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Abstract

We consider basic ergodicity properties of adaptive Markov chain Monte Carlo algorithms
under minimal assumptions, using coupling constructions. We prove convergence
in distribution and a weak law of large numbers. We also give counterexamples to
demonstrate that the assumptions we make are not redundant.
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1. Introduction

Markov chain Monte Carlo (MCMC) algorithms are a widely used method of approximately
sampling from complicated probability distributions. However, a wide variety of different
MCMC algorithms are available, and it is often necessary to tune the scaling and other para-
meters before the algorithm will converge efficiently.

It is tempting to automate and improve this tuning through the use of adaptive MCMC
algorithms, which attempt to ‘learn’ the best parameter values while they run. In this paper,
we consider the extent to which ergodicity and stationarity of the specified target distribution
are preserved under adaptation. Adaptive MCMC methods using regeneration times and other
complicated constructions have been proposed by Gilks et al. (1998), Brockwell and Kadane
(2005), and elsewhere. On the other hand, related adaptive schemes can often fail to preserve
stationarity of the target distribution (see, e.g. Example 2, below). This leads to the question
of what conditions on natural (nonregenerative) adaptive MCMC algorithms guarantee that the
stationarity of π(·) will be preserved.

A significant step in this direction was made by Haario et al. (2001). They proposed
an adaptive Metropolis algorithm which attempts to optimise the proposal distribution of a
Metropolis algorithm to be approximately (2.38)2�/d, where d is the dimension and � is the
d × d covariance matrix of the d coordinates under stationarity. (Such a proposal is optimal in
certain settings according to the results of Roberts et al. (1997); see also Roberts and Rosenthal
(2001) and Bédard (2006).) Haario et al. did this by estimating � from the empirical distribution
of the Markov chain output so far, thus adapting the estimate of � while the algorithm runs (but
less and less as time goes on). They proved that a particular version of this algorithm (which
involves adding a small multiple of the identity matrix to each proposal covariance) correctly
converges in distribution to the target distribution.
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It was observed byAndrieu and Robert (2002) that the algorithm of Haario et al. (2001) can be
viewed as a version of the Robbins–Monro stochastic control algorithm (see Robbins and Monro
(1951)). The results of Haario et al. were then generalised by Atchadé and Rosenthal (2005)
and Andrieu and Moulines (2006), proving convergence of more general adaptive MCMC
algorithms. (Andrieu and Moulines (2006) also proved a central limit theorem result.) Those
two papers removed many restrictions and limitations of the Haario et al. result, but at the
expense of requiring other technical hypotheses which may be difficult to verify in practice.

In this paper, we present somewhat simpler conditions, which still ensure ergodicity and
stationarity of the specified target distribution. After introducing our notation and terminology
(Section 2) and considering some special cases (Section 3), we present a running example
(Section 4) which illustrates adaptive MCMC’s potential pitfalls. We then use a bivariate
coupling construction to prove the validity of adaptive MCMC in uniform settings (Section 5)
and nonuniform (Section 6) settings. We make connections to drift conditions (Section 7) and
recurrence properties (Section 8), and prove a weak law of large numbers (Section 9), before
presenting some general discussion of adaptive MCMC (Section 10).

2. Preliminaries

We let π(·) be a fixed ‘target’ probability distribution, on a state space X with σ -algebra
F . The goal of MCMC is to approximately sample from π(·) through the use of Markov
chains, particularly when π(·) is too complicated and high-dimensional to facilitate more direct
sampling.

We let {Pγ }γ∈Y be a collection of Markov chain kernels on X, each of which has π(·) as a
stationary distribution, i.e. (πPγ )(·) = π(·).

Assuming that Pγ is φ-irreducible and aperiodic (which it usually will be), this implies (see,
e.g. Meyn and Tweedie (1993)) that Pγ is ergodic for π(·), i.e. that limn→∞ ‖P n

γ (x, ·)−π(·)‖ =
0, for all x, where ‖µ(·) − ν(·)‖ = supA∈F |µ(A) − ν(A)| is the usual total variation distance.
That is, Pγ represents a ‘valid’ MCMC algorithm, i.e. defines a Markov chain which will
converge in distribution to the target π(·). So, if we keep γ fixed then the Markov chain
algorithm described by Pγ will eventually converge to π(·).

However, some choices of γ may lead to far less efficient algorithms than others, and it may
be difficult to know in advance which choices of γ are preferable. To deal with this, adaptive
MCMC proposes that at each time n we let the choice of γ be given by a Y-valued random
variable �n, updated according to specified rules.

Formally, for n = 0, 1, 2, . . . , we have an X-valued random variable Xn, representing the
state of the algorithm at time n, and a Y-valued random variable �n, representing the choice of
kernel to be used when updating from Xn to Xn+1. We let

Gn = σ(X0, . . . , Xn, �0, . . . , �n)

be the filtration generated by {(Xn, �n)}. Thus,

P[Xn+1 ∈ B | Xn = x, �n = γ , Gn−1] = Pγ (x, B), x ∈ X, γ ∈ Y, B ∈ F , (1)

while the conditional distribution of �n+1 given Gn is to be specified by the particular adaptive
algorithm being used. We let

A(n)((x, γ ), B) = P[Xn ∈ B | X0 = x, �0 = γ ], B ∈ F ,
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record the conditional probabilities for Xn for the adaptive algorithm, given the initial conditions
X0 = x and �0 = γ . Note that A(n) �= ∏n−1

i=0 P�i
, since A(n) represents the unconditional

distribution of the algorithm, equivalent to integrating over the distributions of �1, . . . , �n−1.
Finally, we let

T (x, γ , n) = ‖A(n)((x, γ ), ·) − π(·)‖ ≡ sup
B∈F

|A(n)((x, γ ), B) − π(B)|

denote the total variation distance between the distribution of our adaptive algorithm at time n

and the target distribution π(·). We call the adaptive algorithm ergodic if limn→∞ T (x, γ , n) =
0 for all x ∈ X and γ ∈ Y. We can then ask, will the adaptive chain necessarily be ergodic?
Since each Pγ converges to π(·), we might expect that our adaptive algorithm does too.
However, we shall see in Section 4, below, that this is not always the case.

3. Some special cases

Adaptive MCMC, in the sense that we have defined it above, includes as special cases a
number of previously considered schemes, including most obviously the following cases.

• Traditional MCMC, i.e. �n ≡ 1 for all n.

• Systematic-scan hybrid algorithm, i.e. (�n) = (1, 2, . . . , d, 1, 2, . . . , d, 1, 2, . . . ),
where, for example, Pi moves only the ith coordinate.

• Random-scan hybrid algorithm, i.e. the {�n} are independent and identically distributed
as Uniform{1, 2, . . . , d}.

In this section, we make some observations about these and other special cases, to provide
context for the more general results to come.

