (15)

Inserting v = w and u = w+ = w − αg and rearranging

yields a lower bound G on the gain:

F − F+ ≥ G := α∇FT g −
Lα2

2
‖g‖2. (16)

To derive the expectation of G, recall from Equation (9)

that E[g] = ∇F and

E
[

‖g‖2
]

=

d
∑

j=1

E
[

g2j
]

=

d
∑

j=1

(

∇F 2
j +

σ2
jj

m

)

= ‖∇F‖2 +
tr(Σ)

m
,

(17)

where we used that, for X ∼ N (µ, σ2), the second mo-

ment is E[X2] = µ2 + σ2. Thus,

E[G] =

(

α−
Lα2

2

)

‖∇F‖2 −
Lα2

2m
tr(Σ). (18)

The first term in (18) is the gain in absence of noise, de-

termined by α and ∇F . It is reduced by a term that de-

pends on the gradient variance and drops with m. We

see from (18) that, for an expected descent, E[G] > 0,

we require

α <
2‖∇F‖2

L (‖∇F‖2 + tr(Σ)/m)
, (19)

which exhibits a clear relationship between learning rate

and batch size. Small batch sizes require a small learning

rate, while larger batch sizes enable larger steps. We will

exploit this relationship later on by explicitly coupling

the two parameters. As a side note, for zero variance, we

recover the well-known condition α < 2/L that guaran-

tees convergence of gradient descent in the deterministic

case.

Obviously, the larger m, the larger E[G], so that the de-

terministic case is optimal if we ignore computational

cost. Since that cost scales linearly with m, the optimal

batch size is the one that maximizes expected gain per

cost,

max
m

E[G]

m
. (20)



A recent workshop paper (Pirotta & Restelli, 2016) used

a similar idea, although on a different quantity (a statisti-

cal lower bound on the linearized improvement). In our

setting, maximal gain per cost is achieved by (derivation

in Appendix A)

m =
2Lα

2− Lα

tr(Σ)

‖∇F‖2
. (21)

3.2 THE CABS CRITERION

The result in (21) poses two practical problems. First,

the Lipschitz constant L is an unknown property of the

objective function. Even more importantly, it is difficult

to reliably and robustly estimate the squared norm of the

true gradient ‖∇F‖2 from a single batch. One might be

tempted to replace it with ‖g‖2, recovering a criterion

similar to (13), but this is not an unbiased estimator for

the true gradient norm, as Equation (17) shows. Depend-

ing on the noise level and, intriguingly, the batch size m,

the second term in (17) can introduce a significant bias.

In an effort to address these practical problems, we pro-

pose to replace Eq. (21) with the following simpler rule,

which we term the Coupled Adaptive Batch Size (CABS):

m = α
tr(Σ)

F
. (22)

A formal justification for this simplification will be given

in §3.3, but first we want to highlight some intuitive ben-

efits of this batch size adaptation scheme.

A major advantage of the CABS rule, emphasized in its

name, is the direct coupling of learning rate and batch

size. We have established that a large learning rate

demands large batches while a smaller, more cautious

learning rate can be used with smaller batches (Equa-

tion 19). The CABS rule explicitly reflects this known

relationship. Using CABS can thus be seen as “tailoring”

the noise level to the learning rate the user has chosen.

We show experimentally, see §5, that this makes finding

a well-performing learning rate easier.

Apart from that, theoretical considerations (Friedlander

& Schmidt, 2012) and experimental evidence show that

it is beneficial to have small batches in the beginning

and larger ones later in the optimization process. Hence,

one may want to think of the denominators of (22), (21)

and (13) as a measure of “optimization progress”. The

function value F used in our CABS rule is, by defini-

tion, the measure for training progress. The norm of the

true gradient ‖∇F‖2 conveys similar information (even

though it might be misleading near non-optimal station-

ary points like saddle points or plateaus), but can not sim-

ply be estimated by ‖g‖2 as previously noted. We have

also investigated unbiased estimators for ‖∇F‖2 by cor-

recting the bias in ‖g‖2 using the variance estimate S,

but these turned out to be too unreliable in experiments.

