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Summary

In the last decades there has been a lot of interest in computational
models and algorithms inspired by the observation of natural systems.
Nature seems to be very good at inventing processes that have many
of the qualities we would like to be able to put into artificial systems.
Consider for example genetic algorithms and evolutionary computation
(Holland 1975): by reproducing in a simplified way the approach taken
by Nature to develop living beings, researchers were able to develop both
control systems for learning autonomous agents, and robust optimiza-
tion algorithms for function optimization or combinatorial optimization.
We can also think of work in reinforcement learning (Kaelbling et al.
1996): again, the observation of how animals learn to accomplish some
simple tasks has suggested a useful and productive set of reinforcement-
based learning algorithms. There are many such examples, some already
very widespread, like simulated annealing (Kirkpatrick et al. 1983), ge-
netic algorithms (Holland 1975), neural networks (Rumelhart et al. 1986),
and others that still exist mostly in research labs, like immune networks
(Bersini & F.Varela 1993) and classifier systems (Holland & Reitman
1978).
In this thesis we present another ethological approach to combinatorial
optimization, which has been inspired by the observation of ant colonies:
the Ant Colony System (ACS, Gambardella & Dorigo 1996; Dorigo &
Gambardella 1997).
ACS finds its ground in Ant System (AS, Dorigo 1992; Colorni et al. 1992,
1995) and in Ant-Q algorithm (Gambardella & Dorigo 1995; Dorigo &
Gambardella 1996), an extension of AS which integrates some ideas from
Q-learning (Watkins 1989). ACS belongs to the class of Ant Colony Op-
timization (ACO) algorithms defined by Dorigo et al. (1999) as a general
framework to describe the class of ant-inspired algorithms.
ACS (Chapter 2) was initially proposed to solve the symmetric and
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asymmetric travelling salesman problems (TSP and ATSP), where it has
been shown to be competitive with other metaheuristics (Gambardella
& Dorigo 1996). Although this is an interesting and promising result,
it was immediately clear that ACO, as well as other metaheuristics, in
many cases cannot compete with specialized local search methods. An
interesting trend (Mühlenbein et al. 1988; Ulder et al. 1991; Johnson &
McGeoch 1997) is therefore to couple metaheuristics with a local opti-
mizer, giving birth to so-called hybrid methods (Chapter 1). This is an
interesting marriage since local optimizers often suffer from the initial-
ization problem. That is, the performance of a local optimizer is often
a function of the initial solution to which it is applied. Therefore, it be-
comes interesting to find good couplings between a metaheuristic and a
local optimizer, where a coupling is good if the metaheuristic generates
initial solutions that can be carried to very good local optima by the
local optimizer.
In successive works we have shown that local search plays an important
role in ACS. For example, Dorigo & Gambardella (1997) have applied
ACS with a version of the 3-opt local search extended to symmetric
and asymmetric TSPs, obtaining very good results (Chapter 2). Also,
Gambardella et al. (1999) have proposed MACS-VRPTW (Multiple ACS
for the Vehicle Routing Problem with Time Windows), a hierarchically
organized ACS in which two different colonies successively optimize a
multiple objective function, exploiting, among other things, local search.
MACS-VRPTW (Chapter 3) has been shown to be competitive with
other existing methods in terms of both solution quality and computa-
tional time and has been able to improve some of the best-known so-
lutions for a number of problem instances in the literature. Starting
from these experiences, the next proposed algorithm is HAS-SOP: Hy-
brid Ant System for the Sequential Ordering Problem (Gambardella &
Dorigo 2000, Chapter 4). Sequential Ordering Problem (SOP). SOP is a
version of the asymmetric travelling salesman problem where precedence
constraints on vertices are imposed. In this work we define a new local
search optimization algorithm called SOP-3-exchange for the SOP that
extends a local search for the travelling salesman problem to handle mul-
tiple constraints directly without increasing computational complexity.
The hybridization between ACS and SOP-3-exchange is investigated in
depth (Chapter 4), and experimental evidence that the resulting algo-
rithm is more effective than other methods is shown. In Gambardella
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et al. (2012), directions for improving the original ACS framework when
a strong local search routine is available have been identified. In par-
ticular, some modifications of the original ACS algorithm are presented.
These modifications are able to speed up the method and to make it more
competitive in case of large problem instances. The resulting framework,
called Enhanced Ant Colony System (EACS, Gambardella et al. 2012,
Chapter 5) is tested for the SOP. Many new best-known solutions are
retrieved for the benchmarks available for these optimization problems.
Lastly, Chapter 6 presents the application of ACO to solve academic and
real-life vehicle routing problems (Rizzoli et al. 2007) where additional
constraints and stochastic information are included.
This thesis is organized as follows:
Chapter 1 introduces combinatorial optimization problems and some
heuristic techniques to solve them. In particular the chapter presents
constructive and local search algorithms and their coupling with meta-
heuristics methods. This is the basis for ACS, which is described in
Chapter 2. Also in Chapter 2, ACS-3-opt, the first coupling between ACS
and local search, is presented. Chapter 3 describes MACS-VRPTW, the
second application in which ACS is coupled with a local search, in par-
ticular to solve the vehicle routing problem with time windows. Chapter
4 presents HAS-SOP for the solution of sequential ordering problems.
HAS-SOP also extends ACS with a specific local search designed explic-
itly for the SOP. Chapter 5 enhances ACS to explicitly deal with strong
local searches, improving the original ACS algorithm with new effective
features. Chapter 6 summarizes the work done in the application of ACS
and local search to different types of vehicle routing problems includ-
ing real-life industrial problems. Chapter 7 draws some conclusions and
highlights possible extensions of the work.
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Original Contributions

This PhD thesis describes an original research carried out by the author.
Nevertheless, some chapters of this document are based on papers pre-
pared together with other co-authors, which have been published in the
scientific literature. The rest of this section lists for each chapter the
related scientific publications:

• Chapter 2: ACS: Ant Colony System

– The first paper related to this chapter is Gambardella L.M.
and Dorigo M. (1995), Ant-Q: A Reinforcement Learning Ap-
proach to the Traveling Salesman Problem, Twelfth Interna-
tional Conference on Machine Learning, A. Prieditis and S.
Russell (Eds.), Morgan Kaufmann, pp. 252-260 (Gambardella
& Dorigo 1995).
Ant-Q has been developed since 1994 as an evolution of the Ant
System. This article is the first conference paper to introduce
this new algorithm and its main features. We present Ant-Q, a
distributed algorithm which was inspired by both observation
of ant colonies and work on reinforcement learning (RL) and
in particular on Q-learning. We apply Ant-Q to both symmet-
ric and asymmetric travelling salesman problems. The results
show that Ant-Q has been able to find good solutions to these
problems. In particular, it is particularly effective in finding
solutions within a very small percentage of the optimum for
difficult asymmetric travelling salesman problems.

– The second paper related to this chapter is Gambardella L.M.
and Dorigo M. (1996), Solving Symmetric and Asymmetric
TSPs by Ant Colonies, ICEC96, Proceedings of the IEEE Con-
ference on Evolutionary Computation, Nagoya, Japan, 20-22
May 1996 (Gambardella & Dorigo 1996).
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This conference paper introduces the Ant Colony System (ACS),
which was developed in 1995. The paper simplified Ant-Q by
leaving out reinforcement learning concepts and presents the
first results using ACS algorithms. ACS has been applied to
both symmetric and asymmetric travelling salesman problems.
The results show that ACS is able to find good solutions for
these problems.

– The third paper related to this chapter is Dorigo M. and Gam-
bardella L.M. (1997), Ant Colony System: A Cooperative Learn-
ing Approach to the Traveling Salesman Problem, IEEE Trans-
actions on Evolutionary Computation, 1 (1), 53-66 (Dorigo &
Gambardella 1997).
This journal paper describes in detail the Ant Colony System
(ACS), a distributed algorithm that is applied to the travel-
ling salesman problem (TSP). In ACS, a set of cooperating
agents called ants cooperate to find good solutions to TSPs.
Ants cooperate using an indirect form of communication medi-
ated by pheromones that they deposit on the edges of the TSP
graph while building solutions. We study ACS by running
experiments to understand its operation. The results show
that ACS has been able to outperform other nature-inspired
algorithms such as simulated annealing and evolutionary com-
putation, and we conclude by comparing ACS-3-opt, the first
version of ACS coupled with a local search procedure, to some
of the best-performing algorithms for symmetric and asymmet-
ric TSPs. This paper is currently the second most cited paper
ever published by IEEE Transactions on Evolutionary Compu-
tation.

• Chapter 3: MACS-VRPTW: A Multiple Ant Colony System for
vehicle routing problems with time windows

– The paper related to this chapter is Gambardella, L.M., Tail-
lard, E.D., and Agazzi, G. (1999), MACS-VRPTW: A Multiple
Ant Colony System for Vehicle Routing Problems with Time
Windows, in D. Corne, M. Dorigo, and F. Glover (Eds.), New
Ideas in Optimization, McGraw Hill, London, UK, pp. 63-76
(Gambardella et al. 1999).
This book chapter describes MACS-VRPTW. MACS-VRPTW
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was developed and tested in 1997 as an extension of ACS to
solve vehicle routing problems with time windows (VRPTW).

MACS-VRPTW, which couples ACS with specialized local sear-
ches for the VRPTW, is organized with a hierarchy of artifi-
cial ant colonies designed to successively optimize a multiple
objective function: the first colony minimizes the number of
vehicles while the second colony minimizes the distances trav-
elled. Cooperation between colonies is performed by exchang-
ing information through pheromone updating. We show that
MACS-VRPTW has been competitive with the best existing
methods in terms of both solution quality and computation
time.

• Chapter 4: HAS-SOP: An ant colony system hybridized with a new
local search for the sequential ordering problem

– The paper related to this chapter is Gambardella, L.M. and
Dorigo, M. (2000). An Ant Colony System Hybridized with
a New Local Search for the Sequential Ordering Problem, IN-
FORMS Journal on Computing, 12 (3), 237-255 (Gambardella
& Dorigo 2000).
This journal paper presents HAS-SOP: Hybrid Ant Colony Sys-
tem for the Sequential Ordering Problem, another algorithm
that couples ACS with local search. HAS-SOP was developed
and tested in 1998. The paper also introduces a new sophisti-
cated local search algorithm called SOP-3-exchange that is able
to manage precedence constraints in constant time. In this pa-
per we present the basic algorithms, the new local search we
have introduced to explicitly manage the SOP problem, and
experimental evidence the resulting algorithm has been more
effective than existing methods for the problem.

• Chapter 5: EACS: Coupling ant colony systems with strong local
searches

– The paper related to this chapter is Gambardella, L.M., Mon-
temanni, R., and Weyland, D. (2012), Coupling ant colony
systems with strong local searches, European Journal of Oper-
ational Research, 220 (1), 831-843 (Gambardella et al. 2012).
This journal paper presents EACS: Enhanced Ant Colony Sys-
tem. EACS was developed and tested in 2011. In particular,
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in this paper the situation where a strong local search routine
is available for an optimization problem is considered. It is
shown how the original ACS framework can be enhanced to
achieve a better integration between ACS and the local search.
Experimental results for three optimization problems arising
in transportation are discussed. The results show the effec-
tiveness of the enhancements introduced. In this thesis only
the application of EACS to SOP is presented.

• Chapter 6: Ant Colony Optimization for real-world vehicle routing
problems: from theory to applications.

– The paper related to this chapter is A.E. Rizzoli, R. Monte-
manni, E. Lucibello, and L.M. Gambardella (2007), Ant Colony
Optimisation for Real World Vehicle Routing Problems: From
Theory to Applications, Swarm Intelligence, 1 (2), 135-151,
December (Rizzoli et al. 2007).
In this journal paper we show the successful application of ACS
to the Vehicle Routing Problem (VRP). First, we introduce
VRP and its many variants, such as VRP with Time Windows,
Time Dependent VRP, Dynamic VRP, and VRP with Pickup
and Delivery. These variants have been formulated in order to
bring the VRP as close as possible to the kinds of situations
encountered in real-world distribution processes. In many of
these real world applications ACS is successfully coupled with
effective local search procedures.

Algorithms

The following algorithms have been developed and tested by the author
of this PhD thesis:

• Ant-Q: A Reinforcement Learning Approach to the Travelling Sales-
man Problem.

• ACS: Ant Colony System, including local searches for symmetric
and asymmetric TSP problems.

• MACS-VRPTW: Multiple ACS for the Vehicle Routing Problem
with Time Windows. This includes the hierarchical objective func-
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tion optimization with two colonies and a sophisticated local search
to manage vehicle routing problems with time windows.

• HAS-SOP: Hybrid Ant Colony System for the Sequential Order-
ing Problem (SOP). This includes an extension of ACS for SOP
problems and SOP-3-Exchange, a new local search for the SOP.

• EACS: Enhanced Ant Colony System. This includes the basic
EACS algorithm and the direct application to SOP problems.



14



List of Algorithms

1 Nearest Neighbour Heuristic for the TSP . . . . . . . . . 24
2 Local Search Algorithm . . . . . . . . . . . . . . . . . . . 26
3 2-exchange for TSP . . . . . . . . . . . . . . . . . . . . . 28
4 Metaheuristic Search . . . . . . . . . . . . . . . . . . . . 30
5 Simulated Annealing . . . . . . . . . . . . . . . . . . . . 31
6 Tabu Search . . . . . . . . . . . . . . . . . . . . . . . . . 34
7 Genetic Algorithms . . . . . . . . . . . . . . . . . . . . . 36
8 ACO, Ant Colony Optimization . . . . . . . . . . . . . . 39
9 Iterated Local Search . . . . . . . . . . . . . . . . . . . . 44
10 Coupling Metaheuristics with Local Search . . . . . . . . 45
11 Ant Colony System (ACS). High Level Definition . . . . 52
12 Ant Colony System (ACS). Pseudo-code . . . . . . . . . 58
13 Ant Colony System (ACS) Coupled with a Local Search

Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . 69
14 MACS-VRPTW: Multiple Ant Colony System for Vehicle

Routing Problems with Time Windows . . . . . . . . . . 83
15 ACS-TIME: Travel Time Minimization. . . . . . . . . . . 84
16 ACS-VEI: Number of Vehicles Minimization. . . . . . . . 86
17 new active ant(k, local search, IN ): Constructive Proce-

dure for Ant k Used by ACS-VEI and ACS-TIME . . . 88
18 The SOP-3-exchange Procedure . . . . . . . . . . . . . . 110
19 ACS Components for EACS, the Enhanced Ant Colony

System . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
20 EACS, the Enhanced Ant Colony System . . . . . . . . . 130

15



16 LIST OF ALGORITHMS



Contents

Summary 3

Acknowledgments 7

Original Contributions 9

List of Algorithms 15

1 Metaheuristics and Local Search 21

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 21
1.2 Constructive Methods . . . . . . . . . . . . . . . . . . . 23
1.3 Local Search Methods . . . . . . . . . . . . . . . . . . . 25
1.4 Metaheuristics . . . . . . . . . . . . . . . . . . . . . . . . 28

1.4.1 Simulated Annealing . . . . . . . . . . . . . . . . 30
1.4.2 Tabu Search . . . . . . . . . . . . . . . . . . . . . 33
1.4.3 Genetic Algorithms . . . . . . . . . . . . . . . . . 35
1.4.4 ACO: Ant Colony Optimization Algorithms . . . 38

1.5 Coupling Metaheuristics with Local Search . . . . . . . . 42

2 ACS: Ant Colony System 47

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 47
2.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . 50
2.3 ACS: Ant Colony System . . . . . . . . . . . . . . . . . . 52

2.3.1 ACS State Transition Rule . . . . . . . . . . . . . 53
2.3.2 ACS Global Updating Rule . . . . . . . . . . . . 54
2.3.3 ACS Local Updating Rule . . . . . . . . . . . . . 55
2.3.4 ACS Parameter Settings . . . . . . . . . . . . . . 57

2.4 A Study of Some Characteristics of ACS . . . . . . . . . 57
2.4.1 Pheromone Behavior and its Relation to Performance 57

17



18 CONTENTS

2.4.2 The Optimal Number of Ants . . . . . . . . . . . 60
2.5 Cooperation Among Ants . . . . . . . . . . . . . . . . . 62

2.5.1 The Importance of the Pheromone and the Heuris-
tic Function . . . . . . . . . . . . . . . . . . . . . 63

2.6 ACS: Some Computational Results . . . . . . . . . . . . 65
2.6.1 Comparison with Other Heuristics . . . . . . . . . 65
2.6.2 ACS on Some Bigger Problems . . . . . . . . . . 67

2.7 ACS Plus Local Search . . . . . . . . . . . . . . . . . . . 68
2.7.1 Experimental Results . . . . . . . . . . . . . . . . 70

2.8 Discussion and Conclusions . . . . . . . . . . . . . . . . 73

3 MACS-VRPTW: A Multiple Ant Colony System for Ve-

hicle Routing Problems with Time Windows 77

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 77
3.2 Vehicle Routing Problems . . . . . . . . . . . . . . . . . 79
3.3 MACS-VRPTW for Vehicle Routing Problems with Time

Windows . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
3.3.1 Solution Model . . . . . . . . . . . . . . . . . . . 85
3.3.2 Solution Constructive Procedure . . . . . . . . . . 87

3.4 Computational Results . . . . . . . . . . . . . . . . . . . 87
3.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . 92

4 HAS-SOP: An Ant Colony System Hybridized with a

New Local Search for the Sequential Ordering Problem 93

4.1 The Sequential Ordering Problem . . . . . . . . . . . . . 94
4.1.1 Problem Definition . . . . . . . . . . . . . . . . . 94
4.1.2 Heuristic Methods for the SOP . . . . . . . . . . 95
4.1.3 Approaches Based on the ATSP . . . . . . . . . . 95
4.1.4 Approaches Based on the Pick-up and Delivery

Problem . . . . . . . . . . . . . . . . . . . . . . . 96
4.2 ACS for the Sequential Ordering Problem . . . . . . . . 97

4.2.1 HAS-SOP. ACS-SOP Coupled with SOP-3-exchange
Local Search . . . . . . . . . . . . . . . . . . . . . 99

4.3 Locas Search: SOP-3-Exchange . . . . . . . . . . . . . . 99
4.3.1 Path-Preserving Edge-Exchange Heuristics . . . . 100
4.3.2 Lexicographic Search Strategy in the Case of Prece-

dence Constraints . . . . . . . . . . . . . . . . . . 103
4.3.3 The SOP Labeling Procedure . . . . . . . . . . . . 106



CONTENTS 19

4.3.4 Heuristics for the Selection of Node h and Search
Stopping Criteria . . . . . . . . . . . . . . . . . . 107

4.3.5 The SOP-3-Exchange Procedure: An Example . . 109
4.4 Computational Results . . . . . . . . . . . . . . . . . . . 111

4.4.1 Experimental Settings: Test Problems . . . . . . 111
4.4.2 Experimental Settings: Competing Methods . . . 111
4.4.3 Computational Results: Selection Criteria for Node

i and Search Stopping Criteria . . . . . . . . . . . 112
4.4.4 Computational Results and Comparisons with Other

Methods . . . . . . . . . . . . . . . . . . . . . . . 117
4.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . 122

5 EACS: Coupling Ant Colony Systems With Strong Local

Searches 125

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 125
5.2 An Enhanced Ant Colony System . . . . . . . . . . . . . 126

5.2.1 An Improved Constructive Phase . . . . . . . . . 128
5.2.2 A Better Integration Between the Constructive

Phase and the Local Search Procedure . . . . . . 129
5.2.3 Pseudo-Code . . . . . . . . . . . . . . . . . . . . 129

5.3 Applications . . . . . . . . . . . . . . . . . . . . . . . . . 131
5.3.1 SOP: The Sequential Ordering Problem . . . . . . 131

5.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
5.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . 135

6 Ant Colony Optimization for Real-World Vehicle Routing

Problems: From Theory To Applications 139

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 139
6.2 Vehicle Routing Problems . . . . . . . . . . . . . . . . . 142

6.2.1 Basic Problems of the Vehicle Routing Class . . . 143
6.2.2 Dynamic Extensions of the VRP . . . . . . . . . 144

6.3 Solving the VRP with ACO . . . . . . . . . . . . . . . . 145
6.3.1 A VRPTW Application for the Secondary Level in

the Supply Chain . . . . . . . . . . . . . . . . . 147
6.3.2 A VRPPD Application for the Primary Level in

the Supply Chain . . . . . . . . . . . . . . . . . 150
6.3.3 Time Dependent VRPTW in the City of Padua . 152
6.3.4 On-line VRP for Fuel Distribution . . . . . . . . 154
6.3.5 Conclusions . . . . . . . . . . . . . . . . . . . . . 156



20 CONTENTS

7 Conclusions 157



Chapter 1

Metaheuristics and Local

Search

1.1 Introduction

Combinatorial optimization problems can be found in a variety of situ-
ations like manufacturing scheduling, vehicle routing, distribution man-
agement, network routing, and crew rostering as well as in business and
economics. Combinatorial optimization problems are interesting because
their definition is usually simple but their solution is usually complex.
The main difficulty in solving combinatorial optimization problems is
that the optimal solution has to be chosen from the exponential set of all
possible solutions. In fact, many of these problems are NP-hard ; that is,
it is not known whether they can be solved to optimality in polynomial
computation time. To be more formal, according to Papadimitriou &
Steiglitz (1982), an optimization problem is defined as the set of instances
of an optimization problem. An instance of an optimization problem is
a pair (S, f) where S is the domain of feasible solutions and f is the
cost function, a mapping f : S → R that assigns a positive cost value to
each of the solutions s ∈ S. The problem is to find a feasible solution of
minimal cost value s ∈ S for which f(s) ≤ f(y) ∀y ∈ S. Such point s
is called a globally optimal solution to the given instance, or simply an
optimal solution. We have been careful to distinguish between a problem
and an instance of a problem. Informally, in an instance we are given
the “input data” and have enough information to obtain a solution; a
problem is a collection of instances, usually all generated in similar way.