To begin, call an adaptive MCMC algorithm an independent adaptation if, for all n, �n

is independent of Xn. (This includes the traditional and hybrid cases described above.) For
independent adaptations, stationarity of π(·) is guaranteed, as is shown in the following result.

Proposition 1. Consider an independent adaptation algorithm A(n)((x, γ ), ·), where π(·) is
stationary for each Pγ (x, ·). Then π(·) is also stationary for A(n)((x, γ ), ·), i.e.∫

x∈X
P[Xn+1 ∈ B | Xn = x, Gn−1]π(dx) = π(B), B ∈ F .

Proof. Using (1), the independence of �n and Xn, and the stationarity of π(·) for Pγ , we
have∫

x∈X
P[Xn+1 ∈ B | Xn = x, Gn−1]π(dx)

=
∫

x∈X

∫
γ∈Y

P[Xn+1 ∈ B | Xn = x, �n = γ , Gn−1] P[�n ∈ dγ | Xn = x, Gn−1]π(dx)

=
∫

x∈X

∫
γ∈Y

Pγ (x, B) P[�n ∈ dγ | Gn−1]π(dx)

=
∫

γ∈Y
P[�n ∈ dγ | Gn−1]

∫
x∈X

Pγ (x, B)π(dx)

= 1π(B)

= π(B).
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On the other hand, it is well known that even for independent adaptations, irreducibility may
be destroyed, as we see in the following example.

Example 1. Let X = {1, 2, 3, 4}, with π{1} = π{2} = π{3} = 2
7 and π{4} = 1

7 . Let
P1(1, {2}) = P1(3, {1}) = P1(4, {3}) = 1 and P1(2, {3}) = P1(2, {4}) = 1

2 . Similarly, let
P2(2, {1}) = P2(3, {2}) = P2(4, {3}) = 1 and P2(1, {3}) = P2(1, {4}) = 1

2 . Then it is easily
checked that each of P1 and P2 are irreducible and aperiodic, with stationary distribution π(·).
On the other hand, (P1P2)(1, {1}) = 1, so when beginning in state 1, the systematic-scan
adaptive chain P1P2 alternates between states 1 and 2 but never reaches state 3. Hence, this
adaptive algorithm fails to be irreducible, and also T (x, γ , n) �→ 0 as n → ∞, even though
each individual Pi is ergodic.

Another special case of adaptive MCMC is to introduce some stopping time τ with
P(τ < ∞) = 1, such that no adaptations are done after time τ , i.e. such that �n = �τ

whenever n ≥ τ . This scheme, which we refer to as finite adaptation, has been proposed by
Pasarica and Gelman (2003) and E. Moulines (personal communication), amongst others. It is
analogous to the common MCMC practice of using a number of initial ‘trial’Markov chain runs
with different tunings, to determine good parameter values, and then using a final MCMC run
with fixed parameters to accomplish the sampling. Finite sampling schemes always preserve
asymptotic convergence, as is shown in the following result.

Proposition 2. Consider a finite adaptation MCMC algorithm, in which each individual Pγ

is ergodic, i.e. limn→∞ ‖P n
γ (x, ·) − π(·)‖ = 0 for all γ ∈ Y and x ∈ X. Then the finite

adaptation MCMC algorithm is also ergodic.

Proof. Let d(x, γ , n) = ‖P n
γ (x, ·) − π(·)‖. It follows from the assumptions that

limn→∞ d(x, γ , n) = 0 for all x ∈ X and γ ∈ Y. Hence, conditional on Xτ and �τ ,
limn→∞ d(Xτ , �τ , n) = 0. The result follows from integrating over the distributions of Xτ

and �τ , and using the bounded convergence theorem.

Both finite and independent adaptive chains represent ‘safe’ methods of implementing
adaptation, in the sense that they provide some adaptation without destroying the stationarity
of π(·). However, of greater interest are dependent, infinite adaptations, i.e. adaptations which
continue to modify the �n by continuing to learn based on the values of Xn. In such cases,
typically the pair sequence {(Xn, �n)}∞n=0 is Markovian, in which case we call the algorithm
a Markovian adaptation, but no assumptions about independent or finite adaptations can be
made. This leads to the question of when such adaptations preserve the stationarity of π(·),
and the asymptotic distributional convergence of the algorithm.

4. Running example

To illustrate the limitations of adaptive MCMC and the application of our theorems, we
present the following running example. This example was discussed by Atchadé and Rosenthal
(2005); an animated Java applet version is also available (see Rosenthal (2004)).

Let K ≥ 4 be an integer and let X = {1, 2, . . . , K}. Let π{2} = b > 0 be very small,
π{1} = a > 0, and π{3} = π{4} = · · · = π{K} = (1 − a − b)/(K − 2) > 0. Let Y = N. For
γ ∈ Y, let Pγ be the kernel corresponding to a random walk Metropolis algorithm for π(·),
with proposal distribution

Qγ (x, ·) = Uniform{x − γ , x − γ + 1, . . . , x − 1, x + 1, x + 2, . . . , x + γ },

https://doi.org/10.1239/jap/1183667414 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1183667414


462 G. O. ROBERTS AND J. S. ROSENTHAL

i.e. uniform on all the integers within γ of x, aside from x itself. The kernel Pγ then proceeds,
given Xn and �n, by first choosing a proposal state Yn+1 ∼ Q�n(Xn, ·). With probability
min[1, π(Yn+1)

/
π(Xn)] it then accepts this proposal by setting Xn+1 = Yn+1. Otherwise,

with probability 1 − min[1, π(Yn+1)
/

π(Xn)], it rejects this proposal by setting Xn+1 = Xn.
(If Yn+1 �∈ X then the proposal is always rejected; this corresponds to setting π(y) = 0 for
y �∈ X.)

We define the adaptive scheme as follows. Begin with �0 = 1 (say). Let M ∈ N ∪ {∞}
and let p : N → [0, 1]. For n = 0, 1, 2, . . . , given Xn and �n, if the next proposal is accepted
(i.e. if Xn+1 �= Xn) and �n < M , then with probability p(n) let �n+1 = �n + 1, otherwise
let �n+1 = �n. Otherwise, if the next proposal is rejected (i.e. if Xn+1 = Xn) and �n > 1,
then with probability p(n) let �n = �n−1 − 1, otherwise let �n+1 = �n. In words, with
probability p(n), we increase γ (to a maximum of M) each time a proposal is accepted, and
decrease γ (to a minimum of 1) each time a proposal is rejected.

We record a few specific versions of this scheme.

• The ‘original running example’ has M = ∞ and p(n) ≡ 1, i.e. it modifies �n in every
iteration except when �n = 1 and the next proposal is rejected.

• The ‘singly modified running example’ has M = ∞ but arbitrary p(n).

• The ‘doubly modified running example’ has M < ∞ and arbitrary p(n).