Additionally, Equation (17) also shows that using ‖g‖2

in the denominator leads to a disadvantageous feedback:

larger batches cause ‖g‖2 to become smaller in expecta-

tion which, in turn, leads to larger batches according to

(13) (and the other way round).

Readers who are rightly worried about the change of

“unit” or “type” when replacing the gradient norm in (21)

with the function value in (22) may find it helpful to con-

sider the units of measure for the quantities in (22). Let

[w] and [F ] denote the units of the parameters and the

objective function, respectively. The gradient has unit

[F ]/[w] and its variance [F ]2/[w]2. It is a key insight that

a well-chosen learning rate has to be driven by quantities

with unit [w]2/[F ] (see MacKay (2003) §34.4 for more

discussion). If this was not the case, the gradient descent

update −αk∇F (wk) would not be covariant, i.e., inde-

pendent of the units of measure of w and F . It is also evi-

dent in Newton’s method: in the one-dimensional case, a

Newton update step is −F ′′(wk)
−1F ′(wk), correspond-

ing to a “learning rate” that is given by the inverse second

derivative, having unit [F ]/[w]2. Putting it all together,

the right-hand side of (22) has unit

[w]2

[F ]

[F ]2/[w]2

[F ]
= [1]. (23)

Hence, the chosen batch size is invariant under rescaling

of the objective.

Lastly, CABS realizes a bound on the gradient variance

that is decreasing with the distance to optimality, similar

to that in Theorem 2.5 of Friedlander & Schmidt (2012),

which they have shown to guarantee convergence of SGD

with a constant, non-decreasing learning rate.

3.3 MATHEMATICAL MOTIVATION FOR

CABS

For a more systematic motivation for the CABS rule, we

will show that it is approximately equal to (21), and

hence optimal in the sense of (20), if we assume that F
locally has an approximately scalar Hessian, i.e.,

∇2F (w) ≈ hI, h > 0. (24)

First, note that under this assumption, the Lipschitz con-

stant L is exactly h and the optimal batch size according

to (21) becomes

m =
2hα

2− hα

tr(Σ)

‖∇F‖2
. (25)

Furthermore, the second-order Taylor expansion of F
around w now reads

F (u) ≈ F (w)+∇F (w)T (u−w)+
h

2
‖u−w‖2. (26)



We minimize both sides with respect to u. The left-

hand side takes on the optimal value F∗. For the

right-hand side, we set the gradient with respect to u,

∇F (w)+h(u−w), to zero, which yields the minimizer

u = −∇F (w)/h + w. Inserting this back into (26) and

rearranging yields

‖∇F (w)‖2 ≈ 2h(F (w)− F∗). (27)

That is, we can replace the squared gradient norm with a

scaled distance to optimality. Doing so in (25) reads

m =
α

2− hα

tr(Σ)

F − F∗

. (28)

We eliminate h from this equation by realizing that, un-

der the scalar Hessian assumption, a good learning rate

is α = 1/h. It corresponds both to the Newton step, as

well as to the optimal constant learning rate 1/L for gra-

dient descent, given that (24) holds. Hence, if we assume

a well-chosen learning rate with hα ≈ 1, then Eq. (28)

further simplifies to

m = α
tr(Σ)

F − F∗

. (29)

Assuming a scalar Hessian is, of course, a substantial

simplification. The result can partly be generalized to the

less restrictive assumption of µ-strong convexity, under

which we still have (see Appendix A)

‖∇F‖2 ≥ 2µ(F − F∗), (30)

If the problem is well-conditioned in that µ and L are

not too far from each other, the above argument carries

through as an upper bound on the batch size.

To finally arrive at the CABS rule, we drop F∗. This is

based on the assumption of a non-negative loss, which

holds for all standard loss functions like least-squares or

cross-entropy. In this case, F ≥ F − F∗, i.e., the func-

tion value F is a non-trivial upper bound on the distance

to optimality. If the optimum is close to zero, F will be a

good proxy for F − F∗. If not, which is not uncommon,

the denominator of the CABS rule has a small positive

offset compared to (29), but this will not fundamentally

alter its implications, as long as we do not come too close

to the optimum, which is usually the case for even mod-

estly complex problems. The more general form (29) can

be used in lieu of (22) if one has access to a tighter lower

bound on F∗, e.g., due to prior experience from similar

problems. In fact, when the objective function includes

an additive regularization term, we suggest to use the un-

regularized loss as a proxy for F − F∗.