21
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Computational methods that are used to solve combinatorial optimiza-
tion problems are usually grouped into exact algorithms and approxi-
mation algorithms (heuristics). In the case of an exact algorithm it is
possible to ensure and to prove that the optimal solution is computed.
On the other hand the computation of the optimal solution requires in
the worst case the enumeration of all possible problem solutions. So, due
to the combinatorial nature of the problem, already for instances of a few
tens of nodes these methods become infeasible. Approximation methods
aim to relax the constraint of optimality and to make a compromise be-
tween the quality of the solution and the required computational time.
These approximation methods are divided into three groups: construc-
tion techniques, local search techniques, and metaheuristics techniques
(Johnson & McGeoch 1997).
Construction methods are the most simple but the least effective; these
techniques are in general based on the construction of a feasible solution
starting from scratch. This initial set is usually created empty or with
one element often randomly chosen. After it is iteratively expanded by
adding other elements according to a deterministic rule which considers
only local conditions. The procedure ends when a feasible solution which
contains all the elements is produced.
Local search methods are more sophisticated. Local search methods start
from a complete feasible solution usually generated by a constructive pro-
cedure or by a random process. Thanks to a neighbourhood exploration,
the procedure seeks to find ever better solutions by systematically ex-
ploring the neighbourhood of the current solutions. Given a solution s,
the neighbourhood of s,N(s) is the finite set of solutions N : S → 2s

that includes all solutions reachable from s in one step. N(s) is therefore
the set of solutions to which s could be immediately transformed in one
move. The local search process searches for the best possible solution
next in N(s). If next improves s, the search is continued from next. The
process stops when there are no more solutions that improve s in the
neighbourhood of the current solution N(s). Each local search algorithm
provides the rule to deterministically choose the best neighbourhood so-
lution in the set of all possible neighbourhood solutions. The problem
with these methods is that they are not able to escape from local min-
ima. If the algorithm is no longer able to find an improved solution, the
procedure stops.
One way to overcome this limitation is metaheuristic procedures. Meta-
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heuristic procedures are also driven by a search process based on the
notion of neighbourhood. However there are two main differences be-
tween local search and metaheuristics: (i) in contrast with local search
procedures, metaheuristics methods typically use stochastic components
in their searching process, and (ii) metaheuristics algorithms choose next
solutions which do not necessary improve the current solution. These
approaches have the advantage of being able to escape from local min-
ima, and if they are well designed, they are able to find solutions that
are often within a small percentage of the real optimal solution to the
problem. Examples of metaheuristics include simulated annealing, tabu
search, iterated local search, genetic algorithms, and Ant Colony Opti-
mization (ACO). In many cases, however, these metaheuristic algorithms
are slow and the time required to achieve good performance, mainly in
the case of large instances, is prohibitive.
To deal with this limitation, one possibility (Mühlenbein et al. 1988;
Ulder et al. 1991; Johnson & McGeoch 1997) is to couple metaheuristic
methods with local search methods, giving birth to so-called hybrid meth-
ods. The main idea is to use metaheuristic algorithms to generate new
feasible solutions and to improve these solutions during the search using
a local search procedure. The use of hybrid metaheuristic algorithms
currently allows combinatorial optimization problems to be solved effi-
ciently in reasonable time.
The rest of this chapter is organized as follows: Section 1.2 introduces
constructive algorithms starting from the travelling salesman problem
(TSP), a classical combinatorial optimization problem. Section 1.3 is
dedicated to local search procedures and Section 1.4 to metaheuristics.
The last Section 1.5 introduces hybrid methods.

1.2 Constructive Methods

Constructive, local search, and metaheuristic algorithms are presented by
their application to the TSP or to the more general asymmetric travelling
salesman problem (ATSP). They are defined as follows.

TSP Let V = {v1, . . . , vn} be a set of cities (or nodes), A = ((i, j) :
i, j ∈ V ) the edge set, and dij = dji a cost measure associated with edge
(i, j) ∈ A. The TSP is the problem of finding a closed tour of minimal
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length that visits each city once (the minimal Hamiltonian cycle). When
cities vi ∈ V are given by their coordinates (xi, yi) and dij is the Euclidean
distance between i and j then we have a Euclidean TSP.

ATSP If dij 6= dji for at least one (i, j) then the TSP becomes an
ATSP.

A constructive procedure usually starts by selecting an empty solu-
tion or by defining a partial solution which contains a single random
chosen node. Starting from this set, the algorithm applies a constructive
and usually deterministic rule to build a complete feasible solution step
by step. To some extent a construction heuristic can be considered a
specific class of local search algorithm. In this case the neighbourhood
of the partial solution is given by the set of possible feasible nodes which
could extend the current partial solution. These nodes are often ranked
according to a greedy evaluation function.
The most popular constructive procedure for TSP is the Nearest Neigh-
bour Heuristic (NN , Flood 1956; Reinelt 1994, Algorithm 1). NN works
as follows: the algorithm starts from a randomly chosen node, which be-
comes the last node in the sequence. The algorithm iteratively adds to
the last node the closest feasible node, that is, the closest node in terms
of distance that has not already been inserted in the sequence, until no
more nodes are available. The standard procedure runs in time O(n2).

Algorithm 1 Nearest Neighbour Heuristic for the TSP

Procedure NearestNeighbour

W is the initial set of n nodes
(1) Select an arbitrary node j, and set l← j and W ← {1, 2, ..., n}\{j}
while W 6= 0 do
Let j ∈W such that dlj = min {dli|i ∈W}
Connect l to j and set W ←W\{j} and l← j.

end while
Connect l to the node selected in Step (1) to form a Hamiltonian cycle

Although solutions produced by NN are usually not particularly
good, they are often used as a starting solution for more effective meth-
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ods like local search procedures (Reinelt 1994). Before discussing local
search methods, we briefly mention that for the construction of feasible
TSP solutions, possible alternative constructive methods are the inser-
tion heuristics (Reinelt 1994), heuristics based on spanning trees (Prim
1957), and the savings methods (Clarke & Wright 1964).

To assess the average quality of the heuristic algorithm, a set of in-
stances I = (i1, i2, ..., ik) is taken whose optimal (or lower bound) solu-
tion opti (∀i ∈ I) is known. The heuristic algorithm is then executed on
each instance i by running many experiments expie. For each experiment
expie, the final objective function value solie is computed. The relative
error for each experiment is given by reie = ((solie − opti)/opti) and the
final average quality avq of the heuristic algorithm is the average relative
error over all the experiments: avq = Avg(reei (∀e, i).

In the case of constructive heuristics, a set of experiments has been
executed by Bentley (1992). The paper reports that for NN the average
quality is 24.2% over the lower bound. In the same paper (Bentley 1992),
in the case of the farthest insertion heuristic (i.e. the best insertion
heuristic), the average quality is 13.0% over the lower bound, and in
the case of the multiple fragment heuristic based on spanning trees, the
average quality is 15.7% over the lower bound.
From these results we conclude that these constructive algorithms are not
very effective. However they have the advantage of being very fast as the
computation time to build a solution depends linearly to the number of
cities. For this reason, these construction techniques are generally used
as methods to generate initial solutions that are processed later on by
local search techniques or by metaheuristics.

1.3 Local Search Methods

The idea of local search algorithms is to use procedures, which only lo-
cally change the structure of a given solution. Also, in the case of local
searches, these procedures are based on the notion of neighbourhoods.
The general, basic algorithm for a local search algorithm is presented in
Algorithm 2. In the case of a minimization problem the local search
procedure starts from a feasible solution s. In each iteration the neigh-
bourhoodN(s) of s is systematically explored, searching for the minimum
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Algorithm 2 Local Search Algorithm

Procedure Local Search()
/* Initialize solution */
s← an initial feasible solution.
while terminal condition = false do
generate N(s) : S → 2s the set of feasible neighbourhood solutions of s
s′ ← the minimum solution in N(s)
if f(s′) < f(s) then

s← s′

else
terminal condition = true

end if
end while
return s

s′ such that s′ ∈ N(s). If f(s′) < f(s), the algorithm continues its search
by setting s = s′. If f(s′) ≥ f(s), the algorithm stops and s is returned as
the final solution. Solution s is a local optimum for f , since s is optimal
with respect to the neighbourhood function but it is not guaranteed that
s is the global optimum solution for the objective function f .
There are many ways to define the neighbourhood structure N(s). In the
case of small N(s), the exploration takes less time but the number of con-
secutive improving iterations is typically small. On the contrary, large
neighbourhoods require more computational time leading to low quality
solutions. In general there is a compromise between time and quality and
the choice of the best neighbour structure often requires problem-specific
knowledge.

Many efforts have been devoted to defining ad-hoc TSP local search
procedures (see Johnson & McGeoch 1997 for an overview). These local
search procedures are usually called edge-exchange heuristics. An edge-
exchange heuristic starts from a given feasible solution and attempts to
reduce its length by exchanging k edges with another set of k edges cho-
sen according to some heuristic rule. This operation is usually called
a k-exchange and is iteratively executed until no additional improving
k-exchange using the heuristic rule is possible (in this situation we say
that a local optimum has been found). When this is the case, the final
solution is said to be k-optimal ; the verification of k-optimality requires
O(nk) time. It has been shown that increasing k produces solutions of in-
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creasing quality, but the computational effort required to test completely
the k-exchange set for a given solution usually restricts our attention to
k-exchange with k ≤ 3. In fact, the most widely used edge-exchange
procedures set k to 2 or 3 (2-opt or 2-exchange), (3-opt or 3-exchange),
(Lin 1965) or to a variable value (Lin & Kernighan 1973), in which case
a variable-depth edge-exchange search is performed.

Figure 1.1: 2-exchange procecudere for TSP/ATSP

Consider a 2-exchange procedure (Algorithm 3, Figure 1.1). This
procedure receives as input a feasible solution solution and the number
of cities n of the original problem. The procedure explores all possible
pairs of edges ((i, i+ 1), (j, j + 1)) starting from every possible couple of
nodes i and j in solution. For each pair of edges ((i, i+1), (j, j+1)) the
procedure computes gain, that is, the numerical gain obtained removing
from solution edges (i, i+1) and (j, j+1) and inserting in solution edges
(j, i) and (j + 1, i + 1). The procedure selects the most profitable gain
among all possible gains. If the gain is negative, that is, the solution is
improved by the selected exchange, solution is modified accordingly and
the process is iterated again on the new solution. The procedure stops
when no negative improving gain is found so the last computed solution
is returned. As in the case of 2-exchange, any local search procedure is
considered efficient only if the gain computation is executed in constant
time.
In general, local search procedures produce better quality solutions than
constructive algorithms (Reinelt 1994). On the other hand, a construc-
tive procedure is needed to build a starting solution for local search al-
gorithms. It is important to notice, anyway, that the general quality
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Algorithm 3 2-exchange for TSP

Procedure 2 exchange tsp(solution, n)
Initialization
while best gain 6= 0 do

best gain← 0
for i = 1 to n do

for j = 1 to n do
gain← compute gain(solution, i, j)
if (gain < best gain)) then
best gain← gain, besti ← i, bestj ← j

end if
end for

end for
if (best gain < 0 ) then

solution← edge exchange(solution, besti, bestj)
end if

end while
return solution

of local search procedures is not sufficient to provide solutions close to
the optimal solution. In order to improve local search algorithms, an
immediate option is to rerun the local search starting many times from
different solutions (randomly generated in many cases). For this random-
restart policy, it is necessary to keep the best solution among the many
final solutions generated by multiple runs of the local search algorithm.
By using this approach, the solution quality is better than the solution
provided by a single run of local search. Anyway, also in this case each
run is reaching a local minimum and the search process is inefficient.
A way to overcome these problems is to use metaheuristic algorithms
which provide an effective methodology to escape from local minima and
to profit from the knowledge accumulated in previous iterations of the
algorithm.

1.4 Metaheuristics

Metaheuristics have been proposed to solve combinatorial optimization
problems when exact methods algorithms are inefficient. They over-
come previous approaches which defined a specialized heuristic for each
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problem. In fact, metaheuristics are rather general algorithmic frame-
works which can be applied to several different optimization problems
with few modifications. Examples of metaheuristics are simulated an-
nealing (Kirkpatrick et al. 1983), genetic algorithms (Holland 1975), and
tabu search (Glover 1989). Metaheuristics are often inspired by natural
processes. In particular, the above-cited metaheuristics are inspired, re-
spectively, by the physical annealing process, the Darwinian evolutionary
process, and the clever management of memory structures. One of the
most effective nature-inspired metaheuristics is Ant Colony Optimization
(Dorigo et al. 1999), where the inspiring natural process is the foraging
behaviour of ants.
The structure of the metaheuristic search has many principles in common
with other search methods presented in previous paragraphs. As in the
case of local search algorithms, metaheuristic algorithms (Algorithm 4)
are also strongly based on the notion of neighbourhood. Also here the
basic principle is to define a search method that starts from a solution
or from a set of solutions (current). In contrast with local search, the
majority of metaheuristic algorithms do not systematically explore the
neighbours of the current solution looking for the best possible next im-
proved solution. On the contrary, given the neighbourhood N(current)
of current, a candidate solution(s) (or a set of candidate solutions) next
is stochastically selected and then evaluated. This evaluation process
follows different criteria and is usually specific for each metaheuristic. In
general, the evaluation includes the calculation of the value of the new
solution(s) next (by using the objective function f) and the comparison
of f(next) with the current solution(s) f(current). The result of this
process is that next may be accepted or rejected. If the solution(s) next
is accepted, the search continues by setting current ← next. We notice
that in general next is always accepted if its value improves the value
of the current solution(s). If next is rejected the search does not stop
and the process is iterated by starting again from the same current so-
lution(s). Following these search principles, metaheuristics do not stop
their search when a local minimum is reached. The stopping criterion is
usually provided by setting a given amount of search time or a given num-
ber of search iterations. These simple search mechanisms have proved to
be very efficient as they are able both to escape from local minima and
to produce solutions of very good quality.

In order to better understand the main principles and the most im-
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Algorithm 4 Metaheuristic Search

Metaheuristic Search
/* Inputs */
initial solution sstart (or an initial set of solutions)
objective function f

neighbourhood function N

current← sstart (current should also be a set of solutions)
while terminal condition is not met do
stochastically compute a solution (or a set of solutions) next ∈
N(current)
Following a criterion, decide whether or not to continue the search from
next by setting current← next

end while
return current

portant advantages of metaheuristics, in the next sections four meta-
heuristics, namely simulated annealing, tabu search, genetic algorithms,
and ACO are presented.

1.4.1 Simulated Annealing

Simulated annealing (Kirkpatrick et al. 1983) is a metaheuristic tech-
nique inspired by the physical cooling of metals. The algorithm emulates
the process where a solid is first melted and later slowly cooled in order to
form large crystals at the minimum energy configuration. For this reason
the method is based on a temperature parameter which is lowered dur-
ing the search. Simulated annealing is largely used for finding solutions
to continuous and discrete optimization problems in the case of a search
space with many local minima. Simulated annealing, following the meta-
heuristic principle presented in Algorithm 4, it explores the neighbourood
in a random order moving from solution to solution according to an ac-
ceptance criterion test. A new candidate solution is always accepted if
its value improves on the value of the current solution. Otherwise a prob-
abilistic acceptance test is executed based on both the temperature and
the difference between the value of the current solution and the value of
the next candidate solution. The larger the difference between the two
values, the smaller the probability of accepting the new, worst, candi-
date solution. In addition, the acceptance probability is based on the
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Algorithm 5 Simulated Annealing

Simulated Annealing
/* Inputs */
neighbourhood function N

objective function f

/* Execution */
T ← determine a starting temperature
current← generate an initial solution
best← current

while not yet frozen do
while not yet at equilibrium for this temperature do

next← a random solution selected from N(current)
∆E ← f(next)− f(current)
if ∆E < 0 then

current← next

if f(next) < f(best) then
best← next

end if
else

choose a random number r uniformly from [0.1]
if r < e(−∆E/T ) then

current← next

end if
end if

end while
lower the temperature T

end while
return best
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temperature. The temperature is decreased during the search process,
starting from an initial value and moving down towards zero. The higher
the temperature, the higher the probability of accepting a worse solution
as the new solution. So at the beginning of the search, worse solutions
have a larger probability of being accepted, while towards the end of
the process this probability decreases and the method becomes almost
a simple local search procedure. The original idea of this probabilistic
test is taken from the Metropolis algorithm of Metropolis et al. (1953),
which was defined to simulate the behaviour of atoms in the case of a
heat bath.
In practice, the simulated annealing algorithms (Algorithm 5) work as
follows: the algorithm receives as input a neighbourhood function N and
an objective function f . In the case of a TSP problem, the objective
function f is the length of the tour and the neighbourhood function N
is usually one step of the 2-opt edge exchange procedure. The algo-
rithm uses a starting temperature T and an initial solution current. If
current is computed by the algorithm, it is usually randomly generated.
The algorithm is an iterative procedure composed of an inner and an
outer loop. The outer loop executes the cooling process where the tem-
perature is decreased step by step from the initial value towards zero
and then the search is stopped. At each given temperature the inner
loop simulates the thermal equilibrium process. Inside the inner loop,
at each iteration a random solution next is selected from N(current)
and ∆E ← f(next)− f(current) is computed. If f(next) is better than
f(current), current is replaced by next and the algorithm iterates. On
the contrary, the probabilistic choice is activated by computing a ran-
dom number (0 < r < 1) and e(−∆E/T ). If r < e(−∆E/T ), next is accepted
as the new current solution. In this formula higher temperature means
higher probability of accepting the new solution. T is high at the begin-
ning of the algorithm and it usually decreased by using a cooling rate
cr < 1.0 such that T ← T ∗ cr. A good value for cr is a number in the
range 0.93 < cr < 0.99. Following this iterative procedure, the algorithm
generates and evaluates a set of candidate solutions. At the end of the
process, the best solution computed from the beginning of the algorithm
is returned.
Simulated annealing has been used to solve complex discrete and con-
tinuous optimization problems. The main advantage is that the method
is simple, easy to implement, and robust since the final result does not



1.4. METAHEURISTICS 33

usually depend on the initial solution. For this reason, simulated anneal-
ing has been successfully applied to solve TSPs. In particular, Johnson
& McGeoch (1997) report, for both random and structured problems, an
average quality result in the range 3% < avg < 4.5%. In general these
are good results but, as discussed before, the required running time is
usually too large. This is due to the fact that, in order to find good solu-
tions, the method requires a high initial temperature and a slow cooling
rate. For this reason, simulated annealing, as in general metaheuristic al-
gorithms, is often coupled with local search algorithms in order to speed
up the search and to produce high quality solutions (Section 1.5).