• The ‘one-two’ version has M = 2 and p(n) ≡ 1.

The intuition for these schemes is that accepted proposals indicate that there may be room
for γ to grow, while rejected proposals indicate that γ may be too large. Indeed, this scheme
is somewhat analogous to the adaptive Metropolis algorithm of Haario et al. (2001), in that it
attempts to search for an optimal proposal scaling to obtain a reasonable acceptance rate (not
too close to either 0 or 1). However, and perhaps surprisingly, this simple adaptive scheme can
completely destroy convergence to π(·), as we see in the following example.

Example 2. Let ε > 0, and consider the one-two version with K = 4, a = ε, and b = ε3. Then
it is easily verified that there exists c > 0 such that P[X3 = �3 = 1 | X0 = x, �0 = γ ] ≥ cε,
for all x ∈ X and γ ∈ Y, i.e. the algorithm has O(ε) probability of reaching the configuration
{x = γ = 1}. On the other hand, P[X1 = �1 = 1 | X0 = �0 = 1] = 1 − ε2/2, i.e. the
algorithm has just O(ε2) probability of leaving the configuration {x = γ = 1} once it is there.
This probabilistic asymmetry implies that limε↘0 limn→∞ P[Xn = �n = 1] = 1. Hence,

lim
ε↘0

lim
n→∞ T (x, γ , n) ≥ lim

ε↘0
(1 − π{1}) = lim

ε↘0
(1 − ε) = 1.

In particular, for any δ > 0, there exists ε > 0 with limn→∞ T (x, γ , n) ≥ 1 − δ, so the
algorithm does not converge at all.

Hence, for this running example, ergodicity of the adaptive algorithm does not hold. On
the other hand, below we shall prove some theorems giving sufficient conditions to ensure
ergodicity. Along the way, in Corollary 2 we prove that the doubly modified running example
is ergodic, provided that p(n) → 0. We then prove (in Corollary 7) that the singly modified
running example is also ergodic, again provided that p(n) → 0.
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5. Uniformly converging case

Our next result requires that the convergence to π(·) of the various Pγ kernels all be uniformly
bounded (though we shall relax this condition in Section 6). It also requires that the amount of
adapting diminishes as n → ∞, which can be achieved either by modifying the parameters by
smaller and smaller amounts (as in the adaptive Metropolis algorithm of Haario et al. (2001)),
or by doing the adaptations with smaller and smaller probability (as in our singly modified
running example above, with adaptation probabilities p(n) → 0). In either case, it is still
permitted to have an infinite total amount of adaptation (e.g. to have

∑
n p(n) = ∞ in our

example, or to have
∑

n Dn = ∞ in Theorem 1, below). In particular, there is no requirement
that the �n converge.

Theorem 1. Consider an adaptive MCMC algorithm, on a state space X, with adaptation
index Y, so π(·) is stationary for each kernel Pγ for γ ∈ Y. Under the following conditions,
the adaptive algorithm is ergodic.

(a) (Simultaneous uniform ergodicity.) For all ε > 0, there exists N = N(ε) ∈ N such that
‖P N

γ (x, ·) − π(·)‖ ≤ ε for all x ∈ X and γ ∈ Y.

(b) (Diminishing adaptation.) limn→∞ Dn = 0 in probability, where

Dn = sup
x∈X

‖P�n+1(x, ·) − P�n(x, ·)‖

is a Gn+1-measurable random variable (depending on the random values �n and �n+1).

Proof. Let ε > 0. Choose N = N(ε) as in condition (a). Then let Hn = {Dn ≥ ε/N2},
and use condition (b) to choose n∗ = n∗(ε) ∈ N large enough so that

P(Hn) ≤ ε

N
, n ≥ n∗. (2)

To continue, fix a ‘target time’ K ≥ n∗ + N . We shall construct a coupling which depends on
the target time K (cf Roberts and Rosenthal (2002)), to prove that L(XK) ≈ π(·).

Define the eventE = ⋂n+N
i=n+1 Hc

i . It follows from (2) that, forn ≥ n∗, we have P(E) ≥ 1−ε.
By the triangle inequality and induction on the event E, we have supx∈X ‖P�n+k

(x, ·) −
P�n(x, ·)‖ < ε/N , for all k ≤ N , and, in particular,

‖P�K−N
(x, ·) − P�m(x, ·)‖ <

ε

N
on E, x ∈ X, K − N ≤ m ≤ K. (3)

To construct the coupling, first construct the original adaptive chain {Xn} together with its
adaptation sequence {�n}, starting with X0 = x and �0 = γ . We claim that on E we can
construct a second chain {X′

n}Kn=K−N , such that X′
K−N = XK−N and X′

n ∼ P�K−N
(X′

n−1, ·)
for K − N + 1 ≤ n ≤ K and P[X′

i = Xi for K − N ≤ i ≤ m] ≥ 1 − [m − (K − N)]ε/N for
K − N ≤ m ≤ K .

Indeed, the claim is trivially true for m = K − N . Suppose that it is true for some value m.
Then, conditional on Gm and the event that X′

i = Xi for K − N ≤ i ≤ m, we have Xm+1 ∼
P�m(Xm, ·) and X′

m+1 ∼ P�K−N
(Xm, ·). It follows from (3) that the conditional distributions

of Xm+1 and X′
m+1 are within ε/N of each other. Hence, by e.g. Roberts and Rosenthal (2004,

Proposition 3(g)), we can ensure that X′
m+1 = Xm+1 with probability ≥ 1 − ε/N . It follows
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that

P[X′
i = Xi for K − N ≤ i ≤ m + 1] ≥ P[X′

i = Xi for K − N ≤ i ≤ m]
(

1 − ε

N

)

≥
(

1 − [m − (K − N)] ε

N

)(
1 − ε

N

)

≥ 1 − [m + 1 − (K − N)] ε

N
.

The claim thus follows by induction.
In particular, this shows that on E, P[X′

K = XK ] ≥ 1 − (K − (K − N))ε/N = 1 − ε. That
is, P[X′

K �= XK, E] < ε.
On the other hand, conditioning on XK−N and using condition (a), we have

‖P N
�K−N

(XK−N, ·) − π(·)‖ < ε.

Integrating over the distribution of XK−N gives ‖L(X′
K) − π(·)‖ < ε. It follows (again from

e.g. Roberts and Rosenthal (2004, Proposition 3(g))) that we can construct Z ∼ π(·) such
that P[X′

K �= Z] < ε. Furthermore, we can construct all of {Xn}, {X′
n}, and Z jointly on a

common probability space by first constructing {Xn} and {X′
n} as above and then constructing

Z conditional on {Xn} and {X′
n} from any conditional distribution satisfying that Z ∼ π(·)

and P[X′
K �= Z] < ε. (This joint construction can always be achieved, though it may require

enlarging the underlying probability space; see, e.g. Fristedt and Gray (1997, p. 430).)
We then have

P[XK �= Z] ≤ P[XK �= X′
K, E] + P[X′

K �= Z, E] + P[Ec] < ε + ε + ε = 3ε.