4 PRACTICAL IMPLEMENTATION

We outline a practical implementation of the CABS crite-

rion. Obviously, neither F nor tr(Σ) are known exactly

at each individual SGD step, but estimates of both quan-

tities can be obtained from a mini-batch. This is straight-

forward for the objective F . For the variance, we use the

estimate S explained in Equation (10). Since S only es-

timates the diagonal elements of the covariance matrix,

it is tr(Σ) ≈ ‖S‖1. Considerations on how to practically

compute S can be found in §4.2.

4.1 MECHANICAL DETAILS

We realize the CABS criterion in a predictive manner,

meaning that we do not find the exact batch size that sat-

isfies (22) in each single optimization step. To achieve

such an exact enforcement of their criterion, Byrd et al.

(2012) and De et al. (2017) increase the batch size by

a small increment whenever the criterion is not satisfied,

and only then perform the update. This incremental com-

putation introduces an overhead and, when the increment

is small, can lead to under-utilization of computing re-

sources. Instead, we leverage the observation that gradi-

ent variance and function value change only slowly from

one optimization step to the next, which allows us to use

our current estimates of F and tr(Σ) to set the batch size

used for the next optimization step. It also allows for a

smoothing of both quantities over multiple optimization

steps. The estimates can be fairly noisy, especially that

of tr(Σ) at small batch sizes. We use exponential mov-

ing averages (see Algorithm 1) to obtain more robust es-

timates.

The resulting batch size is rounded to the nearest integer

and clipped at minimal and maximal batch sizes. A min-

imal batch size avoids under-utilization of the compu-

tational resources with very small batches and provides

additional stability of the algorithm in the small-batch

regime. A maximal batch size is necessary due to hard-

ware limitations: In contemporary deep learning, GPU

memory limits the number of samples that can be pro-

cessed at once. Our implementation has such a limit but

it was never reached in our experiments. We note in pass-

ing that algorithmic batch size (the number of training

samples used to compute a gradient estimate before up-

dating the parameters) and computational batch size (the

number of training samples that are processed simulta-

neously) are in principle independent—a future imple-

mentation could split an algorithmic batch into feasible

computational batches when necessary, freeing the algo-

rithm from hardware-specific constraints. Algorithm 1

provides pseudo-code.



Algorithm 1 SGD with Coupled Adaptive Batch Size

Require: Learning rate α, initial parameters w0, num-

ber of steps K, batch size bounds (mmin,mmax), run-

ning average constant µ = 0.95

1: w ← w0, m← mmin, Favg ← 0, ξ ← 0
2: for k = 1, . . . ,K do

3: Draw a mini-batch B of size m
4: F, g, S ← EVALUATE(w, B)

5: w ← w − αg
6: ξ ← µξ + (1− µ)‖S‖1
7: Favg ← µFavg + (1− µ)F
8: m←ROUND & CLIP(αξ/Favg, mmin,mmax)

9: end for

Note: EVALUATE(w, B) denotes an evaluation of func-

tion value F (w), stochastic gradient g(w) and vari-

ance estimate S(w) (Eq. 10) using mini-batch B.

ROUND & CLIP(m, mmin, mmax) rounds m to the nearest

integer and clips it at the provided minimal and maximal

values.

4.2 VARIANCE ESTIMATE

If the individual gradients ∇ℓi in the mini-batch are ac-

cessible, then S can be computed directly by Eq. (10),

adding only the computational cost of squaring and sum-

ming the gradients. Unfortunately, these individual gra-

dients are not available in practical implementations of

the backpropagation algorithm (Rumelhart et al., 1986)

used to compute gradients in the training of neural net-

works. A complete discussion of this technical issue is

beyond the scope of this paper, but we briefly sketch a

solution.