1.4.2 Tabu Search

A fundamental approach to escape from local optima is to use aspects of
the search history. Tabu Search (TS) is a metaheuristic method which
systematically utilizes memory for guiding the search process (Glover
1989). In the simplest and most widely applied version of TS, a greedy
local search algorithm is enhanced with a form of short-term memory
which enables it to escape from local optima. TS algorithms are among
the most successful local search-based methods to date. As it happens
for simulated annealing, also in the case of TS the algorithm moves from
one solution to another. The next solution is always chosen from among
the neighbouring solutions of the current solution, that is, solutions that
are reachable from the current solution with a single move. It is pre-
cisely the notion of move and memory of these moves that guides the
TS algorithm. The principle is to help the algorithm not to invert the
moves made in the recent past in order to avoid forming cycles that do
not allow an efficient exploration of the search space. For this reason, the
algorithm uses the tabu-list, a fixed-length data structure that keeps the
most recent moves in memory. Every time a new move is executed, it is
inserted in the tabu-list and the oldest move is then removed from the
list. If a new solution is selected, the tabu-list is investigated to decide
whether to accept it or not.
As reported in Algorithm 6, TS, like many other metaheuristic algo-
rithms, also begins its exploration with a randomly generated solution or
a solution generated by a constructive heuristic. However, the main dif-
ference from other metaheuristic techniques is that TS is strongly based
on a local search mechanism. In fact, at each iteration, the next solu-
tion is the best solution in the neighbourhood of the current solution
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Algorithm 6 Tabu Search

Tabu Search
current← generate an initial solution
best← current

while a terminal condition is met do
ChooseBest: next← the next best solution selected from N(current)
if f(next) < f(best) then

best← next /* aspiration criteria */
next while

end if
if the move that transforms current into next is forbidden in the tabu-list
then
goto ChooseBest

else
current← next

insert the inverted move in the tabu-list
remove the last tabu move from the tabu-list

end if
end while

and is not chosen stochastically. This behaviour is exactly the same as
that of a local search algorithm of Section 1.3. The following step is the
comparison between the value of next and the value of the best solution
best computed so far. If f(next) < f(best), next is always accepted as
the new current solution regardless of any consideration about the past
moves and the values in the tabu-list. This is called the aspiration cri-
terion and it is one of the main components of the TS algorithm since it
allows the memory constraints to be violated in the case of a successful
solution. If the aspiration criterion is not verified, the algorithm pro-
ceeds with the verification of the validity of the move used to transform
current into next. If the move is tabu (i.e. it belongs to the current
tabu-list), the solution next is discarded. At this point, the algorithm
selects as next the next best solution in the neighbourhood of current
and the comparison with the tabu-list moves is repeated. When the next
non-tabu solution is selected, it becomes the next current solution even
if its value is worse than the value of the current current solution. This
is a typical component of all metaheuristics which is also found in TS.



1.4. METAHEURISTICS 35

TS is an algorithm that does not use many parameters. In particular
there are three components which must be specified to have a correct
implementation of the algorithm. The first is the neighbourhood func-
tion. Still referring to the TSP problem, it can be said that a typical
choice is to use 2-opt or 3-opt (Section 1.3). The second choice concerns
the length of the tabu-list (tabu tenure). If the size of the tabu tenure is
too small, we run the risk of entering into a cycle and not escaping from
local minima. If the tabu tenure is too long, this prevents the efficient
exploration of the search space. In the case of TSP, Glover (1989) re-
ports that 6 is the ideal tabu tenure and a tabu tenure of less than 4 can
be critical. More detailed studies of Tsubakitani & Evans (1998) tend
to demonstrate that for the TSP the tabu tenure depends on the size n
of the problem and the selected neighbourhood function. For example
Tsubakitani & Evans (1998) experimentally compute that the optimal
choice for the tabu tenure is n/4 in the case of 2-opt and between n/8
and n/16 in the case of 3-opt. In the same study it is reported that a
tabu tenure longer than n/2 drastically worsens the algorithm perfor-
mance. In addition, a proposal has been made to dynamically vary the
tabu tenure during the search or to adapt (increase or decrease) the tabu
tenure according to search information and the presence of cycles (Reac-
tive Tabu search, Battiti & Tecchiolli 1994a).
The last TS component is the tabu-list structure. In case of the TSP and
the 2-opt neighbourhood function the basic tabu-list move is composed
of pairs of edges (Glover 1989), each pair being the two edges removed
during the 2-opt operation. Glover (1989) also suggests using as move
the shortest of the two edges deleted during the 2-opt operation. Malek
et al. (1989) propose to use the endpoints of the removed edges instead
of the entire edge.
The first application of TS to the TSP is reported in Malek et al. (1989).
In this paper it is experimentally shown that TS is superior to simulated
annealing (Section 1.4.1) and that it is possible to take advantage of a
parallel implementation.

1.4.3 Genetic Algorithms

A different approach to solve optimization problems is provided by ge-
netic algorithms. Genetic algorithms (Holland 1975) are no longer based
on the modification of a single solution but require the modification and
combination of a population of solutions. Genetic algorithms are in-
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Algorithm 7 Genetic Algorithms

Genetic Algorithms
/* Inputs */
fitness function fitness to be maximized and other parameters
/* Execution */
t← 1, the number of the current generation
determine a random initial population M(t) of m individuals
determine the population fitness fitness(t)
while terminal condition is met do
1. define the selection probabilities P (t)
2. select parents for mating according to P (t)
3. perform crossover and mutation on the selected parents, creating new
offspring C(t)
4. some individuals between M(t) and C(t) die and the new population
M(t+ 1) is defined
5. determine the population fitness fitness(t+ 1)
t← t+ 1

end while
return the best solution from the beginning

spired by Darwin’s theory of evolution including mechanisms such as
inheritance, generations, natural selection, and reproduction. In genetic
algorithms the selection mechanism determines which individuals are cho-
sen for mating and how many children each selected couple will produce.
Natural selection implies that individuals who are best suited to the en-
vironment are more likely to reproduce and to generate new offspring
similar to themselves. Reproduction is based on the principle of survival
of individuals with better fitness. Due to the recombination of genetic
materials of the best parents, the evolution of the population is much
faster and more efficient. From this point of view, individuals can be
considered excellent problem solvers because they are able to survive in
their environment and to develop skills and behaviours that are the result
of natural evolution. Genetic algorithms implement this idea, starting
from a set of solutions that correspond to a natural population. This
population evolves generation after generation following the Darwinian
mechanisms.

Genetic algorithms are described in Algorithm 7. The algorithm re-
ceives as input the fitness function fitness to be maximized and other
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parameters such as the population size m. The algorithm iterates step
by step from generation to generation and in each generation it produces
a new population. The number of the current generation is stored in the
parameter t, which is initially set to 1. The first population of m indi-
viduals is usually randomly created and for each individual the fitness
function is computed. These individuals are solutions of the optimization
problem and their structure is the counterpart of the genetic chromosome.
An iterative process is then started with the terminal condition defined
by setting the total running time or the total number of iterations. In
each iteration the following steps are repeated:
1. For each individual the reproduction probability is computed. Accord-
ing to the Darwinian theory of evolution, the best individuals survive and
therefore should have the highest probability of creating new offspring.
In genetic algorithms each individual is associated with a selection prob-
ability proportional to the value of its fitness. The better the fitness, the
higher the probability that the individual will be selected for reproduc-
tion.
2. Based on these probabilities, the selection process is started and a
pair of parents is formed.
3. Each pair generates new offspring (usually a pair of individuals)
through crossover and mutation mechanisms. Crossover is used to gen-
erate new offspring where one part of the chromosome is taken from one
parent and the other part is taken from the second parent. This is very
important because new individuals are not randomly generated but their
structure (chromosome) depends critically on the structure of their par-
ents. As in natural breeding, the creation of new offspring may suffer
from some genetic mutation. Mutation means that the chromosomes of
new individuals are perhaps a little different from the chromosomes of
their parents due to errors in copying genes that happen in nature.
4. After the reproduction process, a set of new offspring is finally cre-
ated. At this point the population for the next generation is calculated
by selecting part of the individuals from the current population and part
of the individuals from the new set of offspring. In general, the dimension
m of the population is constant and at least the best parent in the cur-
rent generation is kept in the next generation (elitism). The proportion
of elderly parents and new offspring in the new population is defined by
external parameters, but it is not unusual for the new generation to be
entirely composed of the new offspring.



38 CHAPTER 1. METAHEURISTICS AND LOCAL SEARCH

5. The fitness of the new population is computed and the next iteration
t+ 1 is started.
Genetic algorithms have been successfully applied to the solution of TSPs
(see for example Whitley et al. 1989). In general, to implement genetic
algorithms for TSP, each individual is defined as a feasible TSP tour by
providing the matrix representation or the cycle notation (Michalewicz
1994). Here, the main problem is the definition of effective crossover
and mutation operations which prevent the generation of unfeasible so-
lutions. In fact, several ad hoc crossover methods have been developed for
the TSP. In particular, we can mention matrix crossover (MX, Goldberg
1989; Michalewicz 1994), which uses matrix representation, and cycle
crossover (CX), which uses cycle notation (Goldberg 1989; Michalewicz
1994). Computation results of using the genetic algorithm to solve TSP
problems are reported in Freisleben & Merz (1996a) with many solutions
close to the best known results. Anyway, the algorithm is slow so it
is not applicable for large instances in acceptable time. Therefore, as
mentioned in the previous section on simulated annealing, also in the
case of genetic algorithms the best way to proceed is to couple the basic
algorithm with a local search procedure (Section 1.5).

1.4.4 ACO: Ant Colony Optimization Algorithms

ACO algorithms (Dorigo et al. 1999) pertain to the study of computa-
tional systems in which computation is carried out by simple artificial
agents which mimic the behaviour of ants. Their basic principle is based
on the way in which ants search for food and find their way back to
the nest. Real ants are capable of finding the shortest path from a food
source to the nest (Beckers et al. 1993; Goss et al. 1989) without using
visual cues. Initially, ants explore the area surrounding their nest in a
random manner. As soon as an ant finds a source of food it evaluates the
quantity and quality of the food and carries some of this food to the nest.
During the return trip, the ant leaves a chemical pheromone trail on the
ground. The role of this pheromone trail is to guide other ants toward
the source of food, and the quantity of pheromone left by an ant depends
on the amount of food found. After a while, the path to the food source
will be indicated by a strong pheromone trail and the more ants reach the
source of food, the stronger the pheromone trail that is left. Ants exploit
these pheromone trails as a means of finding their way from the nest to
the food source and back. Also, they are capable of adapting to changes
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Algorithm 8 ACO, Ant Colony Optimization

ACO, Ant Colony Optimization
while termination conditions are not met do do
schedule activities

ants generation and activity();
pheromone evaporation();
daemon actions(); {optional}

end schedule activities
end while

in the environment, for example finding a new shortest path once the old
one is no longer feasible due to a new obstacle (Beckers et al. 1993; Goss
et al. 1989). In a sense, this behaviour is an emergent property of the ant
colony. It is also interesting to note that ants can perform this specific
behaviour using a simple form of indirect communication mediated by
pheromone laying, known as stigmergy (Grassé 1959).
The transposition of real ants food searching behaviour into a framework
for knowledge representation and problem solving is done in the following
way: first the search space for ant-based algorithms is defined as a graph.
Each edge of the graph has two associated measures: the cost and the
artificial pheromone trail. Cost is a static value; that is, it never changes
for a given problem, while an artificial pheromone trail is a dynamic
value changed during runtime by ants. Second, real ants are replaced by
artificial ants that move in the graph following and modifying the arti-
ficial pheromone trail. Each ant moves from node to node and chooses
to move to the next node using a probabilistic rule which favours nodes
that are close and connected by edges with a high pheromone trail value.
The guiding principle is to increase the pheromone trail on those edges
visited by those ants that have found a better solution. The pheromone
trail also evaporates so that memory of the past is gradually lost.

Artificial ants have a twofold nature. On the one hand, they are an
abstraction of those behavioural traits of real ants which seem to be at the
heart of the shortest path-finding behaviour observed in real ant colonies.
On the other hand, they have been enriched with some capabilities which
do not find a natural counterpart. In fact, ant colony optimization is in-
tended to be an engineering approach to the design and implementation
of software systems for the solution of difficult optimization problems.
It is therefore reasonable to give artificial ants some capabilities that,
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although they do not correspond to any capacity of their real ant coun-
terparts, make them more effective and efficient.
As presented in Dorigo et al. (1999) and in Algorithm 8, in ACO a
finite-size colony of artificial ants with the above described characteris-
tics collectively searches for good quality solutions to the optimization
problem under consideration. Each ant builds a solution, or a component
of it, starting from an initial state selected according to some problem-
dependent criteria. While building its own solution, each ant collects
information on the problem characteristics and on its own performance
and uses this information to modify the representation of the problem,
as seen by the other ants. Ants can act concurrently and independently,
showing a cooperative behaviour. They do not use direct communica-
tion: it is the stigmergy paradigm that governs the information exchange
among the ants.
An incremental constructive approach is used by the ants to search for
a feasible solution. A solution is expressed as a minimum cost (shortest)
path through the states of the problem in accordance with the problems
constraints. Each single ant is able to find a (probably poor quality) so-
lution. However, high quality solutions are found as the emergent result
of the global cooperation among ants.
According to the assigned notion of the neighbourhood (problem-dependent),
each ant builds a solution by moving through a (finite) sequence of neigh-
bouring states. Moves are selected by applying a stochastic local search
policy directed by (i) ants private information (the ants internal state
or memory) and (ii) the publicly available pheromone trail and a priori
problem-specific local information.
The ants internal state stores information about the ants past history. It
can be used to carry useful information to compute the value/goodness
of the generated solution and/or the contribution of each executed move.
Moreover it can play a fundamental role in managing the feasibility of the
solutions. In some problems, in fact, typically in combinatorial optimiza-
tion, some of the moves available to an ant in a state can take the ant to
an infeasible state. This can be avoided by exploiting the ants memory.
Ants can therefore build feasible solutions using only knowledge about
their local state.
This knowledge comprises both problem-specific heuristic information
and knowledge accumulated in the pheromone trails. This pheromone
knowledge is a shared local long-term memory that influences the ants



1.4. METAHEURISTICS 41

decisions. The decisions about when the ants should release pheromones
into the environment and how much pheromone should be deposited
depend on the characteristics of the problem and on the design of the
implementation. Ants can release pheromone while building the solu-
tion (online step-by-step), or after a solution has been built, moving
back to all the visited states (online delayed), or both. Autocatalysis
plays an important role in ACO algorithms functioning: the more ants
choose a move, the more the move is rewarded (by adding pheromone)
and the more interesting it becomes to the next ants. In general, the
amount of pheromone deposited is made proportional to the goodness
of the solution an ant has built (or is building). In this way, if a move
contributes to generating a high-quality solution, its goodness will be in-
creased proportionally to its contribution. Once an ant has accomplished
its task, consisting of building a solution and depositing pheromone infor-
mation, the ant dies; that is, it is deleted from the system. The overall
ACO meta-heuristic, beside the two above-described components act-
ing from a local perspective (that is, ants generation and activity() and
pheromone evaporation()), can also comprise some extra components
which use global information and that go under the name of daemon actions()
in the algorithm reported in Algorithm 8. For example, a daemon can
be allowed to observe the ants behaviour and collect useful global in-
formation to deposit additional pheromone information, biasing, in this
way, the ant search process from a non-local perspective. Or, it could,
on the basis of the observation of all the solutions generated by the ants,
apply problem-specific local optimization procedures and deposit addi-
tional pheromone offline in addition to the pheromone the ants deposited
online.
The ACO framework has been proposed in Dorigo et al. (1999), which ini-
tially includes not only the solution of combinatorial optimization prob-
lems but also the solution of routing in telecommunication networks (Di
Caro & Dorigo 1998). Anyway, the first algorithm in this framework
was Ant System (AS, Dorigo 1992; Colorni et al. 1991, 1992, 1995),
which introduced the idea of ant-based optimization and the use of the
pheromone trail. The second ACO algorithm was Ant-Q (Gambardella &
Dorigo 1995; Dorigo & Gambardella 1996), which takes inspiration from
reinforcement learning (Kaelbling et al. 1996). Ant-Q proposes a more
efficient algorithm with a new methodology to build feasible solutions
and to update the pheromone trail both locally and globally. Starting
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from Ant-Q, the third algorithm was ACS of Gambardella & Dorigo
(1996) (Chapter 2), which consolidated the ideas proposed in Ant-Q and
introduced the first coupling between ACO and local search (Dorigo &
Gambardella 1997).
Dorigo & Stützle (2004) distinguish between variants and extensions
of AS. The variants differ from the original algorithm mainly in the
pheromone update rule. Among variants we find: elitist ant system
(Dorigo 1992); rank-based ant system (Bullnheimer et al. 1999a); and
MAX -MIN ant system (Stützle & Hoos 2000), which uses bounding
techniques to limit the possible values for pheromone on arcs. Extensions
display more substantial changes in the algorithm structure. Among the
extensions we find: approximate nondeterministic tree search ANTS,
(Maniezzo & Carbonaro 2000; Maniezzo et al. 2004) exploiting the use
of lower bounds in the computation of a solution; D-ants (Reimann et al.
2002, 2004), which makes use of the savings algorithm; the hyper-cube
framework for ACO (Blum & Dorigo 2004), which rescales pheromone
values between 0 and 1; beam-ACO (Blum 2005), which hybridizes ACO
with beam search and the mentioned Ant Colony System on which we
focus in the remainder of this thesis.

1.5 Coupling Metaheuristics with Local Search

In the preceding sections, several techniques for solving combinatorial
optimization problems have been shown. On the one hand the construc-
tion techniques (Section 1.2) are able to generate initial feasible solutions
to the problem. Starting from these solutions (or other randomly gen-
erated solutions), it is possible to activate local search methods (Section
1.3). These algorithms are able to improve a feasible solution with a
systematic exploration of the neighbourhood space. They are fast and
efficient but their disadvantage is that they are not able to escape from
local minima. Finally we saw metaheuristic algorithms (Section 1.4) of-
ten inspired by natural systems. These methods are capable of exploring
large search spaces without becoming trapped in local minima as they use
stochastic moves and memory and they accept solutions that are worse
than the previous solutions. Their defect is, however, that they require
long computational times and they do not go deep into the search space
quickly. To solve these problems it was thought (Johnson & McGeoch
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1997) to class of algorithms which combine the advantages of these two
approaches. On the one hand, the local search methods are seen as a
technique to intensify the search for good solutions on and the other
metaheuristic methods are used as a tool to diversify the search into new
areas of the search space. The coupling of these two methods is called
hybridization (Blum et al. 2008).

One of the most interesting hybridization approaches for improving
the efficiency of metaheuristic methods is Iterated Local Search (ILS,
Lourenço et al. 2003, Algorithm 9). The proposal is to define a resolu-
tion algorithm that combines two components: one is a fast and deter-
ministic method able to bring solutions to their local minimum quickly
(intensification); the other is a stochastic metaheuristic method which
can effectively explore the space of all possible solutions (diversification).
The principle is to avoid repeating many calls to the local search proce-
dure starting from many randomly generated solutions (see the random-
restart policy in Section 1.3) and to embed successive calls of the local
search in a metaheuristic-like method able to iteratively profit from pre-
viously generated solutions.
In Algorithm 9 the basic mechanism of ILS is presented. ILS starts
by generating a solution s0 that is immediately optimized with a local
search procedure. Here, the iterative loop, which basically consists of
three phases, begins. The first step is to perturb the current solution s∗,
generating a new solution s′ (diversification). Local searches are usually
deterministic and therefore the perturbation step must introduce a non-
deterministic random component that allows the effective exploration of
new areas of the search space. In this light, perturbation performs a
kind of global random search in the solution space. The new solution
s′ is immediately optimized with a call to the local search procedure
which produces s∗′ (intensification). The next step is choosing whether
to accept s∗′ as the new starting solution or to move back to the current
solution s∗. Anyway, these two solutions are two local optimal solutions
since both of them have been optimized by a local search procedure. The
choice here may be greedy, in the sense that the better solution between
s∗ and s∗′ is always used as a new starting point, or probabilistic, where
the choice follows an approach similar to simulated annealing (Section
1.4.1, Martin et al. 1991). The algorithm then iterates, moving from one
local minimum to the next.

In this class of algorithms the most delicate aspect to handle is the
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Algorithm 9 Iterated Local Search

Iterated Local Search
/* Inputs */
s0 ← generate an initial solution
s∗ ← Local search(s0)
while a terminal condition is met do
s′ ← Perturbation(s∗, history) /* Diversification */
s∗′ ← Local search(s′) /* Intensification */
s∗ ← Acceptance Criterion(s∗, s∗

′

, history)
end while

balance between perturbation and local search. This balance has to be
made on a case by case basis by analysing in depth the characteristics of
these two components. The perturbation step should be strong enough
to make it possible to escape from the local minima produced by the local
search. On the contrary, if the perturbation is too strong, the process
becomes very similar to the random-restart policy, since the algorithm
does not exploit the knowledge accumulated in previous iterations of the
algorithm.

One of the first applications of ILS to combinatorial optimization
problems was the TSP (Martin et al. 1991). The authors proposed a
method initially called Large-Step Markov Chains that combines a lo-
cal search procedure like 3-opt (Section 1.3) with a particular form of
perturbation called double-bridge (Figure 1.2). Double-bridge pertur-
bation randomly removes four edges from the tour ((h, h + 1)(r, r +
1)(s, s + 1)(t, t + 1)) and builds a new tour, adding four new edges
((h, s + 1)(t, r + 1)(s, h + 1)(r, t + 1)) according to Figure 1.2. The
goal is to precisely create the desired balance between perturbation and
local search. In fact, the combination of an intensification algorithm
like 3-opt with a perturbation algorithm like 2-opt is not effective. If
a 2-opt perturbation is applied to s∗, obtaining s′, and then a 3-opt
local search is executed on s′, obtaining s∗′, the final local search so-
lution s∗′ has a great chance of being exactly the original starting so-
lution s∗, cancelling out the effect of the perturbation. The use of
a double-bridge perturbation combined with 3-opt was instead proven
to be very efficient (Martin et al. 1991) because 3-opt is not able to
easily reverse the effect of the perturbation. The new optimized so-
lution is usually a different local minimum from the original solution
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Algorithm 10 Coupling Metaheuristics with Local Search

Coupling Metaheuristics with Local Search
/* Inputs */
initial solution sstart (or an initial set of solutions)
Apply Local search to sstart
objective function f

neighbourhood function N

current← sstart (current should also be a set of solutions)
while terminal condition is met do
stochastically compute a solution (or a set of solutions) next ∈
N(current) /* Diversification */
next← Local search(next) /* Intensification */
Following a criterion, decide whether or not to continue the search from
next by setting current← next

end while
return current

and the final algorithm is therefore very fast and very efficient. With
this method Martin et al. (1991) proved that optimal solutions could
be computed for many instances of the TSPLIB: http://www.iwr.uni-
heidelberg.de/groups/comopt/software/TSPLIB95/.