Hence, ‖L(XK) − π(·)‖ < 3ε, i.e. T (x, γ , K) < 3ε. Since K ≥ n∗ + N is arbitrary, this
means that T (x, γ , K) ≤ 3ε for all sufficiently large K . Hence, limK→∞ T (x, γ , K) = 0.

Even with the uniformity condition (a), Theorem 1 still applies in many situations, as the
following corollaries show. We begin with the case where X and Y are finite.

Corollary 1. Suppose that an adaptive MCMC algorithm satisfies the condition in Theo-
rem 1(b) and also that each Pγ is ergodic for π(·), i.e. limn→∞ ‖P n

γ (x, ·) − π(·)‖ = 0 for all
x ∈ X and γ ∈ Y. Suppose further that X and Y are finite. Then the adaptive algorithm is
ergodic.

Proof. Let ε > 0. By assumption, for each x ∈ X and γ ∈ Y, there exists N(x, γ , ε) such
that ‖P N(x,γ ,ε)

γ (x, ·) − π(·)‖ ≤ ε. Letting N(ε) = maxx∈X,γ∈Y N(x, γ , ε), we see that the
condition in Theorem 1(a) is satisfied. The result follows.

We can now apply Corollary 1 to one version of our running example.

Corollary 2. The doubly modified running example (presented in Section 4) is ergodic provided
that the adaptation probabilities p(n) satisfy limn→∞ p(n) = 0.

Proof. In the doubly modified running example, each Pγ is π -irreducible and aperiodic,
and, hence, ergodic for π(·). Furthermore, both X and Y are finite. Also, the condition in
Theorem 1(b) holds since ‖P�n+1(x, ·) − P�n(x, ·)‖ ≤ p(n) → 0. Hence, the result follows
from Corollary 1.
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Often, X and Y will not be finite. However, under compactness and continuity assumptions,
similar reasoning applies.

Corollary 3. Suppose that an adaptive MCMC algorithm satisfies the condition in Theo-
rem 1(b) and also that each Pγ is ergodic for π(·). Suppose further that X × Y is compact in
some topology, with respect to which the mapping (x, γ ) �→ T (x, γ , n) is continuous for each
fixed n ∈ N. Then the adaptive algorithm is ergodic.

Proof. Fix ε > 0. For n ∈ N, let Wn ⊆ X × Y be the set of all pairs (x, γ ) such that
‖P n

γ (x, ·) − π(·)‖ < ε. Since each Pγ is ergodic, this means that every pair (x, γ ) is in Wn

for all sufficiently large n. In particular,
⋃

n Wn = X × Y.
On the other hand, by continuity, each Wn is an open set. Thus, by compactness, there

exists a finite set {n1, . . . , nr} such that Wn1 ∪ · · · ∪ Wnr = X × Y. Letting N = N(ε) =
max{n1, . . . , nr}, we see that the condition in Theorem 1(a) is satisfied. The result follows.

In applying Corollary 3, the following lemma is sometimes useful.

Lemma 1. Suppose that the mapping (x, γ ) �→ Pγ (x, ·) is continuous with respect to a product
metric space topology, meaning that, for each x ∈ X, γ ∈ Y, and ε > 0, there exists
δ = δ(x, γ , ε) > 0 such that ‖Pγ ′(x′, ·) − Pγ (x, ·)‖ < ε for all x′ ∈ X and γ ′ ∈ Y satisfying
dist(x′, x) + dist(γ ′, γ ) < δ (for some distance metrics on X and Y). Then for each n ∈ N,
the mapping (x, γ ) �→ T (x, γ , n) is continuous.

Proof. Given x ∈ X, γ ∈ Y, n ∈ N, and ε > 0, find δ > 0 with ‖Pγ ′(x′, ·) − Pγ (x, ·)‖ <

ε/n whenever dist(x′, x) + dist(γ ′, γ ) < δ. Then, given x′ and γ ′ with dist(x′, x) +
dist(γ ′, γ ) < δ, as in the proof of Theorem 1 we can construct X′

n and Xn with X′
n ∼ P n

γ ′(x′, ·)
and Xn ∼ P n

γ (x, ·), such that P[X′
n = Xn] ≥ 1 − ε. Hence, ‖L(X′

n) − L(Xn)‖ < ε. The
triangle inequality then implies that ‖L(X′

n) − π(·)‖ and ‖L(Xn)−π(·)‖ are within ε of each
other, thus giving the result.

The required continuity conditions follow if the transition kernels have bounded densities
with continuous dependencies, as we see in the following result.

Corollary 4. Suppose that an adaptive MCMC algorithm satisfies the condition in Theo-
rem 1(b) and also that each Pγ is ergodic for π(·). Suppose further that for each γ ∈ Y,
Pγ (x, dz) = fγ (x, z)λ(dz) has a density fγ (x, ·) with respect to some finite reference measure
λ(·) on X. Finally, suppose the fγ (x, z) are uniformly bounded and that, for each fixed z ∈ X,
the mapping (x, γ ) �→ fγ (x, z) is continuous with respect to some product metric space
topology, with respect to which X × Y is compact. Then the adaptive algorithm is ergodic.

Proof. We have (see e.g. Roberts and Rosenthal (2004, Proposition 3(f))) that

‖Pγ ′(x′, ·) − Pγ (x, ·)‖ = 1

2

∫
X

[M(y) − m(y)]λ(dy), (4)

where M(y) = max{fγ (x, y), fγ ′(x′, y)} and m(y) = min[fγ (x, y), fγ ′(x′, y)]. By continu-
ity of the mapping (x, γ ) �→ fγ (x, y) and the finiteness of λ(·), it follows from the bounded
convergence theorem that the mapping (x, γ ) �→ Pγ (x, ·) is continuous. The result then
follows by applying Lemma 1 to Corollary 3.

Metropolis–Hastings algorithms do not have densities (since they have positive probability
of rejecting the proposal and not moving). In particular, the expression in (4) does not diminish
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to 0 as x′ approaches x. However, if the proposal kernels have densities, then a similar result
still holds.

Corollary 5. Suppose that an adaptive MCMC algorithm satisfies the condition in Theo-
rem 1(b) and also that each Pγ is ergodic for π(·). Suppose further that for each γ ∈ Y, Pγ

represents a Metropolis–Hastings algorithm with proposal kernel Qγ (x, dy) = fγ (x, y)λ(dy)

having a density fγ (x, ·) with respect to some finite reference measure λ(·) on X, with
corresponding density g for π(·) so that π(dy) = g(y)λ(dy). Finally, suppose that the fγ (x, y)

are uniformly bounded and, for each fixed y ∈ X, the mapping (x, γ ) �→ fγ (x, y) is continuous
with respect to some product metric space topology, with respect to which X × Y is compact.
Then the adaptive algorithm is ergodic.