Consider a fully-connected layer in a neural network

with weight matrix Wl+1 ∈ R
nl×nl+1 . During the for-

ward pass, the matrix of activations Al ∈ R
m×nl (con-

taining the activations for each of the m input training

samples) is propagated forward by a matrix multiplica-

tion,

Zl+1 = AlWl+1 ∈ R
m×nl+1 . (31)

Once the backward pass arrives at this layer, the gradient

with respect to Wl+1 is computed as

dWl+1 = AT
l dZl+1. (32)

The aggregation of individual gradients is implicit in this

matrix multiplication. Practical implementations rely on

the efficiency of these matrix operations and, even more

importantly, it is infeasible to store m individual gradi-

ents in memory if the number of parameters d is high.

However, one can similarly compute the second mo-

ment of the gradients, 1
m

∑

i (∇ℓi)
.2

, that is needed in

(10) without giving up efficient batch processing. It is

straight-forward to verify that this second moment of

gradients with respect to W (l+1) can be computed as

(

AT
l

).2
(dZl+1)

.2
. (33)

In this form, the computation of the gradient variance

adds non-negligible but manageable computational cost.

Since it duplicates half of the operations in the backward

pass, the additional cost can be pinned down to roughly

25%. This is primarily an implementation issue; the cost

could be reduced by implementing special matrix opera-

tions to compute (32) and (33) jointly.

5 EXPERIMENTS

We evaluate the proposed batch size adaptation method

by training convolutional neural networks (CNNs) on

four popular image classification benchmark data sets:

MNIST (LeCun et al., 1998), Street View House Num-

bers (SVHN) (Netzer et al., 2011), as well as CIFAR-10

and CIFAR-100 (Krizhevsky, 2009). While these are

small to medium-scale problems by contemporary stan-

dards, they exhibit many of the typical difficulties of neu-

ral network training. We opted for these benchmarks to

keep the computational cost for a thorough evaluation of

the method manageable (this required approximately 60

training runs per benchmark, see the following section).

5.1 EXPERIMENT DESIGN

We compare against constant batch sizes 16, 32, 64, 128,

256 and 512. To keep the plots readable, we only report

results for batch sizes 32, 128 and 512 in the main text;

results for the other batch sizes can be found in the sup-

plements. We also compare against a batch size adapta-

tion based on the criterion (13) used in Byrd et al. (2012)

and De et al. (2017). Since implementation details differ

between these two works, and both combine batch size

adaptation with other measures (Newton-CG method in

Byrd et al. (2012) and a backtracking line search in De

et al. (2017)), we resort to a custom implementation of

said criterion. For a fair comparison, we realize it in a

similar manner as CABS. That is, we use criterion (13),

while keeping the predictive update mechanism for the

batch size, the smoothing via exponential moving aver-

ages, rounding and clipping exactly as in our CABS im-

plementation described in §4.1 and Algorithm 1. This

method will simply be referred to as Competitor in the

remainder of this section.

During the optimization process, we periodically evalu-

ate the training loss as well as the classification accuracy

on a held-out test set. Since each method uses a different

batch size, both quantities are tracked as a function of

the number of accessed training examples, instead of the
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Figure 1: Results for SVHN. Shared horizontal axis indi-

cates the number of examples used for training. Top and

middle panel depict evolution of training loss and test ac-

curacy, respectively, color-coded for different batch size

methods, each with its optimal learning rate. Bottom

panel shows batch size chosen by CABS.

number of optimization steps. This measure is propor-

tional to wall-clock time up to per-batch overheads that

depend on the specific problem and implementation.

The (constant) learning rate for each batch size method

was tuned for maximum test accuracy given the fixed

budget of accessed training examples. We tried six can-

didates α ∈ {0.3, 0.1, 0.06, 0.03, 0.01, 0.006}; this rele-

vant range has been determined with a few exploratory

experiments. In addition to the learning rate, the com-

petitor method has a free parameter θ. De et al. (2017)

suggest setting it to 1.0, the highest possible noise tol-

erance, by default. In our experiments, we found the

performance of the method to be fairly sensitive to the

choice of θ. We thus tried θ ∈ {0.6, 0.8, 1.0} and report

results for the best-performing choice. For CABS, there

is no analogous parameter to tune.

MNIST We start with experiments on the well-known

MNIST image classification task of identifying handwrit-

ten digits in 28×28 pixel gray scale images. Our network

has two convolutional layers with 5×5 filters (32 and 64

filters, respectively) and subsequent max-pooling over
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Figure 2: Results for CIFAR-10. Set-up as in Fig. 1.