Figure 1.2: Double-bridge perturbation

The algorithm ILS is a clear example of successful coupling between
metaheuristics and local search. One of the first proposals in this direc-
tion was made, however, by Brady (1985), who used genetic algorithms
combined with 2-opt as a local optimizer. As reported in the book of
Johnson & McGeoch (1997), this is a new trend in solving combinatorial
optimization problems. In particular, the idea is to see this coupling as
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a new class of algorithm in which metaheristics and local search are fully
integrated (Algorithm 10). In this perspective, the role of the metaheuris-
tics component is to diversify the search and to allow the exploration of
new areas of the search space, while the contribution of the local search
is to intensify the exploration of these newly discovered areas. Follow-
ing this schema, the need to balance the role of the two components is
even more important, to avoid stagnation and premature convergence.
In this direction, one of the most efficient couplings is therefore the com-
bination of population-based metaheuristics, like genetic algorithms and
ACO, with local searches. In fact, these methods are very efficient in the
diversification phase and are very effective in generating and discovering
promising new search areas.
This thesis shows a path in this direction by presenting the successful
integration of ACO with different types of local search algorithms.
In particular we start by presenting Ant Colony System (ACS, Gam-
bardella & Dorigo 1996, Chapter 2), the basic algorithm in our research,
which is coupled with a specialized local search to solve TSPs (Dorigo
& Gambardella 1997). ACS is then extended to deal with VRPs with
time windows. The resulting MACS-VRPTW: A Multiple Ant Colony
System for Vehicle Routing Problems with Time Windows algorithm,
(Gambardella et al. 1999, Chapter 3) couples a specialized local search
for VRPs with an extension of ACS which includes two colonies working
in parallel. ACS is then specialized to deal with the SOP, a special form of
ATSP with precedence constraints. The resulting algorithm HAS-SOP:
An ant colony system hybridized with a new local search for the sequential
ordering problem, (Gambardella & Dorigo 2000, Chapter 4) includes a
new and effective local search procedure SOP-3-exchange. The follow-
ing effort is the definition of a new algorithm called EACS: Coupling ant
colony systems with strong local searches (Gambardella et al. 2012, Chap-
ter 5), where ACS is definitively extended to explicitly deal with a strong
local search routine. For all these algorithms and for the application of
ACS to industrial routing problems (Rizzoli et al. 2007, Chapter 6), com-
putational results and comparisons with other algorithms are presented
and investigated in the thesis.



Chapter 2

ACS: Ant Colony System

2.1 Introduction

This chapter introduces Ant Colony System (ACS, Gambardella & Dorigo
1996; Dorigo & Gambardella 1997), a distributed algorithm belonging to
the ACO framework (Section 1.4.4), which has been applied to the trav-
eling salesman problem (TSP). In ACS, a set of cooperating agents called
ants cooperate to find good solutions to TSPs. Ants cooperate using an
indirect form of communication mediated by pheromone they deposit on
the edges of the TSP graph while building solutions. We have studied
ACS by running experiments to understand its operation. The results
have shown that ACS has been able to outperform other nature-inspired
algorithms such as simulated annealing and evolutionary computation,
and we conclude comparing ACS-3-opt, a version of ACS augmented with
a local search procedure, to some effective algorithms for symmetric and
asymmetric TSPs.

The natural metaphor on which ant algorithms are based is that of
ant colonies. Real ants are capable of finding the shortest path from a
food source to their nest (Beckers et al. 1992; Goss et al. 1989), without
using visual cues (Hölldobler & Wilson 1990) by exploiting pheromone
information. While walking, ants deposit pheromone on the ground, and
follow, in probability, pheromone previously deposited by other ants. A
way ants exploit pheromone to find a shortest path between two points
is shown in Figure 2.1.

Consider Figure 2.1A: Ants arrive at a decision point in which they
have to decide whether to turn left or right. Since they have no clue about
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which is the best choice, they choose randomly. It can be expected that,
on average, half of the ants decide to turn left and the other half to turn
right. This happens both to ants moving from left to right (those whose
name begins with an L) and to those moving from right to left (name
begins with a R). Figure 2.1B and Figure 2.1C show what happens in the
immediately following instants, supposing all ants walk at approximately
the same speed. The number of dashed lines is roughly proportional to
the amount of pheromone that the ants have deposited on the ground.
Since the lower path is shorter than the upper one, more ants will visit it
on average, and therefore pheromone accumulates faster. After a short
transitory period the difference in the amount of pheromone on the two
path is sufficiently large so as to influence the decision of new ants coming
into the system (this is shown by Figure 2.1D). From now on, new ants
will prefer in probability to choose the lower path, since at the decision
point they perceive a greater amount of pheromone on the lower path.
This in turn increases, with a positive feedback effect, the number of ants
choosing the lower, and shorter, path. Very soon all ants will be using
the shorter path.

The above behavior of real ants has inspired AS, the first algorithm in
the ACO framework (Section 1.4.4), where a set of artificial ants cooper-
ate to the solution of a problem by exchanging information via pheromone
deposited on graph edges. AS has been applied to combinatorial opti-
mization problems such as the traveling salesman problem (TSP) (Dorigo
1992; Colorni et al. 1991, 1992; Dorigo et al. 1996), and the quadratic
assignment problem (Maniezzo et al. 1994).

ACS, the algorithm presented in this chapter, builds on the previous
AS in the direction of improving efficiency when applied to symmetric
and asymmetric TSPs. The main idea is that of having a set of agents,
called ants, search in parallel for good solutions to the TSP, and cooperate
through pheromone-mediated indirect and global communication. Infor-
mally, each ant constructs a TSP solution in an iterative way: it adds
new cities to a partial solution by exploiting both information gained
from past experience and a greedy heuristic. Memory takes the form of
pheromone deposited by ants on TSP edges, while heuristic information
is simply given by the edge’s length.

The main novel idea introduced by ant algorithms, which will be
discussed in the remainder of the chapter, is the synergistic use of co-
operation among many relatively simple agents which communicate by
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Figure 2.1: How real ants find a shortest path. A) Ants arrive at a decision
point. B) Some ants choose the upper path and some the lower path. The
choice is random. C) Since ants move at approximately constant speed, the
ants which choose the lower, shorter, path reach the opposite decision point
faster than those which choose the upper, longer, path. D) Pheromone accu-
mulates at a higher rate on the shorter path. The number of dashed lines is
approximately proportional to the amount of pheromone deposited by ants.
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distributed memory implemented as pheromone deposited on edges of a
graph.

The chapter is organized as follows. Section 2.2 puts ACS in context
by describing AS, the progenitor of ACS. Section 2.3 introduces ACS.
Section 2.4 is dedicated to the study of some characteristics of ACS: We
study how pheromone changes at run time, estimate the optimal number
of ants to be used, observe the effects of pheromone-mediated coopera-
tion, and evaluate the role that pheromone and the greedy heuristic have
in ACS performance. Section 2.6 provides an overview of results on a
set of standard test problems and comparisons of ACS with well-known
general purpose algorithms like evolutionary computation and simulated
annealing. In Section 2.7 we add local optimization to ACS, obtaining an
algorithm called ACS-3-opt. This algorithm is compared favorably with
the winner of the First International Contest on Evolutionary Optimiza-
tion (Bersini et al. 1996) on ATSP problems, while it yields a slightly
worse performance on TSP problems. Section 2.8 is dedicated to the
discussion of the main characteristics of ACS and presents some conclu-
sions.

2.2 Background

AS (Dorigo 1992) is the progenitor of all our research efforts with ACO
ant algorithms (Section 1.4.4), and was first applied to the traveling
salesman problem (TSP), which is defined in Section 1.2.

AS utilizes a graph representation which is the same as that defined
in case of TSP. In contrast with TSP graph, in AS each edge (i, j) of the
graph has two associated measures: the heuristic desirability µij (e.g. the
inverse of the edge length in case of TSP) and the pheromone trail τij.
The heuristic desirability is fixed during the search while the pheromone
trail is modified at runtime by ants. When AS is applied to symmetric
instances of the TSP, τij = τji, while when it is applied to asymmetric
instances it is possible that τij 6= τji.

Informally, AS works as follows. Ants are initially randomly dis-
tributed on cities. Each ant generates a complete tour by choosing the
cities according to a probabilistic state transition rule: Ants prefer to
move to cities which are connected by short edges with a high amount of
pheromone. Once all ants have completed their tours a global pheromone
updating rule (global updating rule, for short) is applied: A fraction of
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the pheromone evaporates on all edges (edges that are not refreshed be-
come less desirable), and then each ant deposits an amount of pheromone
on edges which belong to its tour in proportion to how short its tour was
(in other words, edges which belong to many short tours are the edges
which receive the greater amount of pheromone). The process is then
iterated.

The state transition rule used by AS, called a random-proportional
rule, is given by Equation 2.1, which gives the probability with which
ant k in city i chooses to move to the city j.

pkij =

{

[τij ]·[µij ]
β

∑
u∈Jk

r
[τij ]·[µij ]β

if j ∈ Jk
r

0 otherwise
(2.1)

where τ is the pheromone, µ = 1
d
is the inverse of the distance dij, J

k
r is

the set of cities that remain to be visited by ant k positioned on city i (to
make the solution feasible), and β is a parameter which determines the
relative importance of pheromone versus distance (β > 0). In Equation
2.1 we multiply the pheromone τij on edge (i, j) by the corresponding
heuristic value µij. In this way we favor the choice of edges which are
shorter and which have a greater amount of pheromone. In AS, the global
updating rule is implemented as follows. Once all ants have built their
tours, pheromone is updated on all edges according to

τij ← (1− α) · τij +
m
∑

k=1

△τ kij (2.2)

where

△τ kij =

{

1
Lk

if (i, j) ∈ tour done by ant k
0 otherwise

(2.3)

0 < α < 1 is a pheromone decay parameter, Lk is the length of the
tour performed by ant k, and m is the number of ants.

Pheromone updating is intended to allocate a greater amount of
pheromone to shorter tours. In a sense, this is similar to a reinforce-
ment learning scheme (Sutton & Barto 1998; Kaelbling et al. 1996) in
which better solutions get a higher reinforcement (as happens, for exam-
ple, in genetic algorithms under proportional selection). The pheromone
updating formula was meant to simulate the change in the amount of
pheromone due to both the addition of new pheromone deposited by
ants on the visited edges, and to pheromone evaporation.
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Algorithm 11 Ant Colony System (ACS). High Level Definition

Initialize
repeat {at this level each loop is called an iteration}
Each ant is positioned on a starting node
repeat {at this level each loop is called a step}
Each ant applies a state transition rule to incrementally build a solution
and a local pheromone updating rule

until all ants have built a complete solution
A global pheromone updating rule is applied

until End condition

Pheromone placed on the edges plays the role of a distributed long
term memory: This memory is not stored locally within the individual
ants, but is distributed on the edges of the graph. This allows an indi-
rect form of communication called stigmergy (Grassé 1959; Deneubourg
1977). The interested reader will find a full description of AS, of its
biological motivations, and computational results in Dorigo et al. (1996).

2.3 ACS: Ant Colony System

Although AS was useful for discovering good or optimal solutions for
small TSPs (up to 30 cities), the time required to find such results made
it unfeasible for larger problems. Three main changes were devised to
improve its performance which led to the definition of ACS, presented in
the this section.

ACS differs from the previous AS because of three main aspects:

• (i) the state transition rule provides a direct way to balance be-
tween exploration of new edges and exploitation of a priori and
accumulated knowledge about the problem,

• (ii) the global updating rule is applied only to edges which belong
to the best ant tour, and

• (iii) while ants construct a solution a local pheromone updating rule
(local updating rule, for short) is applied.

Informally, ACS works as follows (Algorithm 11, 12): m ants are
initially positioned on n cities chosen according to some initialization
rule (e.g., randomly). Each ant builds a tour (i.e., a feasible solution
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Table 2.1: A comparison of action choice rules. Type of delayed reinforcement:
iteration-best. 50-city problems were stopped after 500 iterations. Oliver30
was stopped after 200 iterations and ry48p after 600 iterations. Averaged over
15 trials. Results in bold are the best in the Table.

Pseudo-random Pseudo-random- Random-proportional

proportional

average std best average std best average std best
dev dev dev

City Set 1 6.18 0.06 6.03 5.87 0.05 5.84 7.85 0.25 7.40
City Set 2 6.26 0.04 6.20 6.06 0.05 5.99 7.77 0.30 7.43
City Set 3 5.69 0.07 5.61 5.57 0.00 5.57 7.89 0.17 7.75
City Set 4 5.92 0.05 5.84 5.76 0.03 5.70 7.95 0.10 7.85
City Set 5 6.30 0.04 6.22 6.18 0.01 6.17 8.48 0.21 8.10
Oliver30 425.02 1.22 424.69 424.44 0.46 423.74 515.19 10 493.20
ry48p 15602 440 14848 14690 175 14422 19495 797 17921

to the TSP) by repeatedly applying a stochastic greedy rule (the state
transition rule). While constructing its tour, an ant also modifies the
amount of pheromone on the visited edges by applying the local updating
rule. Once all ants have terminated their tour, the amount of pheromone
on edges is modified again (by applying the global updating rule).

As was the case in AS, ants are guided, in building their tours, by
both heuristic information (they prefer to choose short edges), and by
pheromone information: An edge with a high amount of pheromone is
a very desirable choice. The pheromone updating rules are designed so
that they tend to give more pheromone to edges which should be visited
by ants. The ACS high level algorithm is reported in Algorithm 11 and
the detailed code in Algorithm 12.

In the following we discuss the state transition rule, the global updat-
ing rule, and the local updating rule.

2.3.1 ACS State Transition Rule

In ACS the state transition rule is as follows: an ant positioned on node
i chooses the city j to move to by applying the rule given by Equation
2.4
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s =

{

argmaxu∈Jk
r
{[τij] · [µij]

β} if q ≤ q0 (exploitation)
S otherwise (biased exploration)

(2.4)
where q is a random number uniformly distributed in [0 .. 1], q0 is a pa-

rameter (0 ≤ q0 ≤ 1), and s is a random variable selected according to the
probability distribution given in Equation 2.1. The state transition rule
resulting from Equation 2.4 and Equation 2.1 is called pseudo-random-
proportional rule. This state transition rule, favors transitions towards
nodes connected by short edges and with a large amount of pheromone.
The parameter q0 determines the relative importance of exploitation ver-
sus exploration: Every time an ant in city i has to choose a city j to
move to, it samples a random number 0 ≤ q ≤ 1. If q ≤ q0 then the best
edge (according to Equations 2.4) is chosen (exploitation), otherwise an
edge is chosen according to Equation 2.1 (biased exploration).

The pseudo-random-proportional action choice rule is the best com-
promise between the pseudo-random action choice rule (with the pseudo-
random rule the chosen action is the best one with probability q0, and a
random one with probability (1−q0), and the random-proportional action
choice rule of AS (Equation 2.1). Results obtained running experiments
(Table 2.1) on a set of five randomly generated 50-city TSPs Durbin &
Willshaw (1987), on the Oliver30 symmetric TSP (Whitley et al. 1989),
and the ry48p asymmetric TSP (Reinelt 1991) have shown that the
pseudo-random-proportional action choice is by far the best choice for
the state transition rule (Gambardella & Dorigo 1995).

2.3.2 ACS Global Updating Rule

In ACS only the globally best ant (i.e., the ant which constructed the
shortest tour from the beginning of the trial) is allowed to deposit phero-
mone. This choice, together with the use of the pseudo-random-proportio-
nal rule, is intended to make the search more directed: Ants search in a
neighborhood of the best tour found up to the current iteration of the
algorithm. Global updating is performed after all ants have completed
their tours. The pheromone level is updated by applying the global up-
dating rule of Equation 2.5

τij ← (1− α) · τij + α · △τij (2.5)
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where

△τij =

{ 1
Lgb

if (i, j) ∈ global best tour

0 otherwise

where 0 < α < 1 is the pheromone decay parameter, and Lgb is the
length of the globally best tour from the beginning of the trial. This
global updating is intended to provide a greater amount of pheromone
to the best (shorter) tour.

Equation 2.5 dictates that only those edges belonging to the globally
best tour will receive reinforcement. We also tested in Gambardella &
Dorigo (1996) another type of global updating rule, called iteration-best,
as opposed to the above called global-best, which instead used Lib (the
length of the best tour in the current iteration of the trial), in Equation
2.5. Also, with iteration-best the edges which receive reinforcement are
those belonging to the best tour of the current iteration. Experiments
have shown that the difference between the two schemes is minimal, with
a slight preference for global-best, which is therefore used in the following
experiments.

2.3.3 ACS Local Updating Rule

While building a TSP solution (i.e., a tour), ants visit edges and change
their pheromone level by applying the local updating rule of Equation
2.6

τij ← (1− ρ) · τij + ρ · △τij (2.6)

where 0 < ρ < 1 is a parameter.
We have experimented with three values for the term △τij. The

first choice was loosely inspired by Q-learning (Watkins 1989), an al-
gorithm developed to solve reinforcement learning problems (Kaelbling
et al. 1996). Such problems are faced by an agent that must learn the
best action to perform in each possible state, using as the sole learning
information a scalar number which represents an evaluation of the state
entered after it has performed the chosen action. Q-learning is an al-
gorithm which allows an agent to learn such an optimal policy by the
recursive application of a rule similar to that in Equation 2.6, in which
the term △τij is set to the discounted evaluation of the next state value.
Since the problem our ants have to solve is similar to a reinforcement
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learning problem (ants have to learn which city to move to as a function
of their current location), we set

△τij = γ ·max
z∈Jk

j

τjz (2.7)

which is exactly the same formula used in Q-learning where (0 ≤ γ ≤ 1)
is a parameter). The other two choices were: we set △τij = 0 and we set

△τij = τ0 (2.8)

where τ0 is the initial pheromone level that it is set to

τ0 = (n · L−1
nn) (2.9)

where n is the number of cities of the problem and Lnn is the length of
tour constructed with a nearest neighbour heuristic (Algorithm 1).
Since τ0 is usually very small in relation to the length of a tour an im-
portant effect in using Formula 2.8 and Formula 2.9 is that τij never
decreases below τ0 so that the values of the pheromone of each edge is
bounded. In addition in case the edge was never updated with the global
updating rule its pheromone level remains unchanged.

Finally, we also ran experiments in which local-updating was not ap-
plied (i.e., the local updating rule is not used, as was the case in AS).
Results obtained running experiments (Table 2.2) on a set of five ran-
domly generated 50-city TSPs Durbin &Willshaw (1987), on the Oliver30
symmetric TSP (Whitley et al. 1989), and the ry48p asymmetric TSP
(Reinelt 1991) essentially suggest that local-updating is definitely useful,
and that the local updating rule with △τij = 0 yields worse performance
than local-updating with △τij = τ0 or with Formula 2.7.

ACS with Formula 2.7 was called Ant-Q in Gambardella & Dorigo
(1995) while ACS with △τij = τ0 (Formula 2.10) was simply called ACS
hereafter (Gambardella & Dorigo 1996; Dorigo & Gambardella 1997).
ACS and Ant-Q resulted to be the two best performing algorithms, with
a similar performance level. Since the ACS local updating rule requires
less computation than Ant-Q, we chose to focus attention on ACS.

τij ← (1− ρ) · τij + ρ · τ0 (2.10)
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Table 2.2: A comparison of local updating rules. 50-city problems and Oliver30
were stopped after 2,500 iterations, while ry48p was halted after 10,000 itera-
tions. Averages are over 25 trials. Results in bold are the best in the Table.