Proof. In this case, the probability of accepting a proposal from x is given by

aγ (x) =
∫

X
min

[
1,

g(y)fγ (y, x)

g(x)fγ (x, y)

]
fγ (x, y)λ(dy),

which is a jointly continuous function of (x, γ ) ∈ X×Y by the bounded convergence theorem.
We decompose Pγ (x, ·) as

Pγ (x, dz) = [1 − aγ (x)]δx(dz) + pγ (x, z)λ(dz),

where δx is a point-mass at x, and pγ (x, z) is jointly continuous in x and γ . Iterating this, we
can write the n-step transition law as

P n
γ (x, dz) = [1 − aγ (x)]nδx(dz) + pn

γ (x, z)λ(dz),

for appropriate jointly continuous pn
γ (x, z).

We can assume without loss of generality that aγ (x) = 1 whenever λ{x} > 0, i.e. that
δx(·) and π(·) are orthogonal measures. (Indeed, if λ{x} > 0 then we can modify the proposal
densities so as to include [1 − aγ (x)]δx(dz) as part of pγ (x, z)λ(dz).) It then follows that

‖P n
γ (x, ·) − π(·)‖ = [1 − aγ (x)]n + 1

2

∫
X

|pn(x, z) − g(z)|λ(dz).

This quantity is jointly continuous in x and γ , again by the bounded convergence theorem.
Moreover, by ergodicity, it converges to zero as n → ∞ for each fixed x and γ . Hence, by
compactness, the convergence is uniform in x and γ , i.e. the condition in Theorem 1(a) is
satisfied. The result follows.

Remark. The strong conditions imposed in Corollary 4 and Corollary 5 can of course be
relaxed using more specialised arguments in specific examples.

We now consider the adaptive Metropolis algorithm of Haario et al. (2001). In that algorithm,
it is assumed that X ⊆ R

d is compact, with finite reference measure λ(·) given by Lebesgue
measure restricted to X. Also, the proposal kernels are multivariate normal; they are of the form
Qγ (x, ·) = MVN(x, γ ), where γ is a nonnegative-definite d × d matrix. This ensures that
each Pγ is ergodic for π(·) and that the density mappings (x, γ ) �→ fγ (x, y) are continuous
and bounded. Furthermore, the specific details of their algorithm (including that X is bounded
and that εId (where Id is the identity matrix) is added to each empirical covariance matrix at
each iteration of the algorithm) ensure (see Haario et al. (2001, Equation (14))) that there exists

https://doi.org/10.1239/jap/1183667414 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1183667414


Coupling and ergodicity 467

c1, c2 > 0 such that c1Id ≤ γ ≤ c2Id (i.e. both γ −c1Id and c2Id −γ are nonnegative-definite)
for all γ , which implies that we can take Y (and hence also X×Y) to be compact. Corollary 5
therefore implies the following result.

Corollary 6. The adaptive Metropolis algorithm of Haario et al. (2001) is ergodic.

This provides an alternative analysis to the mixingale approach of Haario et al. (2001). Haario
et al. actually proved a law of large numbers for their algorithm (for bounded functionals), which
we consider in Section 9.

Remark. For the adaptive Metropolis algorithm, Haario et al. (2001) in fact showed (see Haario
et al. (2001, Corollary 3)) that the covariance matrices stabilise, i.e. there is γ∗ ∈ Y such that
�n → γ∗ with probability 1. On the other hand, Theorem 1 and its corollaries (aside from
Corollary 6) apply even in cases where {�n} has infinite oscillation.

6. Nonuniformly converging case

In this section, we relax the uniform convergence rate condition (Theorem 1(a)). Indeed,
an examination of the proof of Theorem 1 shows that this condition was used only to ensure
that P N

�K−N
(XK−N, ·) was close to π(·). This suggests that we can generalise to the case where

P N
�K−N

(XK−N, ·) is ‘usually’ close to π(·). To proceed, for ε > 0, define the ‘ε convergence
time function’ Mε : X × Y → N by

Mε(x, γ ) = inf{n ≥ 1 : ‖P n
γ (x, ·) − π(·)‖ ≤ ε}.

If each individual Pγ is ergodic then Mε(x, γ ) < ∞.

Theorem 2. Consider an adaptive MCMC algorithm where the condition in Theorem 1(b) is
satisfied. Let x∗ ∈ X and γ∗ ∈ Y. Then limn→∞ T (x∗, γ∗, n) = 0 provided that, for all ε > 0,
the sequence {Mε(Xn, �n)}∞n=0 is bounded in probability given X0 = x∗ and �0 = γ∗. That is,
for all δ > 0, there exists N ∈ N such that P[Mε(Xn, �n) ≤ N | X0 = x∗, �0 = γ∗] ≥ 1 − δ,
for all n ∈ N.

Proof. From the proof of Theorem 1, we conclude that, for all ε > 0 there exists n∗ ∈ N

such that, for all N ∈ N and all K ≥ n∗ + N , we can simultaneously construct the original
chain {Xn}, and Z ∼ π(·) such that (writing G0 for {X0 = x∗, �0 = γ∗})

T (x∗, γ∗, n) < 3ε + P[Mε(Xn, �n) > N | G0].
We find m ∈ N such that P[Mε(Xn, �n) > m | G0] ≤ ε for all n ∈ N. Then, setting N = m,
we conclude that

T (x∗, γ∗, K) ≤ 3ε + ε = 4ε, K ≥ n∗ + m.

The result follows.

We shall use the following two easily verified lemmas. The first follows by induction, the
second by Markov’s inequality.

Lemma 2. Let {en}∞n=0 be a sequence of real numbers. Suppose that en+1 ≤ λen +b, for some
0 ≤ λ < 1 and 0 ≤ b < ∞ and all n = 0, 1, 2, . . . . Then, supn en ≤ max{e0, b/(1 − λ)}.
Lemma 3. Let {Wn}∞n=0 be a sequence of nonnegative random variables. If supn E[Wn] < ∞
then {Wn} is bounded in probability.
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We can now prove the following result.

Corollary 7. The singly modified running example (see Section 4) is ergodic provided that the
adaptation probabilities p(n) satisfy limn→∞ p(n) = 0.

Proof. Let V (γ ) = exp(γ ). Then it is easily verified (since the probability of accepting from
proposal Qγ (x, ·) is always less than or equal to K/2γ ) that E[V (�n+1) | �n = γ ] ≤ λV (γ )+
b 1{C}(γ ), where λ = 2/e, C = {γ ∈ Y : γ ≤ γ∗}, γ∗ = K(e2 − 1)/2, b = (1 − λ)γ∗ + 1, and
1{·} denotes the indicator function. Hence, E[V (�n+1)] ≤ λ E[V (�n)] + b. It follows from
Lemma 2 that supn E[V (�n)] ≤ b/(1 − λ) < ∞. Since γ ≤ V (γ ), supn E[�n] < ∞, so {�n}
is bounded in probability by Lemma 3. But since each set {(x, γ ) : x ∈ X, γ ≤ G} is finite
and since each individual Mε(x, γ ) is finite, it follows that {Mε(Xn, �n)} is also bounded in
probability, for each ε > 0. The result then follows from Theorem 2.