2×2 windows. This is followed by a fully-connected

layer with 1024 units. The activation function is ReLU

for all layers. The output layer has 10 units with softmax

activation and we use cross-entropy loss.

SVHN Next, we train a CNN on the digit classifica-

tion task of the Street View House Numbers (SVHN) data

set. While the task is similar to MNIST, the images are in

RGB and larger (32×32). They exhibit real-world views

of digits in house numbers, partially with clutter, mis-

alignment and distracting digits at the sides. We train

a CNN with two convolutional layers, each with 64 fil-

ters of size 5×5 and subsequent max-pooling over 3×3

windows with stride 2. They are followed by two fully-

connected layers with 256 and 128 units, respectively.

The activation function is ReLU for all layers. The out-

put layer has 10 units with softmax activation and we use

cross-entropy loss. We apply L2-regularization and per-

form data augmentation operations (random cropping of

24×24 pixel subimages, left-right mirroring, color dis-

tortion) on the training inputs.

CIFAR-10 and CIFAR-100 Finally, we train CNNs

on the CIFAR-10 and CIFAR-100 data sets, where the

task is to classify 32×32 pixel RGB images into one of

10 and 100 object categories, respectively. For CIFAR-

10, we crop the images to 24×24 pixels and train a CNN

with two convolutional layers, each with 64 filters of size
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Figure 3: Results for CIFAR-100. Set-up as in Fig. 1.

5x5 and subsequent max-pooling over 3x3 windows with

stride 2. They are followed by two fully-connected lay-

ers with 384 and 192 units, respectively. The activation

function is ReLU for all layers. The output layer has 10

units with softmax activation and we use cross-entropy

loss. We perform data augmentation operations (ran-

dom cropping, left-right mirroring, color distortion) on

the training set.

For CIFAR-100, we use the full 32×32 image and add a

third convolutional layer (64 filters of size 5×5 followed

by max pooling). The fully-connected layers have 512

and 256 units, respectively, and the output layer has 100

units. We add L2-regularization.

5.2 RESULTS AND DISCUSSION

On SVHN, CIFAR-10 and CIFAR-100 (Figures 1, 2 and

3), CABS yields significantly faster decrease in training

loss with the curve contiuously lying below all others. It

also achieves the best test set accuracy of all methods on

all three problems. While the margin over the second-

best method is very small on SVHN, it amounts to a no-

ticeable 0.4 percentage points on CIFAR-10 and even 1.4

points on CIFAR-100.

Surprisingly, on MNIST—the least complex of the bench-

mark problems we investigated—our method is outper-

formed by the small constant batch size of 32 and the
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Figure 4: Results for MNIST. Set-up as in Fig. 1.

competitor method, which also chooses very small batch

sizes throughout. Our method does, however, surpass

non-adaptive larger batch sizes (128, 512) in terms of

speed and all contenders reach virtually the same test set

accuracy on this problem. CABS makes rapid progress

initially, but seems to choose unnecessarily large batch

sizes later on. The resulting high per-iteration cost ev-

idently can not be compensated by the higher learning

rate it enables (.1 for CABS compared to .01 with constant

batch size of 32). We conjecture that CABS overestimates

the gradient variance due to the homogeneous structure

of the MNIST data set; if the distribution of gradients is

very closely-centered, outliers in a few coordinate direc-

tions lead to comparably high variance estimates.

Overall, CABS outperforms alternative batch size

schemes on three out of the four benchmark problems

we investigated and the benefits seem to increase with the

complexity of the problem (MNIST → SVHN → CIFAR-

10 → CIFAR-100). When considering the CABS batch

size schedules, depicted in the bottom panels of Figures

1 to 4, a common behavior (with the exception of MNIST)

seems to be that CABS uses the minimal batch size (16 in

our experiments) for a considerable portion of the train-

ing process and increases approximately linearly after-

wards.