ACS ANT-Q ACS with ACS without
△τij = 0 local updating

average std best average std best average std best average std best
dev dev dev dev

City Set 1 5.88 0.05 5.84 5.88 0.05 5.84 5.97 0.09 5.85 5.96 0.09 5.84
City Set 2 6.05 0.03 5.99 6.07 0.07 5.99 6.13 0.08 6.05 6.15 0.09 6.05
City Set 3 5.58 0.01 5.57 5.59 0.05 5.57 5.72 0.12 5.57 5.68 0.14 5.57
City Set 4 5.74 0.03 5.70 5.75 0.04 5.70 5.83 0.12 5.70 5.79 0.05 5.71
City Set 5 6.18 0.01 6.17 6.18 0.01 6.17 6.29 0.11 6.17 6.27 0.09 6.17
Oliver30 424.74 2.83 423.74 424.70 2.00 423.74 427.52 5.21 423.74 427.31 3.63 423.91
ry48p 14,625 142 14,422 14,766 240 14,422 15,196 233 14,734 15,308 241 14,796

As will be discussed in Section 2.4, the role of ACS local updating
rule is to shuffle the tours, so that the early cities in one ants tour may
be explored later in other ants tours. In other words, the effect of local-
updating is to make the desirability of edges change dynamically: every
time an ant uses an edge this becomes slightly less desirable (since it
loses some of its pheromone). In this way ants will make a better use of
pheromone information: without local-updating all ants would search in
a narrow neighborhood of the best previous tour.

2.3.4 ACS Parameter Settings

In all experiments of the following sections the numeric parameters, ex-
cept when indicated differently, are set to the following values: β = 2,
q0 = 0.9, α = ρ = 0.1, τ0 = (n · L−1

nn).
These values were obtained by a preliminary optimization phase, in

which we found that the experimental optimal values of the parameters
was largely independent of the problem, except for τ0 for which, as we
said, τ0 = (n · L−1

nn). The number of ants used is m = 10 (this choice
is explained in Section 2.4). Regarding their initial positioning, ants are
placed randomly, with at most one ant in each city.

2.4 A Study of Some Characteristics of ACS

2.4.1 Pheromone Behavior and its Relation to Performance

To try to understand which mechanism ACS uses to direct the search we
study how the pheromone-closeness product [τij] · [µij]

β changes at run
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Algorithm 12 Ant Colony System (ACS). Pseudo-code

Procedure ACS: Ant Colony System
1. /* Initialization phase */
for each pair (i, j) do τij ← τ0
for k := 1 to m do
let ik1 be the starting city for ant k
Jk
ik1
← {1, ..., n} − ik1

/* Jk
ik1

is the set of yet to be visited cities for ant k in city ik1 */

ik ← ik1 /* ik is the city where ant k is located */
end for
2. /* This is the phase in which ants build their tours. The tour of ant k
is stored in Tourk. */
for c := 1 to n do
if c < n then

for k := 1 to m do
Choose the next city jk according to Equations 2.4 and 2.1
Jk
jk
← Jk

ik
− jk

Tourk(c)← (ik, jk)
end for

else
for k := 1 to m do

/* In this cycle all the ants go back to the initial city ik1*/
jk ← ik1
Tourk(c)← (ik, jk)

end for
end if
/* In this phase local updating occurs and pheromone is updated using
Equation 2.10*/
for k := 1 to m do
τij ← (1− ρ) · τij + ρ · τ0

end for
ik ← jk /* New city for ant k */

end for
3. /* In this phase global updating occurs and pheromone is updated */
for k := 1 to m do
compute Lk /* Lk is the length of the tour done by ant k */

end for
Compute Lgb, the best solution among all Lk using a global-best rule
/* Update edges belonging to Lgb using Equation 2.5 */
for each pair (i, j) ∈ Lgb do
τij ← (1− α) · τij + α · 1

Lgb

end for each
4. if (End condition = True) then

Print shortest of Lk

else goto Phase 2
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Figure 2.2: Families of edges classified according to different behavior with
respect to the pheromone-closeness product. The average level of the
pheromone-closeness product changes in each family during one iteration of
the algorithm (i.e., during n steps)

time. Figure 2.2 shows how the pheromone-closeness product changes
with the number of steps while ants are building a solution (steps refer
to the inner loop in Algorithm 11: the abscissa goes therefore from 1 to
n, where n is the number of cities).

Let us consider three families of edges (Figure 2.2): (i) those belonging
to the last best tour (BE, Best Edges), (ii) those which do not belong to
the last best tour, but which did in one of the two preceding iterations
(TE, Testable Edges), (iii) the remaining edges, that is, those that have
never belonged to a best tour or have not in the last two iterations (UE,
Uninteresting Edges). The average pheromone-closeness product is then
computed as the average of pheromone-closeness values of all the edges
within a family. The graph clearly shows that ACS favors exploitation
of edges in BE (BE edges are chosen with probability q0 = 0.9) and
exploration of edges in TE (recall that, since Equations 2.4 and 2.1,
edges with higher pheromone-closeness product have a higher probability
of being explored).

An interesting aspect is that while edges are visited by ants, the appli-
cation of the local updating rule, (Equation 2.10), makes their pheromone
diminish, making them less and less attractive, and therefore favoring the
exploration of edges not yet visited. Local updating has the effect of low-
ering the pheromone on visited edges so that these become less desirable
and therefore will be chosen with a lower probability by the other ants in
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Figure 2.3: Families of edges classified according to different behavior with re-
spect to the level of the pheromone-closeness product. Problem: Eil51 [14]. a)
pheromone-closeness behavior when the system performance is good. Best so-
lution found after 1,000 iterations: 426, α = ρ = 0.1. b) pheromone-closeness
behavior when the system performance is bad. Best solution found after 1,000
iterations: 465, α = ρ = 0.9.

the remaining steps of an iteration of the algorithm. As a consequence,
ants never converge to a common path. This fact, which was observed
experimentally, is a desirable property given that if ants explore different
paths then there is a higher probability that one of them will find an
improving solution than there is in the case that they all converge to the
same tour (which would make the use of m ants pointless).

Experimental observation has shown that edges in BE, when ACS
achieves a good performance, will be approximately downgraded to TE
after an iteration of the algorithm (i.e., one external loop in Algorithm
12; see also Figure 2.2), and that edges in TE will soon be downgraded
to UE, unless they happen to belong to a new shortest tour.

In Figure 2.3a and Figure 2.3b we report two typical behaviors of
pheromone level when the system has a good or a bad performance re-
spectively.

2.4.2 The Optimal Number of Ants

Consider Figure 2.4. Let ϕ2τ0 be the average pheromone level on edges
in BE just after they are updated by the global updating rule, and ϕ1τ0
the average pheromone level on edges in BE just before they are up-
dated by the global updating rule ϕ1τ0 is also approximately the average
pheromone level on edges in TE at the beginning of the inner loop of the
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Figure 2.4: Change in average pheromone level during an algorithm iteration
for edges in the BE family. The average pheromone level on edges in BE
starts at ϕ2τ0 and decreases each time an ant visits an edge in BE. After one
algorithm iteration, each edge in BE has been visited on average mq̇0 times,
and the final value of the pheromone level is ϕ1τ0

algorithm). Under the hypothesis that the optimal values of ϕ1 and ϕ2

are known, an estimate of the optimal number of ants can be computed
as follows. The local updating rule is a first-order linear recurrence re-
lation of the form Tz = Tz−1(1 − ρ) + τ0ρ , which has closed form given
by Tz = T0(1 − ρ)z − τ0(1 − ρ)z + τ0. Knowing that just before global
updating T0 = ϕ2τ0 (this corresponds to the start point of the BE curve
in Figure 2.4), and that after all ants have built their tour and just before
global updating, Tz = ϕ1τ0 (this corresponds to the end point of the BE
curve in Figure 2.4), we obtain ϕ1 = ϕ2(1− ρ)z − (1− ρ)z + 1.
Considering the fact that edges in BE are chosen by each ant with a prob-
ability > q0, then a good approximation to the number z of ants that
locally update edges in BE is given by z = m · q0. Substituting in the
above formula we obtain the following estimate of the optimal number
of ants

m =
log(ϕ1 − 1)− log(ϕ2 − 1)

q0 · log(1− ρ)
(2.11)

This formula essentially shows that the optimal number of ants is
a function of ϕ1 and ϕ2. Unfortunately, up to now, we have not been
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able to identify the form of the functions ϕ1(n) and ϕ2(n), which would
tell how ϕ1 and ϕ2 change as a function of the problem dimension. Still,
experimental observation shows that ACS works well when the ratio (ϕ1−
1)/(ϕ2 − 1) ≈ 0.4, which gives m = 10.

2.5 Cooperation Among Ants

This section presents the results of two simple experiments which show
that ACS effectively exploits pheromone-mediated cooperation. Since
artificial ants cooperate by exchanging information via pheromone, to
have noncooperating ants it is enough to make ants blind to pheromone.
In practice this is obtained by deactivating Equation 2.5 and Equation
2.10, and setting the initial level of pheromone to τ0 = 1 on all edges.
When comparing a colony of cooperating ants with a colony of noncoop-
erating ants, to make the comparison fair, we use CPU time to compute
performance indexes so as to discount for the higher complexity, due to
pheromone updating, of the cooperative approach.
In the first experiment, the distribution of first finishing times, defined
as the time elapsed until the first optimal solution is found, is used to
compare the cooperative and the noncooperative approaches. The algo-
rithm is run 10,000 times, and then we report on a graph the probability
distribution (density of probability) of the CPU time needed to find the
optimal value (e.g., if in 100 trials the optimum is found after exactly
220 iterations, then for the value 220 of the abscissa we will have P(220)
= 100/10,000). Figure 2.5 shows that cooperation greatly improves the
probability of finding quickly an optimal solution.
In the second experiment (Figure 2.6) the best solution found is plotted
as a function of time (ms) for cooperating and noncooperating ants. The
number of ants is fixed for both cases: m = 4. It is interesting to note
that in the cooperative case, after 300 ms, ACS always found the opti-
mal solution, while noncooperating ants where not able to find it after
800 ms. During the first 150 ms (i.e., before the two lines in Figure 2.6
cross) noncooperating ants outperform cooperating ants. Good values of
pheromone level are still being learned and therefore the overhead due
to pheromone updating is not yet compensated by the advantages which
pheromone can provide in terms of directing the search towards good
solutions.
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Figure 2.5: Cooperation changes the probability distribution of first finishing
times: cooperating ants have a higher probability to find quickly an optimal
solution. Test problem: CCAO Golden & Stewart (1985). The number of ants
was set to m = 4

2.5.1 The Importance of the Pheromone and the Heuristic

Function

Experimental results have shown that the heuristic function µ is funda-
mental in making the algorithm find good solutions in a reasonable time.
In fact, when β = 0, ACS performance worsens significantly (see the ACS
no heuristic graph in Figure 2.7). Figure 2.7 also shows the behavior of
ACS in an experiment in which ants neither sense nor deposit pheromone
(ACS no pheromone graph). The result is that not using pheromone also
deteriorates performance. This is a further confirmation of the results on
the role of cooperation presented in Section 2.4.

The reason ACS without the heuristic function performs better than
ACS without pheromone is that in the first case, although not helped by
heuristic information, ACS is still guided by reinforcement provided by
the global updating rule in the form of pheromone, while in the second
case ACS reduces to a stochastic multi-greedy algorithm.
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Figure 2.6: Cooperating ants find better solutions in a shorter time. Test
problem: CCAO (Golden & Stewart 1985). Average on 25 runs. The number
of ants was set to m = 4.

Figure 2.7: Comparison between ACS standard, ACS with no heuristic (i.e.,
we set β = 0), and ACS in which ants neither sense nor deposit pheromone.
Problem: Oliver30. Averaged over 30 trials, 10,000/m iterations per trial
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2.6 ACS: Some Computational Results

We report on two sets of experiments. The first set compares ACS with
other heuristics. The choice of the test problems was dictated by pub-
lished results found in the literature. The second set tests ACS on some
larger problems. Here the comparison is performed only with respect to
the optimal or the best known result. The behavior of ACS is excellent
in both cases.

Most of the test problems can be found in TSPLIB: http://www.iwr.uni-
heidelberg.de/groups/comopt/software/TSPLIB95/. When they are not
available in this library we explicitly cite the reference where they can
be found.

Given that during an iteration of the algorithm each ant produces
a tour, in the reported results the total number of tours generated is
given by the number of iterations multiplied by the number of ants. The
result of each trial is given by the best tour generated by the ants. Each
experiment consists of at least 15 trials.

2.6.1 Comparison with Other Heuristics

To compare ACS with other heuristics we consider two sets of TSP prob-
lems. The first set comprises five randomly generated 50-city problems,
while the second set is composed of three geometric problems 1 of be-
tween 50 and 100 cities. It is important to test ACS on both random
and geometric instances of the TSP because these two classes of problems
have structural differences that can make them difficult for a particular
algorithm and at the same time easy for another one.

Table 2.3 reports the results on the random instances. The heuristics
with which we compare ACS are simulated annealing (SA), elastic net
(EN), and self organizing map (SOM). Results on SA, EN, and SOM are
from Durbin & Willshaw (1987) and Potvin (1993). ACS was run for
2,500 iterations using 10 ants (this amounts to approximately the same
number of tour searched by the heuristics with which we compare our
results). ACS results are averaged over 25 trials. The best average tour
length for each problem is in boldface: ACS almost always offers the best
performance.

1(Geometric problems are problems taken from the real world (for example, they are
generated choosing real cities and real distances))
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Table 2.3: Comparison of ACS with other heuristics on random instances
of the symmetric TSP. Comparisons on average tour length obtained on five
50-city problems.

Problem name ACS SA EN SOM
(average) (average) (average) (average)

City Set 1 5.88 5.88 5.98 6.06
City Set 2 6.05 6.01 6.03 6.25
City Set 3 5.58 5.65 5.70 5.83
City Set 4 5.74 5.81 5.86 5.87
City Set 5 6.18 6.33 6.49 6.70

Table 2.4 reports the results on the geometric instances. The heuris-
tics with which we compare ACS in this case are a genetic algorithm
(GA), evolutionary programming (EP), and simulated annealing (SA).
ACS is run for 1,250 iterations using 20 ants (this amounts to approxi-
mately the same number of tours searched by the heuristics with which
we compare our results). ACS results are averaged over 15 trials. In this
case comparison is performed on the best results, as opposed to average
results as in previous Table 2.3, this choice was dictated by the availabil-
ity of published results). The difference between integer and real tour
length is that in the first case distances between cities are measured by in-
teger numbers, while in the second case by floating point approximations
of real numbers.

Results using EP are from Fogel (1993), and those using GA are
from Whitley et al. (1989) for Eil50, and Eil75, and from Bersini et al.
(1995) for KroA100. Results using SA are from Lin et al. (1993). Eil50,
Eil75 are from Eilon et al. (1969) and are included in TSPLIB with an
additional city as Eil51.tsp and Eil76.tsp. KroA100 is also in TSPLIB.
The best result for each problem is in boldface. Again, ACS offers the
best performance in nearly every case. Only for the Eil50 problem does
it find a slightly worse solution using real-valued distance as compared
with EP, but ACS only visits 1,830 tours, while EP used 100,000 such
evaluations (although it is possible that EP found its best solution earlier
in the run, this is not specified in the paper of Fogel (1993).
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Table 2.4: Comparison of ACS with other heuristics on geometric instances
of the symmetric TSP. We report the best integer tour length, the best real
tour length (in parentheses) and the number of tours required to find the best
integer tour length (in square brackets). N/A means “not available.” In the
last column the optimal length is available only for integer tour lengths.

Problem Name ACS GA EP SA Optimum

EIL50 425 428 426 443 425
(50-city problem) (427.96) (N/A) (427.86) (N/A) (N/A)

[1’830] [25’000] [100’000] [68’512]

EIL75 535 545 542 580 535
(75-city problem) (542.37) (N/A) (549.18) (N/A) (N/A)

[3’480] [80’000] [325’000] [173’250]

Kroa100 21’282 21’761 N/A N/A 21’282
(100-city problem) (21’285.44) (N/A) (N/A) (N/A) (N/A)

[4’820] [103’000] [N/A] [N/A]

2.6.2 ACS on Some Bigger Problems

When trying to solve big TSP problems it is common practice (Lawler
et al. 1985; Reinelt 1991) to use a data structure known as candidate
list. A candidate list is a list of preferred cities to be visited; it is a
static data structure which contains, for a given city i, the cl closest
cities, ordered by increasing distances; cl is a parameter that we set to
cl = 15 in our experiments. We implemented therefore a version of ACS
(Gambardella & Dorigo 1996) which incorporates a candidate list: An
ant in this extended version of ACS first chooses the city to move to
among those belonging to the candidate list. Only if none of the cities in
the candidate list can be visited then it considers the rest of the cities.
ACS with candidate list (see Table 2.5) was able to find good results for
problems up to more than 1,500 cities. The time to generate a tour grows
only slightly more than linearly with the number of cities (this is much
better than the quadratic growth obtained without the candidate list):
On a Sun Sparcserver (50 MHz) it took approximately 0.02 sec of CPU
time to generate a tour for the d198 problem, 0.05 sec for the pcb442,
0.07 sec for the att532, 0.13 sec for the rat783, and 0.48 sec for the fl1577
(the reason for the more than linear increase in time is that the number
of failures, that is, the number of times an ant has to choose the next



68 CHAPTER 2. ACS: ANT COLONY SYSTEM

Table 2.5: ACS performance for some bigger geometric problems (over 15
trials). We report the integer length of the shortest tour found, the number of
tours required to find it, the average integer length, the standard deviation,
the optimal solution (for fl1577 we give, in square brackets, the known lower
and upper bounds, given that the optimal solution is not known), and the
relative error of ACS.

Problem name ACS ACS ACS Standard Optimum Relative error
best integer number of average deviation (2)

length tours integer (1)−(2)
(2) · 100

(1) generated length
to best

d198 15,888 585,000 16,054 71 15,780 0.68%
(198-city problem)

pcb442 51,268 595,000 51,690 188 50,779 0.96%
(442-city problem)

att532 28,147 830,658 28,523 275 27,686 1.67%
(532-city problem)

rat783 9,015 991,276 9,066 28 8,806 2.37%
(783-city problem)

fl1577 22,977 942,000 23,163 116 [22, 204− 22, 249] 3.27÷ 3.48%
(1577-city problem)

city outside of the candidate list, increases with the problem dimension).

2.7 ACS Plus Local Search

In Section 2.3 we have shown that ACS is competitive with other nature-
inspired algorithms on some relatively simple problems. On the other
hand, in the past years a lot of work has been done to define ad-hoc tour
improvement heuristics, (see Johnson & McGeoch 2002 for an overview),
to solve the TSP. Tour improvement heuristics (Section 1.3) start from a
given tour and attempt to reduce its length by exchanging edges chosen
according to some heuristic rule until a local optimum is found. The most
used and well-known tour improvement heuristics are 2-opt (Algorithm
3) and 3-opt (Lin 1965), and Lin-Kernighan (Lin & Kernighan 1973)
in which respectively two, three, and a variable number of edges are
exchanged

It has been shown (Johnson & McGeoch 1997, Section 1.5) that it is
very effective to couple an improvement heuristic with mutations of the
last (or of the best) solution produced, rather than iteratively executing
a tour improvement heuristic starting from solutions generated randomly
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Algorithm 13 Ant Colony System (ACS) Coupled with a Local Search Pro-
cedure

Initialize
repeat {at this level each loop is called an iteration}
Each ant is positioned on a starting node
repeat {at this level each loop is called a step}

Each ant applies a state transition rule to incrementally build a solu-
tion and a local pheromone updating rule

until all ants have built a complete solution
Each ant is brought to a local minimum using a tour improvement
heuristic based on 3-opt
A global pheromone updating rule is applied

until End condition

or by a constructive heuristic. An example of successful application of
the above alternate strategy is TSP-GA (Freisleben & Merz 1996a; Merz
& Freisleben 1997) in which a genetic algorithm is used to generate new
solutions to be locally optimized by a tour improvement heuristic.

ACS is a tour construction heuristic which, like Freisleben and Merz’s
genetic algorithm, after each iteration produces a set of feasible solutions
which are in some sense a mutation of the previous best solution. It is
therefore a reasonable guess that adding a tour improvement heuristic to
ACS could make it competitive with the best algorithms.

We have therefore added a tour improvement heuristic to ACS (Al-
gorithm 13). In order to maintain ACS ability to solve both TSP and
ATSP problems we have decided to base the local optimization heuristic
on a restricted 3-opt procedure (Johnson & McGeoch 1997; Kanellakis &
Papadimitriou 1980), that, while inserting/removing three edges on the
path, considers only 3-opt moves that do not revert the order in which
the cities are visited. The resulting hybrid algorithm is called ACS-3-
opt (Algorithm 13). In this way the same procedure can be applied
to symmetric and asymmetric TSPs, avoiding unpredictable tour length
changes. In addition, when a candidate edge (i, j) to be removed is se-
lected, the restricted 3-opt procedure restricts the search for the other
two edges to those nodes p belonging to edge (p, q) such as diq < dij.