7. Connections to drift and minorisation conditions

The quantity Mε(x, γ ) is rather abstract. It can be made somewhat more concrete using the
theory of quantitative convergence rate bounds (see e.g. Meyn and Tweedie (1994), Rosenthal
(1995), (2002), Roberts and Tweedie (1999), and Baxendale (2005)). For example, Meyn and
Tweedie (1994, Theorem 2.3) implies the following result.

Proposition 3. Consider a Markov chain kernel P on a state space (X, F ) with stationary
probability distribution π(·). Suppose that there exists C ∈ F , V : X → [1, ∞), δ > 0, λ < 1,
and b < ∞, such that supC V = v < ∞ and the following conditions hold.

(i) (Strongly aperiodic minorisation condition.) There exists a probability measure ν(·) on
C with P(x, ·) ≥ δν(·), for all x ∈ C.

(ii) (Geometric drift condition.) We have PV ≤ λV + b 1{C}, i.e. (PV )(x) ≤ λV (x) +
b 1{C}(x), for all x ∈ X (where (PV )(x) = E[V (X1) | X0 = x]).

Then there exist K < ∞ and ρ < 1, depending only on the constants δ, λ, b, and v, such that
‖P n

γ (x, ·) − π(·)‖ ≤ KV (x)ρn for all γ ∈ Y.

To make use of Proposition 3, we consider a notion related to the simultaneous geometrically
ergodicity studied by Roberts et al. (1998). Say a family {Pγ }γ∈Y of Markov chain kernels is
simultaneously strongly aperiodically geometrically ergodic if there exists C ∈ F , V : X →
[1, ∞), δ > 0, λ < 1, and b < ∞, such that supC V = v < ∞ and the following conditions
hold.

(i) For each γ ∈ Y, there exists a probability measure νγ (·) on C with Pγ (x, ·) ≥ δνγ (·)
for all x ∈ C.

(ii) We have (Pγ )V ≤ λV + b 1{C}.

We then have the following result.

Theorem 3. Consider an adaptive MCMC algorithm where the condition in Theorem 1(b) is
satisfied, such that the family {Pγ }γ∈Y is simultaneously strongly aperiodically geometrically
ergodic with E[V (X0)] < ∞. Then the adaptive algorithm is ergodic.

Proof. By Theorem 2, Lemma 3, and Proposition 3, it suffices to show that supn E[V (Xn)] <

∞. Now, we have by assumption that (Pγ )V ≤ λV + b 1{C} for all γ ∈ Y, so E[V (Xn+1) |
Xn = x, �n = γ ] ≤ λV (x) + b. Integrating over the distribution of �n, we conclude
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that E[V (Xn+1) | Xn = x] ≤ λV (x) + b. Hence, from the double-expectation formula,
E[V (Xn+1)] ≤ λ E[V (Xn)] + b. Then, from Lemma 2, supn E[V (Xn)] ≤ max{E[V (X0)],
b/(1 − λ)} < ∞.

Remark. In Theorem 3, the strong aperiodicity condition νγ (C) = 1 can be dropped if
infx �∈C V (x) > 2b/(1 − λ); see Rosenthal (1995).

The results of Meyn and Tweedie (1994) and Rosenthal (1995) give geometric quantitative
bounds on convergence, which is quite a strong property. For present purposes, all that is
required is that M(x, γ ) ≤ V (x)a(n) where a(n) → 0 (at any rate), uniformly in γ . So, the
hypotheses of Theorem 3 are overly strong in this sense.

To weaken these hypotheses, we consider polynomial ergodicity. While some results about
polynomial ergodicity (e.g. Jarner and Roberts (2002) and Fort and Moulines (2003)) do not
provide explicit quantitative convergence bounds, Theorems 3 and 4 of Fort and Moulines (2000)
do. To make use of their result, call a family {Pγ }γ∈Y of Markov chain kernels simultaneously
polynomially ergodic if the following conditions hold.

• Each Pγ is π -irreducible with stationary distribution π(·).
• There exists C ∈ F , m ∈ N, δ > 0, and probability measures νγ (·) on X such that

π(C) > 0 and P m
γ (x, ·) ≥ δνγ (·) for all x ∈ C and γ ∈ Y.

• There exists q ∈ N and measurable functions V0, V1, . . . , Vk : X → (0, ∞) such that,
for k = 0, 1, . . . , q − 1, there are 0 < αk < 1, bk < ∞, and ck > 0 such that

(Pγ Vk+1)(x) ≤ Vk+1(x) − Vk(x) + bk 1{C}(x), for x ∈ X and γ ∈ Y,

Vk(x) ≥ ck, for x ∈ X,

Vk(x) − bk ≥ αkVk(x), for x ∈ X \ C,

sup
C

Vq < ∞,

π(V β
q ) < ∞, for some 0 < β ≤ 1.

These conditions are rather technical; however, they are weaker than assuming geometric
ergodicity. Analogous to Theorem 3, we then have the following result.

Theorem 4. Consider an adaptive MCMC algorithm where the condition in Theorem 1(b)
is satisfied, such that the family {Pγ }γ∈Y is simultaneously polynomially ergodic. Then the
adaptive algorithm is ergodic.

Continuing in this direction, we note that Theorem 13.0.1 of Meyn and Tweedie (1993)
indicates that to merely prove convergence (as opposed to geometric convergence), it suffices
to have an even weaker drift condition of the form PV ≤ V −1+b 1{C}. So, perhaps it suffices
for the validity of adaptive MCMC algorithms that such drift conditions hold uniformly for
all Pγ . Unfortunately, the available results (see e.g. Meyn and Tweedie (1993)) appear not to
provide any explicit quantitative bounds on convergence. Furthermore, conditional on failing to
couple, the sequence {Eγ [V (Xn)]} may not remain bounded in probability even for a fixed chain
Pγ (see, e.g. Pemantle and Rosenthal (1999)), which necessitates the additional assumption
that the sequence {V (Xn)} remains bounded in probability for the adaptive chain. We have not
yet been able to draw any firm conclusions based only on these weakest drift conditions, so we
state this as an open problem.
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Open Problem 1. Consider an adaptive MCMC algorithm satisfying the condition in Theo-
rem 1(b), with C ∈ F , V : X → [1, ∞), δ > 0, b < ∞, supC V = v < ∞, and

(i) For each γ ∈ Y, there exists a probability measure νγ (·) on C with Pγ (x, ·) ≥ δνγ (·)
for all x ∈ C.