Finally, we present our findings regarding the sensitiv-

ity to the choice of learning rate when using CABS. As
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Figure 6: Learning rate sensitivity on MNIST. Set-up as

in Fig. 5.

detailed above, the coupling of learning rate and batch

size in CABS can be seen as tayloring the noise level to

the chosen learning rate. This suggests that the perfor-

mance of the optimizer should be less sensitive to the

choice of learning rate when adapting the batch size with

our method. Indeed, this became evident in our experi-

ments by considering the families of training loss curves

for various learning rates. Figures 5 and 6 compare a

constant batch size, the competitor method and CABS on

the SVHN and MNIST benchmark problems, respectively.

CABS significantly reduces the dependency of the perfor-

mance on the learning rate compared to both the constant

batch size and the competing adaptive method. In prac-

tical applications, this finding could drastically simplify

the often tedious process of learning rate tuning.

6 CONCLUSION

We proposed CABS, a practical rule for dynamic batch

size adaptation based on estimates of the gradient vari-

ance and coupled to the chosen learning rate as well

as optimization progress represented by the function

value. In our experiments, CABS was able to speed

up SGD training in neural networks and simplify the

tuning of the learning rate. In contrast to exist-

ing methods, it does not introduce any additional free

parameters. A TensorFlow1 implementation of SGD

with CABS can be found on http://github.com/

ProbabilisticNumerics/cabs.

A MATHEMATICAL DETAILS

Proof of Equation (11) By the Cauchy-Schwarz in-

equality, 〈g,∇F 〉 = 〈g, g〉 − 〈g, g − ∇F 〉 ≥ ‖g‖2 −
‖g‖‖g −∇F‖ = ‖g‖(‖g‖ − ‖g −∇F‖). This becomes

positive if ‖g −∇F‖ < ‖g‖.

Solving the Maximization Problem (20) We want to

maximize

U(m) =
E[G]

m
=

2α− Lα2

2m
‖∇F‖2 −

Lα2

2m2
tr(Σ).

(34)

Setting the derivative

U ′(m) = −
2α− Lα2

2m2
‖∇F‖2 +

Lα2

m3
tr(Σ) (35)

to zero and rearranging yields (21).

Proof of Equation (30) The definition of strong con-

vexity is that, for all w, u ∈ R
d

F (u) ≥ F (w) +∇F (w)T (u−w) +
µ

2
‖u−w‖2 (36)

for µ > 0. From there, the proof is identical to that of

Equation (27) in the main text. We minimize both sides

of the inequality. The left-hand side has minimal value

F∗. The gradient with respect to u of the right-hand side

is ∇F (w) + µ(u − w). By setting this to zero we find

the minimizer u = −∇F (w)/µ+w. Inserting this back

into (36) and rearranging yields (30). �
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tance sampling for minibatches. arXiv preprint

arXiv:1602.02283, 2016.

1http://tensorflow.org

http://github.com/ProbabilisticNumerics/cabs
http://github.com/ProbabilisticNumerics/cabs
http://tensorflow.org


Daneshmand, Hadi, Lucchi, Aurelien, and Hofmann,

Thomas. Starting small—learning with adaptive sam-

ple sizes. In Proceedings of the 33nd International

Conference on Machine Learning (ICML), pp. 1463–

1471, 2016.

De, Soham, Yadav, Abhay, Jacobs, David, and Goldstein,

Tom. Automated inference with adaptive batches. In

Proceedings of the 20th International Conference on

Artificial Intelligence and Statistics (AISTATS), 2017.

Defazio, Aaron, Bach, Francis, and Lacoste-Julien, Si-

mon. SAGA: A fast incremental gradient method with

support for non-strongly convex composite objectives.

In Advances in Neural Information Processing Sys-

tems 27, pp. 1646–1654. 2014.

Duchi, John, Hazan, Elad, and Singer, Yoram. Adaptive

subgradient methods for online learning and stochastic

optimization. Journal of Machine Learning Research,

12(Jul):2121–2159, 2011.

Friedlander, Michael P and Schmidt, Mark. Hy-

brid deterministic-stochastic methods for data fitting.

SIAM Journal on Scientific Computing, 34(3):A1380–

A1405, 2012.

Harikandeh, Reza, Ahmed, Mohamed Osama, Virani,

Alim, Schmidt, Mark, Konečný, Jakub, and Sallinen,
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