The implementation of the restricted 3-opt includes some typical tricks
which accelerate its use for TSP/ATSP problems. First, search for the
candidate nodes during the restricted 3-opt procedure is only made inside
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the candidate list (Johnson & McGeoch 1997). Second, the procedure
uses a data structure called don’t look bit (Bentley 1992) in which each
bit is associated to a node of the tour. At the beginning of the local
optimization procedure all the bits are turned off and the bit associated
to node i is turned on when a search for an improving move starting
from i fails. The bit associated to node i is turned off again when a move
involving i is performed. Third, only in the case of symmetric TSPs,
while searching for 3-opt moves starting from a node i the procedure also
considers possible 2-opt moves with i as first node: the move executed
is the best one among those proposed by 3-opt and those proposed by
2-opt. Last, a traditional array data structure to represent candidate
lists and tours is used (Fredman et al. 1995) for more sophisticated data
structures).

ACS-3-opt also uses candidate lists in its constructive part; if there is
no feasible node in the candidate list it chooses the closest node out of the
candidate list (this is different from what happens in ACS where, in case
the candidate list contains no feasible nodes, then any of the remaining
feasible cities can be chosen with a probability which is given by the
normalized product of pheromone and closeness). This is a reasonable
choice since most of the search performed by both ACS and the local
optimization procedure is made using edges belonging to the candidate
lists. It is therefore pointless to direct search by using pheromone levels
which are updated only very rarely.

2.7.1 Experimental Results

The experiments on ATSP problems presented in this section have been
executed on a SUN Ultra1 SPARC Station (167Mhz), while experiments
on TSP problems on a SGI Challenge L server with eight 200 MHz CPU’s,
using only a single processor due to the sequential implementation of
ACS-3-opt. For each test problem 10 trials have been executed. ACS-
3-opt parameters were set to the following values (except if differently
indicated): m = 10, β = 2, q0 = 0.98, α = ρ = 0.1, τ0 = (n · L−1

nn),
cl = 20.

Asymmetric TSP problems

The results obtained with ACS-3-opt on ATSP problems are quite im-
pressive. Experiments were run on the set of ATSP problems proposed
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Table 2.6: Results obtained by ACS-3-opt on ATSP problems taken from the
First International Contest on Evolutionary Optimization (Bersini et al. 1996).
We report the length of the best tour found by ACS-3-opt, the CPU time used
to find it, the average length of the best tour found and the average CPU time
used to find it, the optimal length and the relative error of the average result
with respect to the optimal solution.

Problem Name ACS-3-opt ACS-3-opt ACS-3-opt ACS-3-opt Optimum % Error
(cities) best result best result average average

(lenght) (sec) (lenght) (sec)

p43 2’810 1 2’810 2 2’810 0.00 %
(43-city problem)

ry48 14’422 2 14’422 19 14’422 0.00 %
(48-city problem)

ft70 38’673 3 38’679.8 6 38’673 0.02 %
(70-city problem)

kro124p 36’230 3 36’230 25 36’230 0.00 %
(100-city problem)

ftv1702 2’755 17 2’755 68 2’755 0.00 %
(170-city problem)

in the First International Contest on Evolutionary Optimization (Bersini
et al. 1996). For all the problems ACS-3-opt reached the optimal best
known solution in a few seconds (see Table 2.6) in all the ten trials, ex-
cept in the case of ft70, a problem considered relatively hard, where the
optimum was reached 8 out of 10 times.

In Table 2.7 results obtained by ACS-3-opt are compared with those
obtained by ATSP-GA (Freisleben & Merz 1996a), the winner of the
ATSP competition. ATSP-GA is based on a genetic algorithm that starts
its search from a set of individuals generated using a nearest neighbor
heuristic. Individuals are strings of cities which represent feasible solu-
tions. At each step two parents x and y are selected and their edges
are recombined using a procedure called DPX-ATSP. DPX-ATSP first
deletes all edges in x that are not contained in y and then reconnects the
segments using a greedy heuristic based on a nearest neighbor choice.
The new individuals are brought to the local optimum using a 3-opt pro-
cedure, and the new population is generated after the application of a
mutation operation that randomly removes and reconnects some edges
in the tour.

The 3-opt procedure used by ATSP-GA is very similar to our re-
stricted 3-opt, which makes the comparison between the two approaches
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Table 2.7: Comparison between ACS-3-opt and ATSP-GA on ATSP problems
taken from the First International Contest on Evolutionary Optimization. We
report the average length of the best tour found, the average CPU time used
to find it, and the relative error with respect to the optimal solution for both
approaches

Problem Name ACS-3-opt ACS-3-opt ACS-3-opt ATSP-GA ATSP-GA ATSP-GA
(cities) average average %error average average %error

(lenght) (sec) (lenght) (sec)

p43 2’810 2 0.00 % 2’810 10 0.00 %
(43-city problem)

ry48 14’422 19 0.00 % 14’440 30 0.12 %
(48-city problem)

ft70 38’679.8 6 0.02 % 38’683.8 639 0.03 %
(70-city problem)

kro124p 36’230 25 0.00 % 36’235.3 115 0.01 %
(100-city problem)

ftv170 2’755 68 0.00 % 2’766.1 211 0.40 %
(170-city problem)

straightforward. ACS-3-opt outperforms ATSP-GA in terms of both
closeness to the optimal solution and of CPU time used. Moreover,
ATSP-GA experiments have been performed using a DEC Alpha Sta-
tion (266 MHz), a machine faster than our SUN Ultra1 SPARC Station.

Symmetric TSP problems

If we now turn to symmetric TSP problems, it turns out that STSP-GA
(STSP-GA experiments have been performed using a 175 MHz DEC Al-
pha Station), the algorithm that won the First International Contest on
Evolutionary Optimization in the symmetric TSP category, outperforms
ACS-3-opt (see Tables 2.8, 2.9). The results used for comparisons are
those published in Freisleben & Merz (1996b), which are slightly better
than those published in Freisleben & Merz (1996a). Our results are, on
the other hand, comparable to those obtained by other algorithms con-
sidered to be very good. For example, on the lin318 problem ACS-3-opt
has approximately the same performance as the large step Markov chain
algorithm (Martin et al. 1992, Section 1.5). This algorithm is based
on a simulated annealing mechanism that uses as improvement heuris-
tic a restricted 3-opt heuristic very similar to ours (the only difference
is that they do not consider 2-opt moves) and as mutation procedure a
non-sequential-4-changes called double-bridge (Section 1.2). The double-
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Table 2.8: Results obtained by ACS-3-opt on TSP problems taken from the
First International Contest on Evolutionary Optimization. We report the
length of the best tour found by ACS-3-opt, the CPU time used to find it, the
average length of the best tour found and the average CPU time used to find
it, the optimal length and the relative error of the average result with respect
to the optimal solution.

Problem Name ACS-3-opt ACS-3-opt ACS-3-opt ACS-3-opt Optimum % Error
(cities) best result best result average average

(lenght) (sec) (lenght) (sec)

d198 15,780 16 15,781.7 238 15,780 0.01 %
(198-city problem)

lin318 3 42,029 101 42,029 537 42,029 0.00 %
(318-city problem)

att532 27,693 133 27,718.2 810 27,686 0.11 %
(532-city problem)

rat783 8,818 1,317 8,837.9 1,280 8,806 0.36 %
(783-city problem)

bridge mutation has the property that it is the smallest change (4 edges)
that can not be reverted in one step by 3-opt, LK and 2-opt.

2.8 Discussion and Conclusions

An intuitive explanation of how ACS works, which emerges from the
experimental results presented in the preceding sections, is as follows.
Once all the ants have generated a tour, the best ant deposits (at the
end of iteration t) its pheromone, defining in this way a preferred tour
for search in the following algorithm iteration t + 1. In fact, during it-
eration t + 1 ants will see edges belonging to the best tour as highly
desirable and will choose them with high probability. Still, guided ex-
ploration (see Equations 2.4 and 2.1) together with the fact that local
updating (Equation 2.10) eats pheromone away (i.e., it diminishes the
amount of pheromone on visited edges, making them less desirable for
future ants) allowing for the search of new, possibly better tours in the
neighborhood of the previous best tour. So ACS can be seen as a sort
of guided parallel stochastic search in the neighborhood of the best tour.
In the last years there has been growing interest in the application of ant
colony algorithms to difficult combinatorial problems. A first example is
the work of O. Schoonderwoerd & Rothkrantz (1996) who apply an ant
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Table 2.9: Comparison between ACS-3-opt and STSP-GA on TSP problems
taken from the First International Contest on Evolutionary Optimization. We
report the average length of the best tour found, the average CPU time used
to find it, and the relative error with respect to the optimal solution for both
approaches.

Problem Name ACS-3-opt ACS-3-opt ACS-3-opt ATSP-GA ATSP-GA ATSP-GA
(cities) average average %error average average %error

(lenght) (sec) (lenght) (sec)

d198 15,781.7 238 0.01 % 15,780 253 0.00 %
(198-city problem)

lin318 42,029 537 0.00 % 42,029 2,054 0.00 %
(318-city problem)

att532 27,718.2 810 0.11 % 27,693.7 11,780 0.03 %
(532-city problem)

rat783 8,837.9 1,280 0.36 % 8,807.3 21,210 0.01 %
(783-city problem)

colony algorithm to the load balancing problem in telecommunications
networks. Their algorithm takes inspiration from the same biological
metaphor as AS, although their implementation differs in many details
due to the different characteristics of the problem. Another interesting
research is that of Stützle & Hoos (1998) who have studied various exten-
sions of AS to improve its performance: in Stützle & Hoos (1998) they
impose an upper and lower bound on the value of pheromone on edges, in
Stützle & Hoos (1997) they add local search, much in the same spirit as
we did in the previous Section 2.7. Besides the two works above, among
the nature-inspired heuristics, the closest to ACS seems to be Baluja
and Caruanas Population Based Incremental Learning (PBIL) (Baluja &
Caruana 1995). PBIL, which takes inspiration from genetic algorithms,
maintains a vector of real numbers, the generating vector, which plays a
role similar to that of the population in GAs. Starting from this vector,
a population of binary strings is randomly generated: Each string in the
population will have the i-th bit set to 1 with a probability which is a
function of the i-th value in the generating vector (in practice, values in
the generating vector are normalized to the interval [0, 1] so that they
can directly represent the probabilities). Once a population of solutions
is created, the generated solutions are evaluated and this evaluation is
used to increase (or decrease) the probabilities in the generating vector
so that good (bad) solutions in the future generations will be produced
with higher (lower) probability. When applied to TSP, PBIL uses the
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following encoding: a solution is a string of size n log 2 bits, where n is
the number of cities; each city is assigned a string of length n log 2 which
is interpreted as an integer. Cities are then ordered by increasing integer
values; in case of ties the leftmost city in the string comes first in the
tour. In ACS, the pheromone matrix plays a role similar to Balujas gen-
erating vector, and pheromone updating has the same goal as updating
the probabilities in the generating vector. Still, the two approaches are
very different since in ACS the pheromone matrix changes while ants
build their solutions, while in PBIL the probability vector is modified
only after a population of solutions has been generated. Moreover, ACS
uses heuristic to direct search, while PBIL does not. In conclusion, in
this chapter we have shown that ACS is an interesting approach to paral-
lel stochastic optimization of the TSP. ACS has been shown to compare
favorably with previous attempts to apply other heuristic algorithms like
genetic algorithms, evolutionary programming, and simulated annealing.
Nevertheless, competition on the TSP is very tough, and a combination
of a constructive method which generates good starting solution with lo-
cal search which takes these solutions to a local optimum seems to be the
best strategy (Johnson & McGeoch 1997). We have shown that ACS is
also a very good constructive heuristic to provide such starting solutions
for local optimizers.
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Chapter 3

MACS-VRPTW: A Multiple

Ant Colony System for

Vehicle Routing Problems

with Time Windows

3.1 Introduction

This chapter presents MACS-VRPTW, a Multiple Ant Colony System
for Vehicle Routing Problems with Time Windows (Gambardella et al.
1999). MACS-VRPTW, is based on ACS (Chapter 2, Gambardella &
Dorigo 1996; Dorigo & Gambardella 1997), and, more generally, on ACO
(Section 1.4.4, Dorigo et al. 1999).
The basic ACO idea is that a large number of simple artificial agents are
able to build good solutions to hard combinatorial optimization prob-
lems via low-level based communications. Real ants cooperate in their
search for food by depositing chemical traces (pheromones) on the floor.
An artificial ant colony simulates this behavior. Artificial ants coop-
erate by using a common memory that corresponds to the pheromone
deposited by real ants. This artificial pheromone is one of the most
important components of ant colony optimization and is used for con-
structing new solutions. In the ACO metaheuristic, artificial pheromone
is accumulated at run-time during the computation. Artificial ants are
implemented as parallel processes whose role is to build problem solu-
tions using a constructive procedure driven by a combination of artificial
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pheromone, problem data and a heuristic function used to evaluate suc-
cessive constructive steps.
ACO algorithms have been shown to be very efficient when combined
with specialized local search procedures to solve the symmetric and asym-
metric traveling salesman problems (TSP/ATSP, Chapter 2, Dorigo &
Gambardella 1997; Stützle 1999; Stützle & Dorigo 1999b), vehicle routing
problems (VRP Gambardella et al. 1999) and the quadratic assignment
problem (QAP, Gambardella et al. 1999; Stützle & Dorigo 1999a). One
of the most efficient ACO based implementations has been ACS, (Chap-
ter 2, Gambardella & Dorigo 1996; Dorigo & Gambardella 1997) that
introduced a particular pheromone trail updating procedure useful to in-
tensify the search in the neighborhood of the best computed solution.
This chapter presents an ACS extension called MACS-VRPTW a Mul-
tiple Ant Colony System for Vehicle Routing Problems with Time Win-
dows, which is able to solve the vehicle routing problem with time win-
dows (VRPTW).
Vehicle routing problems with time windows VRPTW is defined as the
problem of minimizing time and costs in case a fleet of vehicles has to
distribute goods from a depot to a set of customers. The VRPTW consid-
ered in this chapter minimizes a multiple, hierarchical objective function:
the first objective is to minimize the number of tours (or vehicles) and the
second is to minimize the total travel time. A solution with a lower num-
ber of tours is always preferred to a solution with a higher number of tours
even if the travel time is higher. This hierarchical objectives VRPTW is
very common in the literature and in case problem constraints are very
tight (for example when the total capacity of the minimum number of
vehicles is very close to the total volume to deliver or when customers
time windows are narrow), the two objectives can be antagonistic: the
minimum travel time solution can include a number of vehicles higher
than the solution with minimum number of vehicles (see e.g. Kohl et al.
1997). To adapt ACS for these multiple objectives the idea is to define
two ACS colonies, each dedicated to the optimization of a different ob-
jective function. MACS-VRPTW is in fact organized with a hierarchy of
artificial ant colonies designed to successively optimize a multiple objec-
tive function: the first colony minimizes the number of vehicles while the
second colony minimizes the traveled distances. Cooperation between
colonies is performed by exchanging information through pheromone up-
dating. We show that MACS-VRPTW is competitive both in terms of
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solution quality and computation time. Moreover, MACS-VRPTW has
been able to improve some of the best known solutions for a number of
problem instances in the literature.

This chapter is organized as follows: First in Section 3.2, vehicle rout-
ing problems are introduced by presenting a formal definition of the ca-
pacitated vehicle routing problem (CVRP) and the vehicle routing prob-
lem with time windows (VRPTW). Then Section 3.3, extends ACS to
deal with VRPTW and the resulting MACS-VRPTW is investigated by
presenting its main components. Last in Section 3.4 numerical results
are reported and some conclusions are drawn.

3.2 Vehicle Routing Problems

The most elementary version of the vehicle routing problem is the ca-
pacitated vehicle routing problem (CVRP). The CVRP is described as
follows: n customers must be served from a unique depot. Each customer
asks for a quantity qi of goods (i = 1, . . . , n) and a vehicle of capacity Q
is available to deliver goods. Since the vehicle capacity is limited, the ve-
hicle has to periodically return to the depot for reloading. In the CVRP,
it is not possible to split customer delivery. Therefore, a CVRP solution
is a collection of tours where each customer is visited only once and the
total tour demand is at most Q. From a graph theoretical point of view
the CVRP may be stated as follows: Let G = (C,L) be a complete graph
with node set C = (c0, c1, c2, ..., cn) and arc set L = (i, j) : i, j ∈ C, i 6= j.
In this graph model, c0 is the depot and the other nodes are the customers
to be served. Each node is associated with a fixed quantity qi of goods to
be delivered (a quantity q0 = 0 is associated to the depot c0). To each arc
(ci, cj) is associated a value tij representing the travel time between ci and
cj. The goal is to find a set of tours of minimum total travel time. Each
tour starts from and terminates at the depot c0, each node ci(i = 1, ..., n)
must be visited exactly once, and the quantity of goods to be delivered
on a route should never exceed the vehicle capacity Q. One of the most
successful exact approaches for the CVRP is the k-tree method of (Fisher
1994) that succeeded in solving a problem with 71 customers. However,
there are smaller instances that have not been exactly solved yet. To
treat larger instances, or to compute solutions faster, heuristic methods
must be used. The most used heuristic methods are tabu searches (Tail-
lard 1993; Rochat & Taillard 1995; Rego & Roucairol 1996; Xu & Kelly
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1996) and large neighborhood search (Shaw 1998). The CVRP can be
extended in many ways. For example a service time si for each customer
(with s0 = 0) and a time limit over the duration of each tour can be
considered. The goal is again to search for a set of tours that minimizes
the sum of the travel times. An important extension of the CVRP that
is the subject of this chapter is the vehicle routing problem with time
windows (VRPTW). In addition to the mentioned CVRP features, this
problem includes, for the depot and for each customer ci(i = 0, ..., n) a
time window [bi, ei] during which the customer has to be served (with b0
the earliest start time and e0 the latest return time of each vehicle to the
depot). The tours are performed by a fleet of v identical vehicles. The
additional constraints are that the service beginning time at each node
ci(i = 1, ..., n) must be greater than or equal to bi, the beginning of the
time window, and the arrival time at each node ci must be lower than or
equal to ei, the end of the time window.

In case the arrival time is less than bi, the vehicle has to wait till
the beginning of the time window before starting servicing the customer.
In the literature the fleet size v is often a variable and a very common
objective is to minimize v. This objective is related to the real situation
in which driver salaries are variable costs for the company or when the
company has to rent vehicles to perform deliveries. Usually, two different
solutions with the same number of vehicles are ranked by alternative ob-
jectives such as the total traveling time or total delivery time (including
waiting and service times). These objectives are also used for companies
owning a fixed fleet of vehicles. A number of exact and heuristic meth-
ods exist for the VRPTW. Among exact methods, that of (Kohl et al.
1997) is one of the most efficient and succeeded in solving a number of
100 customer instances. Note that exact methods are more efficient in
case the solution space is restricted by narrow time windows since less
combinations of customers are possible to define feasible tours. The most
successful heuristic methods for the VRPTW are adaptive memory pro-
grams (see Taillard et al. 1998 for an introduction to adaptive memory
programming), embedding tabu searches (Rochat & Taillard 1995; Tail-
lard et al. 1997; Badeau et al. 1997), guided local search (Kilby et al.
1999) and large neighborhood search (Shaw 1998).
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3.3 MACS-VRPTW for Vehicle Routing Problems

with Time Windows

The first ant inspired algorithm for vehicle routing problems has been de-
signed by Bullnheimer et al. (1999b) who considered the most elementary
version of the problem: the capacitated vehicle routing problem (CVRP).
This chapter considers a more elaborated vehicle routing problem with
two objective functions: (i) the minimization of the number of tours (or
vehicles) and (ii) the minimization of the total travel time, where number
of tours minimization takes precedence over travel time minimization. A
solution with a lower number of tours is always preferred to a solution
with a higher number of tours even if the travel time is higher. This hier-
archical objectives VRPTW is very common in the literature and in case
problem constraints are very tight (for example when the total capacity
of the minimum number of vehicles is very close to the total volume to
deliver or when customers time windows are narrow), the two objectives
can be antagonistic: the minimum travel time solution can include a
number of vehicles higher than the solution with minimum number of
vehicles.