(ii) We have Pγ V ≤ V − 1 + b 1{C}, for all γ ∈ Y.

Suppose further that the sequence {V (Xn)}∞n=0 is bounded in probability, given X0 = x∗ and
�0 = γ∗. Does this imply that limn→∞ T (x∗, γ∗, n) = 0?

8. Relation to recurrence

The above results indicate that an adaptive MCMC algorithm where the condition in Theo-
rem 1(b) is satisfied, is ergodic provided that it is ‘recurrent in probability’ in some sense. This
leads to the following recurrence-related open problem.

Open Problem 2. Consider an adaptive MCMC algorithm satisfying the condition in Theo-
rem 1(b). Let x∗ ∈ X and γ∗ ∈ Y. Suppose that for all ε > 0, there exists m ∈ N such that,
P[Mε(Xn, �n) < m infinitely often | X0 = x∗, �0 = γ∗] = 1, where infinitely often means
for an infinite number of n ∈ N. Does this imply that limn→∞ T (x∗, γ∗, n) = 0?

It may be possible to approach Open Problem 2 along similar lines to the proof of Theorem 2.
The difficulty is that, even if Mε(Xn, �n) < m infinitely often, this does not control the
probability that Mε(Xn, �n) < m for a specific time, for example n = K − N . Thus, while
we can approximately couple Xn to π(·) for infinitely many times n, it is not clear that we can
accomplish this at a particular time n = K . (This is related to the notion of faithfulness of
couplings; see Rosenthal (1997) and Häggström (2001).)

Related to recurrence, we also have the following example.

Example 3. (Stairway to Heaven.) Let X = {(i, j) ∈ N × N : i = j or i = j + 1} be an
infinite staircase, with target distribution given by π(i, j) ∝ j−2. Given a state x, write h for
the (left or right) horizontal neighbour of x, v for the (up or down) vertical neighbour of x, hv

for the vertical neighbour of the horizontal neighbour of x, and vh for the horizontal neighbour
of the vertical neighbour of x. (As a special case, if x = (1, 1) then take v = (1, 1).)

The adaptive space is Y = {0, 1}, consisting of the following two ‘exclusive Metropolis
within Gibbs’ algorithms specifying both where to move and how to adapt, from the current
state x = Xn and current adaptation parameter γ = �n.

(i) γ = 0. Let α = min[1, π(hv)/π(h)]. With probability α move to hv (and leave
�n+1 = 0), otherwise move to h (and set �n+1 = 1). (Intuitive description: first move
to horizontal neighbour h. Then, propose moving from h to hv; accept proposal with
probability α.)

(ii) γ = 1. Let α = min[1, π(v)/π(x)]. With probability α move to vh (and leave �n+1 =
1), otherwise move to h (and set �n+1 = 0). (Intuitive description: first propose moving
to vertical neighbour v; accept proposal with probability α. Either way, then move to
current horizontal neighbour.)

It is easily checked that both P0 and P1 preserve stationarity of π(·), and are irreducible and
aperiodic.
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On the other hand, if the chain is at Xn = (i, i), and �n = 0, then

P[Xn+1 �= (i + 1, i + 1)] = 1 − π((i + 1, i + 1))

π((i + 1, i))

= 1 − i2

(i + 1)2

= 1 − i2

i2 + 2i + 1

= 2i + 1

i2 + 2i + 1
� 2/i.

Furthermore, even if the chain rejects, so Xn+1 = (i + 1, i), then also �n+1 = 1, and the chain
will then attempt to move up on the next step, thus continuing its voyage up the staircase. In
other words, the only way the voyage up the staircase can be reversed is if the chain rejects
on two consecutive steps, which has probability � 2/i2. Since

∑
i 2/i2 < ∞, it follows

from the Borel–Cantelli Lemma (see e.g. Rosenthal (2000, Theorem 3.4.2)) that P[X(1)
n is

nondecreasing] > 0. Hence, P[limn→∞ X
(1)
n = ∞] > 0, i.e. there is positive probability that

the chain will climb the infinite stairway (in search for “all that glitters is gold") without ever
rejecting. Furthermore, even if the chain does reject twice in succession, then it will decrease to
(1, 1) and then begin its attempted climb again. We conclude that P[limm→∞ X

(1)
m = ∞] = 1,

i.e. the chain is transient.

Remark. In the above example, one possible drift function for the γ = 0 algorithm is given
by V (i, i) = 4i and V (i + 1, i) = i. For γ = 1, one possible drift function is V (i, i) = i and
V (i + 1, i) = 4i. However, simultaneous drift conditions cannot be found.

9. Laws of large numbers

When MCMC is used in practice, often entire sequences X1, X2, . . . , Xn of Markov chain
output are combined together to form averages of the form (1/n)

∑n
i=1 g(Xi) to estimate the

mean π(g) = ∫
g(x)π(dx) of a function g : X → R. To justify such approximations, we

require laws of large numbers for ergodic averages of the form

∑n
i=1 g(Xi)

n
→ π(g)

either in probability or almost surely, for suitably regular functions g. For traditional MCMC
algorithms this topic has been well studied; see, e.g. Tierney (1994) and Meyn and Tweedie
(1993). For adaptive MCMC, this topic is dealt with in some detail in other papers in the
literature, under somewhat stronger assumptions than those used here (see, in particular,Andrieu
and Moulines (2006)).

In this section, we consider the extent to which laws of large numbers hold for adaptive
MCMC under weaker assumptions. We shall concentrate on the simultaneous uniform ergod-
icity case, as in Theorem 1.

Theorem 5. (Weak law of large numbers.) Consider an adaptive MCMC algorithm. Suppose
that conditions (a) and (b) of Theorem 1 hold. Let g : X → R be a bounded measurable
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function. Then for any starting values x ∈ X and γ ∈ Y, conditional on X0 = x and �0 = γ ,
we have ∑n

i=1 g(Xi)

n
→ π(g)

in probability as n → ∞.

Proof. Assume without loss of generality that π(g) = 0. Let a = supx∈X |g(x)| < ∞.
Write Eγ ,x for expectations with respect to the Markov chain kernel Pγ when started from
X0 = x, and write Pγ ,x for the corresponding probabilities. Write E and P (without subscripts)
for expectations and probabilities with respect to the adaptive chain.

The usual law of large numbers for Markov chains (see, e.g. Tierney (1994)) implies that, for
each fixed x ∈ X and γ ∈ Y, limn→∞ Eγ ,x |(1/n)

∑n
i=1 g(Xi)| → π(g) = 0. Condition (a)

of Theorem 1 implies that this convergence can be bounded uniformly over choices of x and
γ , i.e. given ε > 0 we can find an integer N such that

Eγ ,x

(∣∣∣∣
∑N

i=1 g(Xi)

N

∣∣∣∣
)

< ε, x ∈ X, γ ∈ Y.