In order to adapt ACS (Chapter 2) to multiple objectives the Multi-
ple Ant Colony System for the VRPTW (MACS-VRPTW, Gambardella
et al. 1999) has been defined. Briefly, in ACS (Algorithm 12) two mea-
sures are associated to each arc of the problem graph: the closeness
µij, and the pheromone trail τij. Closeness, defined as the inverse of
the arc length or the arc traveling time, is a static heuristic value that
never changes for a given problem instance, while the pheromone trail
is dynamically changed by ants at runtime. Therefore, the most impor-
tant component of ACS is the management of pheromone trails which are
used, in conjunction with the objective function, for constructing new so-
lutions (Equations 2.1, 2.4). Informally, pheromone levels give a measure
of how desirable it is to insert a given arc in a solution. Pheromone trails
are used for exploration and exploitation. Exploration concerns the prob-
abilistic choice of the components used to construct a solution: a higher
probability is given to elements with a strong pheromone trail. Exploita-
tion chooses the component that maximizes a blend of pheromone trail
values and heuristic evaluations.
The goal of ACS is to find a shortest tour. In ACS m ants build tours
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Figure 3.1: Architectur e of the Multiple Ant Colony System for the Vehicle
Routing Problem with Time Windows

in parallel. Each ant is randomly assigned to a starting node and has
to build a solution, that is, a complete tour. Once each ant has built a
complete solution, this is tentatively improved using a local search pro-
cedure (Algorithm 13). Next, the best solution found from the beginning
of the trial is used to globally update the pheromone trails (Equations
2.5). The rationale is that in this way a preferred route is memorized in
the pheromone trail matrix and future ants will use this information to
generate new solutions in a neighborhood of this preferred route. Then,
the process is iterated by starting again m ants until a termination con-
dition is met (i.e. a fixed number of solutions has been generated or a
fixed CPU time has elapsed).
In ACS, pheromone trail is updated not only globally but also locally.
Local updating (Equation 2.10) is performed during solutions construc-
tion on the edges connecting two successive cities. Shortly, the effect of
local updating is to change dynamically the desirability of these edges:
every time an ant uses an edge the quantity of pheromone associated to
this edge is decreased and the edge becomes less attractive.

In VRPTW the goal is to minimize two objective functions: the num-
ber of vehicles and the total traveling time. In the MACS-VRPTW
algorithm (Figure 3.1, Algorithm 14) both objectives are optimized si-
multaneously by coordinating the activities of two ACS based colonies.
The goal of the first colony, ACS-VEI, is to try to diminish the num-
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Algorithm 14 MACS-VRPTW: Multiple Ant Colony System for Vehicle
Routing Problems with Time Windows

Initialize
/* Lgb is the best feasible solution: lowest number of vehicles and shortest
travel time. */
Lgb ← compute a feasible initial solution with unlimited number of vehicles
produced with a nearest neighbor heuristic
vehicles = #active vehicles(Lgb) /* compute the number of active vehi-
cles in the feasible solution Lgb */
repeat
vehicles = #active vehicles(Lgb)
Activate ACS-VEI(vehicles− 1)
Activate ACS-TIME(vehicles)
while ACS-VEI and ACS-TIME are active do

WAIT an improved solution L from ACS-VEI or ACS-TIME
Lgb ← L

if #active vehicles(Lgb < vehicles) then
kill ACS-TIME and ACS-VEI

end if
end while

until a stopping criterion is met

ber of vehicles used, while the second colony, ACS-TIME, optimizes the
feasible solutions found by ACS-VEI. The two colonies use independent
pheromone trails but collaborate by sharing the variable Lgb managed
by MACS-VRPTW. Initially, Lgb is a feasible VRPTW solution found
with a nearest neighbor heuristic. Then, Lgb is improved by the two
colonies. When ACS-VEI is activated, it tries to find a feasible solu-
tion with one vehicle less than the number of vehicles used in Lgb. The
goal of ACS-TIME is to optimize the total travel time of solutions that
use as many vehicles as vehicles used in Lgb. Lgb is updated each time
one of the colonies computes an improved feasible solution. In case the
improved solution contains less vehicles than the vehicles used in Lgb,
MACS-VRPTW stops ACS-TIME and ACS-VEI. Then, the process is
iterated and two new colonies are activated, working with the new, re-
duced number of vehicles.

ACS-TIME colony (Algorithm 15) is a traditional ACS based colony
whose goal is to compute a tour as short as possible. In ACS-TIME m
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artificial ants are activated to construct problems solutions L1, ..., Lm.
Each solution is build by calling the new active ant Algorithm 17, a
constructive procedure explained in details in Section 3.3.2 that is similar
to the ACS constructive procedure designed for the TSP (Section 2.3).
When L1, ..., Lm have been computed, they are compared to Lgb and, in
case one solution is better, it is sent to MACS-VRPTW. MACS-VRPTW
uses this solution to update Lgb. After solutions generation, the global
updates are performed using Equation 2.5 and Lgb.

Algorithm 15 ACS-TIME: Travel Time Minimization.

Procedure ACS-TIME(vehicles)
/* Parameter vehicles is the smallest number of vehicles for which a feasible
solution has been computed */
Initialize
/* initialize pheromone and data structure using vehicles */
repeat
for each ant k do
/* construct a solution Lk */
Lk ← new active ant(k, local search = TRUE, 0)

end for each
/* update the best solution if it is improved */
if ∃k : Lk is feasible and Lk < Lgb then
send Lk to MACS-VRPTW

/* perform global updating according to Equations 2.5 */
τij ← (1− α) · τij + α · 1

Lgb
∀(i, j) ∈ Lgb

until a stopping criterion is met

ACS-VEI colony (Algorithm 16) searches for a feasible solution by
maximizing the number of visited customers. ACS-VEI starts its com-
putation using (v− 1) vehicles, that is, one vehicle less than the smallest
number of vehicles for which a feasible solution has been computed (i.e.,
the number of vehicles in Lgb). During this search the colony produces
unfeasible solutions in which some customers are not visited. In ACS-
VEI, the solution computed since the beginning of the trial with the
highest number of visited customers is stored in the variable LACS−V EI .
A solution is better than LACS−V EI only when the number of visited
customers is increased. Therefore ACS-VEI is different from the tradi-
tional ACS applied to the TSP. In ACS-VEI the current best solution
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LACS−V EI is the solution (usually unfeasible) with the highest number
of visited customers, while in ACS applied to TSP (Algorithm 12) the
current best solution is the shortest one.

In order to maximize the number of customers serviced, ACS-VEI
manages a vector IN of integers. The entry IN j stores the number of
time customer j has not been inserted in a solution. IN is used by the
constructive procedure new active ant for favoring the customers that
are less frequently included in the solutions. In ACS-VEI, at the end
of each cycle, pheromone trails are globally updated with two different
solutions: LACS−V EI , the unfeasible solution with the highest number of
visited customers and Lgb, the feasible solution with the lowest number
of vehicles and the shortest travel time. Numerical experiments have
shown that a double update greatly improves the system performances.
Indeed, the updates with LACS−V EI are not increasing the trails toward
the customers that are not included in the solution. Since Lbg is feasible,
the updates with Lbg are increasing trails toward all customers.

3.3.1 Solution Model

Figure 3.2: Feasible (left) and unfeasible (right) solutions for a vehicle routing
problem with four duplicated depots and four active vehicles

MACS-VRPTW uses a solution model in which each ant builds a sin-
gle tour (Figure 3.2). A solution is represented as follows: First, the depot
with all its connections to/from the customers is duplicated a number of
times equal to the number of available vehicles. Distances between copies
of the depot are set to zero. This approach makes the vehicle routing
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Algorithm 16 ACS-VEI: Number of Vehicles Minimization.

Procedure ACS-VEI(s)
/* Parameter s is set to vehicles − 1, one vehicle less than the smallest
number of vehicles for which a feasible solution has been computed
#visited customers(L) computes the number of customers that have been
visited in solution L */
Initialize
/* initialize pheromone and data structure using s */
LACS−V EI ← initial solution with s vehicles produced with a nearest neigh-
bor heuristic. /* LACS−V EI is not necessary feasible */
repeat
for each ant k do
/* construct a solution Lk */
Lk ← new active ant(k, local search = FALSE, IN )
∀ customer j 6∈ Lk : IN j ← IN j + 1

end for each
/* update the best solution if it is improved */
if∃k : #visited customers(Lk) > #visited customers(LACS−V EI)then

LACS−V EI ← Lk

∀ j : IN j ← 0
if LACS−V EI is feasible then
send LACS−V EI to MACS-VRPTW

end if
/* perform global updating according to Equations 2.5 */
τij ← (1− α) · τij + α · 1

LACS−V EI
∀(i, j) ∈ LACS−V EI

τij ← (1− α) · τij + α · 1
Lgb

∀(i, j) ∈ Lgb

until a stopping criterion is met

problem closer to the traditional traveling salesman problem.

So, both in the TSP and in this model a feasible solution is a path
that visits all the nodes exactly once. Figure 3.2 shows a vehicle rout-
ing problem solution represented as a single tour. Duplicated depots
(d0, ..., d3) are black points while clients are white points. All duplicated
depots have the same coordinates but they have been split to clarify the
picture. An advantage of such a solution representation is that the trails
in direction of the duplicated depots are less attractive than in case of a
single depot (due to the pheromone update rules). This positively affects
the quality of the solutions produced by the constructive procedure.
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3.3.2 Solution Constructive Procedure

ACS-VEI and ACS-TIME use the same new active ant constructive pro-
cedure that is presented in details in Algorithm 17. This constructive
procedure is similar to the ACS constructive procedure designed for the
TSP (Algorithm 12): Each artificial ant starts from a randomly chosen
copy of the depot and, at each step, moves to a not yet visited node that
does not violate time window constraints and vehicle capacities. The set
of available nodes, in case the ant is not located in a duplicated depot,
also includes not yet visited duplicated depots. An ant positioned in node
i chooses probabilistically the next node j to be visited by using explo-
ration and exploitation mechanisms (Equation 2.1). The attractiveness
µij is computed by taking into account the traveling time tij between
nodes i and j, the time window [bj, ej] associated to node j and the num-
ber of times IN j node j has not been inserted in a problem solution.
When the new active ant is called by ACS-TIME, the variables IN are
not used and the corresponding parameter is set to zero.

Each time an ant moves from one node to another, a local update
of the pheromone trail is executed according to Equation 2.10. Last,
at the end of the constructive phase, the solution might be incomplete
(some customers might have been omitted) and the solution is tentatively
completed by performing further insertions. The insertion is executed by
considering all the non visited customers sorted by decreasing delivery
quantities. For each customer it is searched for the best feasible insertion
(shortest travel time) until no further feasible insertion is possible.

In addition, ACS-TIME implements a local search procedure to im-
prove the quality of the feasible solutions. The local search uses moves
similar to CROSS exchanges of Taillard et al. (1997). This procedure
is based on the exchange of two sub-chains of customers. One of this
sub-chain may eventually be empty, implementing a more traditional
customer insertion.

3.4 Computational Results

This section reports computational results showing the efficiency of MACS-
VRPTW. MACS-VRPTW has been tested on a classical set of 56 bench-
mark problems (Solomon 1987) composed of six different problem types
(C1, C2, R1, R2, RC1, RC2). Each data set contains between eight to
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Algorithm 17 new active ant(k, local search, IN ): Constructive Procedure
for Ant k Used by ACS-VEI and ACS-TIME

Procedure new active ant(k, local search, IN )
Initialize
/* put ant k in a randomly selected duplicated depot i */
Lk ← < i >

current timek ← 0, loadk ← 0
repeat
/* Starting from node i compute the set Jk

i of feasible nodes (i.e., all
the nodes j still to be visited and such that current timek and loadk are
compatible with time windows [bj , ej ] and delivery quantity qj of customer
j) */
for each j ∈ Jk

i compute the attractiveness µij as follows: do
delivery timej ← max(current timek + tij , bj)
delta timeij ← delivery timej − current timek
distanceij ← delta timeij · (ej − current timek)
distanceij ← max(1.0, distanceij − IN j)
µij ←

1
distanceij

end for each
/* Choose probabilistically the next node j using µij in exploitation and
exploration (Equation 2.1) */
Lk ← Lk+ < j >

current timek ← delivery timej
loadk ← loadk + qj
if j is the depot then current timek ← 0, loadk ← 0
end if
/* perform local updating according to Equation 2.10 */
τij ← (1− ρ) · τij + ρ · τ0
i← j /* next node for ant k */

until Jk
i = {}

/* Path Lk is extended by tentatively inserting non visited customers */
Lk ← insertion procedure(Lk)
/* Feasible paths are optimized by a local search procedure. The parameter
local search is TRUE in ACS-TIME and it is FALSE in ACS-VEI */
if local search = TRUE and Lk is feasible then
Lk ← local search procedure(Lk)
end if
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twelve 100-node problems. The names of the six problem types have the
following meaning. Sets C have clustered customers whose time windows
were generated based on a known solution. Problem sets R have cus-
tomers location generated uniformly randomly over a square. Sets RC
have a combination of randomly placed and clustered customers. Sets
of type 1 have narrow time windows and small vehicle capacity. Sets of
type 2 have large time windows and large vehicle capacity. Therefore,
the solutions of type 2 problems have very few routes and significantly
more customers per route.

Experiments are made by executing, for each problem data, 3 runs
that are stopped after a fixed computation time. Solutions are then
averaged for each problem type and the result is reported in the tables.
The code was written in C++.

Table 3.1 compares MACS-VRPTW with a number of the methods
available for the VRPTW. The methods considered are: the adaptive
memory programming (RT, Rochat & Taillard 1995), the large neigh-
bourhood search (SW, Shaw 1998), the guided local search (KPS, Kilby
et al. 1999), the alternate K-exchange Reduction (CW, Cordone & Calvo
2001) and the adaptive memory programming (TB, Taillard et al. 1997).
Table 3.1 provides 3 columns for each data set: the average number of ve-
hicles (main goal), the average tour length and the computation time (in
seconds). The computational times cannot be directly compared for dif-
ferent reasons. First, the authors have used different computers; second,
some methods (RT and TB) were designed to solve harder problems than
the VRPTW and implementations specifically designed for the VRPTW
might be faster.
MACS-VRPTWwas executed on a Sun UltraSparc 1 167MHz, 70 Mflop/s,
RT used a 15 Mflop/s Silicon Graphics computer, SW used a 63 Mflop/s
Sun UltraSparc, KPS used a 25Mflops/s DEC Alpha, CW used a 18
Mflop/s Pentium and TB used a 10 Mflop/s Sun Sparc 10.

In Table 3.1 is shown that MACS-VRPTW is very competitive: for
C1 and RC2 types it is clearly the best method and it is always among
the best methods for the other problem sets. A characteristic of MACS-
VRPTW is that it is able to produce relatively good solutions in a short
amount of time.

Table 3.2 reports the average of the best solutions obtained in all
our experiments. Similar results were also provided by other authors. In
addition to the methods (RT, Rochat & Taillard 1995) and (TB, Taillard
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Table 3.1: Performance comparison among VRPTW algorithms for different
computational time (in seconds). RT=Rochat & Taillard (1995), SW=Shaw
(1998), KPS=Kilby et al. (1999), CW=Cordone & Calvo (2001), TB=Taillard
et al. (1997)

R1 C1 RC1 R2 C2 RC2
VEI DIST TIME VEI DIST TIME VEI DIST TIME VEI DIST TIME VEI DIST TIME VEI DIST TIME

12.55 1214.80 100 10.00 828.40 100 12.46 1395.47 100 3.05 971.97 100 3.00 593.19 100 3.38 1191.87 100
MACS- 12.45 1212.95 300 10.00 828.38 300 12.13 1389.15 300 3.00 969.09 300 3.00 592.97 300 3.33 1168.34 300
VRPTW 12.38 1213.35 600 10.00 828.38 600 12.08 1380.38 600 3.00 965.37 600 3.00 592.89 600 3.33 1163.08 600

12.38 1211.64 1200 10.00 828.38 1200 11.96 1385.65 1200 3.00 962.07 1200 3.00 592.04 1200 3.33 1153.63 1200
12.38 1210.83 1800 10.00 828.38 1800 11.92 1388.13 1800 3.00 960.31 1800 3.00 591.85 1800 3.33 1149.28 1800

12.83 1208.43 450 10.00 832.59 540 12.75 1381.33 430 3.18 999.63 1600 3.00 595.38 1200 3.62 1207.37 1300
RT 12.58 1202.00 1300 10.00 829.01 1600 12.50 1368.03 1300 3.09 969.29 4900 3.00 590.32 3600 3.62 1155.47 3900

12.58 1197.42 2700 10.00 828.45 3200 12.33 1269.48 2600 3.09 954.36 9800 3.00 590.32 7200 3.62 1139.79 7800

12.45 1198.37 900 12.05 1363.67 900
SW 12.35 1201.47 1800 12.00 1363.68 1800

12.33 1201.79 3600 11.95 1364.17 3600

KPS 12.67 1200.33 2900 10.00 830.75 2900 12.12 1388.15 2900 3 966.56 2900 3.00 592.29 2900 3.38 1133.42 2900

CW 12.50 1241.89 1382 10.00 834.05 649 12.38 1408.87 723 2.91 995.39 1332 3.00 591.78 292 3.38 1139.70 946

12.64 1233.88 2296 10.00 830.41 2926 12.08 1404.59 1877 3.00 1046.56 3372 3.00 592.75 3275 3.38 1248.34 1933
TB 12.39 1230.48 6887 10.00 828.59 7315 12.00 1387.01 5632 3.00 1029.65 10116 3.00 591.14 8187 3.38 1220.28 5798

12.33 1220.35 13774 10.00 828.45 14630 11.90 1381.31 11264 3.00 1013.35 20232 3.00 590.91 16375 3.38 1198.63 11596

Table 3.2: Average of the best solutions computed by different VRPTW algo-
rithms. Best results are in boldface. MA-TW=MACS-VRPTW, RT=Rochat
& Taillard (1995), TB=Taillard et al. (1997), CR=Chiang & Russel (1993),
PB=Potvin & Bengio (1996), TH=Thangiah et al. (1994)

R1 C1 RC1 R2 C2 RC2
Vei Dist Vei Dist Vei Dist Vei Dist Vei Dist Vei Dist

MA-TW 12.00 1217.73 10.00 828.38 11.63 1382.42 2.73 967.75 3.00 589.86 3.25 1129.19
RT 12.25 1208.50 10.00 828.38 11.88 1377.39 2.91 961.72 3.00 589.86 3.38 1119.59
TB 12.17 1209.35 10.00 828.38 11.50 1389.22 2.82 980.27 3.00 589.86 3.38 1117.44
CR 12.42 1289.95 10.00 885.86 12.38 1455.82 2.91 1135.14 3.00 658.88 3.38 1361.14
PB 12.58 1296.80 10.00 838.01 12.13 1446.20 3.00 1117.70 3.00 589.3 3.38 1360.57
TH 12.33 1238.00 10.00 832.00 12.00 1284.00 3.00 1005.00 3.00 650.00 3.38 1229.00

et al. 1997) already compared in Table 3.1. Table 3.2 includes the results
of the hybrid method (CR, Chiang & Russel 1993), the genetic algorithm
(PB, Potvin & Bengio 1996) and the hybrid method (TH, Thangiah et al.
1994). With the exception of RC1 type problem, MACS-VRPTW has
been able to produce the best results for all other problem types.

During this experimental campaign, the best solution known of a
number of problem instances have been improved. The value of these
new best solutions are reported in Table 3.3. In addition to the VRPTW
instances, the ACS-TIME colony has been tested on CVRP instances. In
Table 3.3 are also reported new best solution value for CVRP problem
instances tainnn used in Rochat & Taillard (1995), where nnn stands
for the number of customers.
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Table 3.3: New best solution values computed by MACS-VRPTW.
RT=Rochat & Taillard (1995), S=Shaw (1998), TB=Taillard et al. (1997)

Old New
Problem source vehicles length vehicles length

r112.dat RT 10 953.63 9 982.140
r201.dat S 4 1254.09 4 1253.234
r202.dat TB 3 1214.28 3 1202.529
r204.dat S 2 867.33 2 856.364
r207.dat RT 3 814.78 2 894.889
r208.dat RT 2 738.6 2 726.823
r209.dat S 3 923.96 3 921.659
r210.dat S 3 963.37 3 958.241
rc202.dat S 4 1162.8 3 1377.089
rc203.dat S 3 1068.07 3 1062.301
rc204.dat S 3 803.9 3 798.464
rc207.dat S 3 1075.25 3 1068.855
rc208.dat RT 3 833.97 3 833.401

tai100a.dat RT 11 2047.90 11 2041.336
tai100c.dat RT 11 1406.86 11 1406.202
tai100d.dat RT 11 1581.25 11 1581.244
tai150b.dat RT 14 2727.77 14 2656.474
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3.5 Conclusions

This chapter described MACS-VRPTW, an Ant Colony Optimization
based approach to solve vehicle routing problems with time windows.
In particular, MACS-VRPTW has been designed to solve vehicle rout-
ing problems with two objectives: (i) the minimization of the number
of tours (or vehicles) and (ii) the minimization of the total travel time,
where number of tours minimization takes precedence over travel time
minimization. MACS-VRPTW introduces a new methodology for opti-
mizing multiple objective functions. The basic idea is to coordinate the
activity of different ant colonies, each of them optimizing a different ob-
jective. These colonies work by using independent pheromone trails but
they collaborate by exchanging information. MACS-VRPTW is the first
ant colony optimization algorithm that adopts multiple colonies to solve
a multi-objective optimization problem.

MACS-VRPTW couples ACS with a dedicated local search is able to
solve vehicle routing problems with time windows. MACS-VRPTW has
been shown to be competitive with the other effective methods both in
terms of solution quality and computation time.