In terms of this N , we use condition (b) of Theorem 1 to find n∗ ∈ N satisfying (2). The
coupling argument in the proof of Theorem 1 then implies that on the event E defined there
(which has probability greater than or equal to 1 − ε), for all n ≥ n∗, the adaptive chain
sequence Xn+1, . . . , Xn+N can be coupled with probability greater than or equal to 1 − ε with
a corresponding sequence arising from the fixed Markov chain P�n . In other words, since
|g| ≤ a, we have

E

(
1

N

∣∣∣∣
n+N∑

i=n+1

g(Xi)

∣∣∣∣
∣∣∣∣ Gn

)
≤ E�n,Xn

(∣∣∣∣
∑N

i=1 g(Xi)

N

∣∣∣∣
)

+ aε + a P(Ec) ≤ (1 + 2a)ε. (5)

Now consider any integer T sufficiently large such that

max

{
an∗

T
,
aN

T

}
≤ ε. (6)

Then (writing �·� for the integer-part function) we have

∣∣∣∣ 1

T

T∑
i=1

g(Xi)

∣∣∣∣ ≤
∣∣∣∣ 1

T

n∗∑
i=1

g(Xi)

∣∣∣∣ +
∣∣∣∣ 1

�(T − n∗)/N�
�(T −n∗)/N�∑

j=1

1

N

N∑
k=1

g(Xn∗+(j−1)N+k)

∣∣∣∣

+
∣∣∣∣ 1

T

T∑
n∗+�(T −n∗)/N�N+1

g(Xi)

∣∣∣∣. (7)

By (6), the first and last terms on the right-hand side of (7) are each less than or equal to ε.
By (5), the middle term is an average of terms each of which has absolute expectation less than
or equal to (1 + 2a)ε. Hence, taking expectations and using the triangle inequality, we have

E

(∣∣∣∣T −1
T∑

i=1

g(Xi)

∣∣∣∣
)

≤ ε + (1 + 2a)ε + ε = ε(3 + 2a).

https://doi.org/10.1239/jap/1183667414 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1183667414


Coupling and ergodicity 473

Markov’s inequality then gives

P

(∣∣∣∣T −1
T∑

i=1

g(Xi)

∣∣∣∣ ≥ ε1/2
)

≤ ε1/2(3 + 2a).

Since this holds for all sufficiently large T , and ε > 0 was arbitrary, the result follows.

On the other hand, a strong law does not hold under the conditions of Theorem 1, as we see
in the following example.

Example 4. We begin with the ‘one-two’ version of the Running Example used in Example 2,
with the parameters a and b chosen so that limn→∞ P[Xn = 1] = p for some p > π{1}. Let
{Ik}∞k=0 be a sequence of independent binary variables, with P[Ik = 1] = 1/k and P[Ik = 0] =
1 − 1/k.

Consider the following new adaptation scheme. Set �0 = �1 = �2 = 1 (say). Then, for
each iteration n ≥ 3, find k ∈ N with 2k2 + 1 ≤ n ≤ 2(k+1)2

. If Ik = 1 then at time n we
proceed according to the one-two adaptation scheme (i.e. set �n = 2 if the previous proposal
was accepted, otherwise set �n = 1). If Ik = 0 then we simply set �n = 1 (regardless of
whether the previous proposal was accepted or rejected).

This scheme ensures that the probability of adaptation at any particular iteration n goes
to 0 as n → ∞, so that condition (b) of Theorem 1 is satisfied. Also, since X and Y are
finite, and each Pγ is irreducible and aperiodic, condition (a) of Theorem 1 is satisfied. On
the other hand, with probability 1, there will still be an infinite number of k with Ik = 1, say
Ik1 = Ik2 = · · · = 1, so the fully adaptive strategy will still be adopted infinitely often.

Now, as k → ∞, we have that

1

2k2

2k2∑
i=1

1Xi=1 ≈ 1

2k2 − 2(k−1)2

2k2∑
i=2(k−1)2 +1

1Xi=1.

It follows that, along the subsequence {2(ki )
2},

lim
i→∞

1

2(ki )
2

2(ki )
2∑

i=1

1Xi=1 = p > π{1}.

Hence, limn→∞(1/n)
∑n

i=1 1Xi=1 �= π{1}, i.e. a strong law of large numbers fails for the
function g(x) = 1x=1.

10. Discussion

In this paper we have investigated the validity of adaptive MCMC algorithms. We empha-
sised in Example 2 that natural-seeming adaptive schemes may destroy convergence. On the
other hand, we showed in Theorems 1 and 2 that when the condition in Theorem 1(b) is satisfied
together with some sort of near-uniform control of the convergence rates, adaptive MCMC can
be shown to be ergodic. We also provided, in Theorem 5, a weak law of large numbers for
bounded functions in this general setting.

This leads to the question of what adaptations should be used in practice. We believe the
most natural and useful adaptive MCMC scheme proposed to date is the adaptive Metropolis
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algorithm of Haario et al. (2001) discussed earlier. We have performed simulations on variations
of this algorithm (by means of a Cholesky decomposition), and have found its performance to
be quite promising and worthy of further investigation.

Now, algorithms which adapt acceptance probabilities are clearly limited by the crudeness of
such a global criterion. More ambitious schemes might involve adapting acceptance probabil-
ities in different ways in different parts of the state space. For example, a proposal distribution
might be of the form Yn+1 ∼ N(x, σ 2

x ), where σ 2
x is a function of the current state x involving

unknown parameters, e.g. σ 2
x = ea(1 + |x|)b. The parameters (e.g. a and b) can then be

modified adaptively based on the chain’s previous output, provided only that the condition in
Theorem 1(b) holds and ‘convergence time bounded in probability’ properties hold. We have
done some simulations with this scheme for simple one-dimensional target distributions, and
found it to be very promising; we are currently considering higher-dimensional analogues.

Another simple adaptation scheme is to simultaneously run two chains {Xn} and {X′
n}, and

have the chain {Xn} adapt its values of {�n} based on information learned not from {Xn} itself,
but rather from {X′

n}. If the updates of {X′
n} are made independently of the values of {Xn}, then

the {�n} will also be chosen independently of the {Xn}, so that {Xn} will preserve stationary by
Proposition 1. This represents a sort of generalisation of the traditional scheme of first doing a
‘trial run’ to tune the parameters, and then basing inferences on a nonadaptive main run after
the parameters are tuned. In this case, the ‘trial run’ {X′

n} continues simultaneously with the
‘main run’ {Xn}, and the main run continues to tune itself – independently of its own chain
values – as it proceeds.

Ongoing work is currently investigating these and related ideas. We look forward to
continuing these investigations, and to seeing many significant advances in adaptive MCMC
methodology in the years ahead.
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