Chapter 4

HAS-SOP: An Ant Colony

System Hybridized with a

New Local Search for the

Sequential Ordering Problem

In previous chapters we have shown that by coupling ACS with an ex-
tended version of local search procedure it is possible to obtain high-
quality solutions for symmetric and asymmetric TSPs (Chapter 2, Dorigo
& Gambardella 1997), as well as for vehicle routing problems (Chapter 3,
Gambardella et al. 1999). In Gambardella et al. (1999) we have defined
HAS-QAP, an ant colony algorithm coupled with a simple form of local
search, to solve the quadratic assignment problem (QAP). HAS-QAP has
been able to produce better solutions on structured, real-world problem
instances than reactive tabu search (Battiti & Tecchiolli 1994b), robust
tabu search (Taillard 1991), simulated annealing (Connolly 1990), and
genetic hybrid search (Fleurent & Ferland 1994).
In this chapter we attack the sequential ordering problem (SOP) by an
ACS algorithm coupled with SOP-3-exchange, a local search procedure
specifically designed for the SOP that extends a TSP heuristic to directly
handle SOP multiple constraints without increasing computational com-
plexity. The resulting hybrid ant system for the SOP (HAS-SOP, Gam-
bardella & Dorigo 2000) has been able to outperform all known heuristic
SOP approaches. Also, we have been able to improve many of the best
published results using the SOP-3-exchange with our ant colony opti-

93
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mization system or in combination with the algorithm MPO/AI (Chen
& Smith 1996).

This chapter is organized as follows: First in Section 4.1, the sequen-
tial ordering problem is introduced by presenting its formal definition
and the main resolution approaches. Second, Section 4.2 extends ACS to
deal with SOP and the resulting HAS-SOP is investigated by presenting
its main components including the SOP-3-Exchange local search (Sec-
tion 4.3). Last in Section 4.4, numerical results are reported and some
conclusions are drawn.

4.1 The Sequential Ordering Problem

The sequential ordering problem with precedence constraints (SOP) was
first formulated by Escudero (1988) to design heuristics for a production
planning system. It consists of finding a minimum weight Hamiltonian
path on a directed graph with weights on the arcs and the nodes, subject
to precedence constraints among nodes.

4.1.1 Problem Definition

Consider a complete graph G = (V,A) with node set V and arc set A,
where nodes correspond to jobs 0, ..., i, ..., n (n+1 = |V |). A cost tij ∈ ℜ
with tij ≥ 0, is associated to each arc (i, j). This cost represents the
waiting time between the end of job i and the beginning of job j. A cost
pi ∈ ℜ with pi ≥ 0, representing the processing time of job i, is associated
with each node i. The set of nodes V includes a starting node (node 0)
and a final node (node n) connected with all the other nodes. The costs
between node 0 and the other nodes are equal to the setup time of node
i, tij = pi ∀i, and tij = 0 ∀i. Precedence constraints are given by an
additional acyclic digraph P = (V,R) defined on the same node set V .
An arc (i, j) ∈ R if job i has to precede job j in any feasible solution.
i has the transitive property (that is, if (i, j) ∈ R and (j, k) ∈ R then
(i, k) ∈ R). Since a sequence always starts at node 0 and ends at node n,
(0, i) ∈ R ∀i ∈ V \ {0}, and (i, n) ∈ R ∀i ∈ V \ {n}. In the following we
will indicate with predecessor[i] and successor[i] the sets of nodes that
have to precede/succeed node i in any feasible solution.

Given the above definitions, the SOP can be stated as the problem
of finding a job sequence that minimizes the total makespan subject to
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the precedence constraints. This is therefore equivalent to the problem
of finding a feasible Hamiltonian path with minimal cost in G under
precedence constraints given by P .

The SOP can also be formulated as a general case of the asymmetric
traveling salesman problem (ATSP) by giving only the weights on the
edges (in the SOP a solution connects the first and the last node by
a path that visits all nodes once, as opposed to the ATSP in which a
solution is a closed tour that visits all nodes once). This formulation is
equivalent to the previous: it suffices to remove weights from nodes and
to redefine the weight cij of arc (i, j) by adding the weight pj of node j
to each tij. In this representation cij is an arc weight (where cij may be
different from cji), which can either represent the cost of arc (i, j) when
cij ≥ 0, or an ordering constraint when cij = −1 (cij = −1 means that
element j must precede, not necessarily immediately, element i). In this
chapter we will use this last formulation.

4.1.2 Heuristic Methods for the SOP

The SOP models real-world problems such as production planning (Es-
cudero 1988), single vehicle routing problems with pick-up and delivery
constraints (Pulleyblank & Timlin 1991; Savelsbergh 1990), transporta-
tion problems in flexible manufacturing systems (Ascheuer 1995).

The SOP can be seen as a general case of both the asymmetric TSP
and the pick-up and delivery problem. It differs from ATSP because the
first and the last nodes are fixed, and in the additional set of precedence
constraints on the order in which nodes must be visited. It differs from
the pick-up and delivery problem because this is usually based on sym-
metric TSPs, and because the pick-up and delivery problem includes a
set of constraints between nodes with a unique predecessor defined for
each node, in contrast to the SOP where multiple precedences can be
defined.

4.1.3 Approaches Based on the ATSP

Sequential ordering problems were initially solved as constrained versions
of the ATSP. The main effort has been put into extending the mathemat-
ical definition of the ATSP by introducing new equations to model the
additional constraints. The first mathematical model for the SOP was
introduced in Ascheuer et al. (1993) where a cutting-plane approach was
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proposed to compute lower bounds on the optimal solution. In Escud-
ero et al. (1994) a Lagrangian relax-and-cut method was described and
new valid cuts to obtain strong lower bounds were defined. In addition,
Ascheuer (1995) has proposed a new class of valid inequalities and has
described a branch-and-cut algorithm for a broad class of SOP instances
based on the polyhedral investigation carried out on ATSP problems
with precedence constraints by Balas et al. (1995). His approach also
investigates the possibility to compute and improve sub-optimal feasi-
ble problem solutions starting from the upper bound computed by the
polyhedral investigation. The upper bound is the initial solution of a
heuristic phase based on well-known ATSP heuristics that are iteratively
applied in order to improve feasible solutions. These heuristics do not
handle constraints directly: infeasible solutions are simply rejected. With
this approach Ascheuer was able to compute new upper bounds for the
SOP instances in TSPLIB, although a genetic algorithm called Maxi-
mum Partial Order/Arbitrary Insertion (MPO/AI), proposed by Chen
& Smith (1996), seems to work better on the same class of problems.
MPO/AI always works in the space of feasible solutions by introducing
a sophisticated crossover operator that preserves the common schema of
two parents by identifying their maximum partial order through matrix
operations. The new solution is completed using a constructive heuristic.

4.1.4 Approaches Based on the Pick-up and Delivery Problem

Heuristic approaches to pick-up and delivery problems are based on par-
ticular extensions of TSP heuristics able to handle precedence constraints
while improving feasible solutions without any increase in computation
times. Psaraftis (1983) has introduced a preprocessing technique to en-
sure feasibility checking in constant time by starting the algorithm with a
screening procedure that, at an initial cost of O(n2), produces a feasibility
matrix that contains information about feasible edge exchanges. Subse-
quently, Solomon (1987) proposed a search procedure based on a tailored
updating mechanism, while Savelsbergh (1990), Van der Bruggen et al.
(1993), and Kindervater & Savelsbergh (1997) presented a lexicographic
search strategy, a variation of traditional edge-exchange TSP heuristics,
that reduces the number of visited nodes without losing any feasible
exchange. In order to ensure constraint checking in constant time, the
lexicographic search strategy has been combined with a labeling procedure
where nodes in the sequence are labeled with information related to their
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unique predecessor/successor, and a set of global variables are updated to
keep this information valid. Savelsbergh (1990) presented a lexicographic
search based on 2-opt and 3-opt strategies that exchanges a fixed number
of edges, while Van der Bruggen et al. (1993) proposed a variable-depth
search based on the Lin & Kernighan (1973) approach. Unfortunately,
this labeling procedure is not applicable in the case of multiple precedence
constraints because it requires that nodes in the sequence have a unique
predecessor/successor. On the other hand, the lexicographic search strat-
egy itself is independent of the number of precedence constraints and can
therefore be used to solve sequential ordering problems where multiple
precedence constraints are allowed.

The approach to the SOP presented in this chapter is the first in
the literature that uses an extension of a TSP heuristic to handle di-
rectly multiple constraints without any increase in computational time.
Our approach combines a constructive phase based on the ACS algo-
rithm (Chapter 2.3) with a new local search procedure called SOP-3-
exchange. SOP-3-exchange is based on a lexicographic search heuristic
due to Savelsbergh (1990) and a new labeling procedure able to handle
multiple precedence constraints. In addition, we test and compare dif-
ferent methods to select nodes during the search and different stopping
criteria. In particular we test two different selection heuristics: one based
on the don’t look bit data structure introduced by Bentley (1992), and the
other based on a new data structure called don’t push stack introduced
by the author of this thesis.

4.2 ACS for the Sequential Ordering Problem

The application of an ACO algorithm to a combinatorial optimization
problem requires definition of a constructive algorithm and possibly a
local search (Section 1.4.4). Accordingly, the ACO metaheuristic can be
adapted to the SOP by letting ants build a path from source to destina-
tion while respecting the ordering constraints (this can be achieved by
having ants choose not-yet-visited nodes that do not violate any ordering
precedence). Therefore we have designed a constructive algorithm called
ACS-SOP in which a set of artificial ants builds feasible solutions to the
SOP.
ACS-SOP is strongly based on Ant Colony System (Chapter 2, Algo-
rithm 12, Gambardella & Dorigo 1996; Dorigo & Gambardella 1997) and
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it differs from the original ACS in the way the set of feasible nodes is
computed and in the setting of one of the algorithm’s parameters that is
made dependent on the problem dimensions.
ACS-SOP implements the constructive phase of HAS-SOP, and its goal
is to build feasible solutions for the SOP. Informally, ACS-SOP works
as follows. Each ant iteratively starts from node 0 and adds new nodes
until all nodes have been visited and node n is reached. When in node
i, an ant applies a so-called transition rule, that is, it probabilistically
chooses the next node j from the set F (i) of feasible nodes. F (i) con-
tains all the nodes j still to be visited and such that all nodes that have
to precede j, according to precedence constraints, have already been in-
serted in the sequence. As in ACS the ant chooses (Equations 2.4, 2.1),
with probability q0, the node j with a deterministic rule (exploitation)
while with probability (1−q0) the node j is chosen in a probabilistic way
(exploration). The value q0 in ACS-SOP is given by q0 = 1 − s/n; q0 is
based on a parameter s that represents the number of nodes we would
like to choose using the probabilistic transition rule. The parameter s
allows the system to define q0 independently of the problem size, so that
the expected number of nodes selected with the probabilistic rule is s.

As in ACS also in ACS-SOP only the best ant, that is the ant that
built the shortest tour, is allowed to deposit pheromone trail. The ratio-
nale is that in this way a preferred route is memorized in the pheromone
trail matrix τ and future ants will use this information to generate new
solutions in a neighborhood of this preferred route. The formula used to
update the pheromone trail is Equation 2.5 where Lgb is the length of
the path built by the best ant, that is, the length of the shortest path
generated since the beginning of the computation.

Pheromone is also updated during solution building. In this case,
however, it is removed from visited edges. In other words, each ant, when
moving from node i to node j, applies a pheromone updating (Equation
2.10) rule that causes the amount of pheromone trail on edge (i, j) to
decrease. Also in case of ACS-SOP we found that good values for the
algorithm’s parameters are τ0 = (n · L−1

nn), α = ρ = 0.1, s = 10, where
Lnn is the length of the shortest solution generated by the ant colony
following the ACS-SOP algorithm without using the pheromone trails.
These values are rather robust: values in the following ranges didn’t cause
any appreciable change in performance: 0.05 ≤ α, ρ ≤ 0.3, 5 ≤ s ≤ 15.
The number of ants in the population was set to 10. The rationale for
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using Equation 2.10 is that it causes ants to eat away pheromone trail
while they build solutions so that a certain variety in generated solutions
is assured (if pheromone trail was not consumed by ants they would tend
to generate very similar tours).

The algorithm stops when one of the following conditions becomes
true: a fixed number of solutions has been generated; a fixed CPU time
has elapsed; no improvement has been observed during a fixed last num-
ber of iterations.

4.2.1 HAS-SOP. ACS-SOP Coupled with SOP-3-exchange Lo-

cal Search

HAS-SOP is ACS-SOP plus local search following the Algorithm schema
of Algorithm 13. Local search is an optional component of ACO algo-
rithms, although it has been shown since early implementations that it
can greatly improve the overall performance of the ACO metaheuristic
when static combinatorial optimization problems are considered In HAS-
SOP local search is applied once ants have built their solutions: each so-
lution is carried to its local optimum by an application of the local search
routine called SOP-3-exchange. Locally optimal solutions are then used
to update pheromone trails on arcs, according to the pheromone trail
update rule of ACS (Equation 2.5). SOP-3-exchange is a very efficient
local search procedure. SOP-3-exchange has been explicitly designed to
solve SOP problems starting from the work of Savelsbergh (1990) on the
asymmetric travelling salesman problem. SOP-3-exchange is capable to
handle multiple precedence constraints without increasing the computa-
tional complexity of original local search.

4.3 Locas Search: SOP-3-Exchange

Much research went into defining ad-hoc TSP heuristics, and in particular
edge-exchange improvement heuristics (see Johnson & McGeoch (1997)
and Sections 1.2, 1.3 for an overview).

Starting from an initial solution, an edge-exchange procedure gener-
ates a new solution by replacing k edges with another set of k edges. This
operation is usually called a k-exchange and is iteratively executed until
no additional improving k-exchange is possible. When this is the case
the final solution is said to be k-optimal ; the verification of k-optimality
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requires O(nk) time. For a k-exchange procedure to be efficient it is nec-
essary that the improving criterion for new solutions can be computed
in constant time.

In this section we first make some observations about edge-exchange
techniques for TSP/ATSP problems. Then, we concentrate our attention
on path-preserving-edge-exchanges for ATSPs, that is, edge exchanges
that do not invert the order in which paths are visited. Next, we dis-
cuss lexicographic-path-preserving-edge-exchange, a path-preserving-edge-
exchange procedure that se-arches only in the space of feasible exchanges.
We then add to the lexicographic-path-preserving-edge-exchange a labeling
procedure whose function is to check feasibility in constant time. Finally,
we present different possible strategies to select nodes during the search,
as well as different search stopping criteria.

4.3.1 Path-Preserving Edge-Exchange Heuristics

We remind the reader that the SOP can be formulated as a general case of
the asymmetric traveling salesman problem (ATSP) in which a solution
connects the first and the last node by a path that visits all nodes once,
as opposed to the ATSP in which a solution is a closed tour that visits
all nodes once. Edge-exchange techniques for TSP/ATSP problems are
therefore directly relevant for the SOP. A k-exchange deletes k edges
from the initial solution creating k disjointed paths that are reconnected
with k new edges. In some situations this operation requires an inversion
in the order in which nodes are visited within one of the paths (path-
inverting-edge-exchange, while in other situations this inversion is not
required (path-preserving-edge-exchange).

Consider a 2-exchange (Figure 4.1) where two edges to be removed,
(h, h + 1) and (i, i + 1), have been selected. In this situation there are
only two ways to perform the exchange: in the first case (Figure 4.1b)
edges (h, i) and (h+ 1, i+ 1) are inserted and the traveling direction for
path 〈i, ..., h+1〉 is inverted; in the second case (Figure 4.1c) edges (i, h)
and (i + 1, h + 1) are inserted inverting the traveling direction for path
〈h, ..., i+ 1〉.

In the case of a 3-exchange, however, there are several possibilities
to build a new solution when edges (h, h + 1), (i, i + 1), and (j, j + 1)
are selected to be removed (Figure 4.2). In Figure 4.2 a path preserving
3-exchange (Figure 4.2b) and a path inverting 3-exchange (Figure 4.2c)
are shown. It is then clear that any 2-exchange procedure determines
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Figure 4.1: A 2-exchange always inverts a path

Figure 4.2: A 3-exchange without (b) and with (c) path inversion

the inversion of one of the involved paths, while for k = 3 this inversion
is caused only by particular choices of the inserted edges.

In the case of TSP problems, where arc costs dij = dji ∀(i, j), invert-
ing a path does not modify its length. Therefore, the quality of the new
solution depends only on the length of the inserted and deleted edges.
On the other hand, for ATSP problems, where dij 6= dji for at least
one (i, j), inverting a path can modify the length of the path itself, and
therefore the length of the new solution does not depend only on the
inserted and deleted edges. This situation contrasts with the require-
ment that the improving criterion be verifiable in constant time. There-
fore, the only suitable edge-exchange procedures for sequential ordering
problems, which are a constrained version of ATSP problems, are path-
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Figure 4.3: A path-preserving-3-exchange

preserving-edge-exchange heuristics. In the following, we concentrate on
path-preserving-k-exchange, pp-k-exchange for short, with k = 3, that is,
the smallest k that allows a path preserving edge exchange.

Starting from a feasible SOP sequence H, a pp-3-exchange tries to
reduce the length of H by replacing edges (h, h+1), (i, i+1) and (j, j+1)
with edges (h, i+1), (i, j+1) and (j, h+1) (Figure 4.3a). The result of a
pp-3-exchange is a new sequence H1 (Figure 4.3b) where, while walking
from node 0 to node n, the order we visit path left=〈h + 1, ..., i〉 and
path right=〈i + 1, ..., j〉 is swapped. In this situation, the new sequence
H1 is feasible only if in the initial solution H there were no precedence
constraints between a generic node l ∈ path left and a generic node r ∈
path right.

Given two generic paths path left and path right, to test the feasibility
of the pp-3-exchange requires computational effort of order O(n2) (prece-
dence constraints must be checked between each pair of nodes in the two
paths).

Savelsbergh (1990) studied how to limit the computational effort
needed for checking solution feasibility in the case of precedence con-
straints for dial-a-ride problems. He introduced a particular exploration
strategy called lexicographic search strategy that allows for generating
and exploring only feasible exchanges. Savelsbergh presents a combina-
tion of the lexicographic search strategy with a labeling procedure where a
set of global variables is updated so that precedence-constraint checking
can be performed in constant time.
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The lexicographic search strategy was introduced to solve dial-a-ride
problems where only one precedence constraint for each node is allowed.
Nevertheless, it is independent of the number of constraints. We have
applied a version of Savelsbergh’s lexicographic search strategy restricted
to the case k = 3, lpp-3-exchange, to sequential ordering problems with
multiple constraints for each node.

However, Savelsbergh’s labeling procedure was designed to handle
unique precedence constraints under particular search conditions and
cannot be extended to sequential ordering problems. Before explaining
our new labeling procedure for the SOP, we present the lpp-3-exchange.

4.3.2 Lexicographic Search Strategy in the Case of Precedence

Constraints

The lpp-3-exchange procedure identifies two paths, path left and path right,
which once swapped give rise to a new feasible solution. These two paths
are initially composed of one single node and are incrementally expanded,
adding one node at each step. This feature makes it possible to test feasi-
bility easily because precedence conditions must be checked only for the
new added node.

To explain how an lpp-3-exchange works let us consider a feasible
solution H in which nodes are ordered from 0 to n. Then we consider three
indexes h, i, and j, that point to nodes in the sequence. As explained
below, lpp-3-exchange is composed of two procedures that differ in the
order nodes in the sequence H are explored. We start by explaining the
forward-lpp-3-exchange, f-lpp-3-exchange for short.

The f-lpp-3-exchange procedure starts by setting the value of h to 0
(that is, h points to node 0 in the sequence H). Then it sets the value of
i, which identifies the rightmost node of path left, to h+1, and performs
a loop on the value of j, which identifies the rightmost node of path right
(Figures 4.4a, 4.4b). In other words, path right=〈i+1, ..., j〉 is iteratively
expanded by adding new edges (j, j + 1). Once all available nodes have
been added to path right (that is, until a precedence constraint is violated
or when j + 1 points to node n, (see Figure 4.4b), path left is expanded
by adding the new edge (i, i + 1) (Figure 4.4c), and then path right is
searched again. Path left 〈h + 1, ..., i〉 is expanded until i + 1 points to
node n − 1. Then h is set to h + 1 and the process is repeated. The
f-lpp-3-exchange procedure stops when h points to node n− 2.

As we said, f-lpp-3-exchange considers only forward exchanges, that is,
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exchanges obtained considering indexes i and j such that j > i > h. The
backward-lpp-3-exchange procedure, b-lpp-3-exchange for short, considers
backward exchanges, that is, exchanges obtained considering indexes j
and i such that j < i < h (with 2 ≤ h < n). In b-lpp-3-exchange (Figure
4.5) path left is identified by 〈j + 1, ..., i〉 and path right by 〈i+ 1, ..., h〉.
After fixing h, i is set to h − 1 and j to i − 1 (Figure 4.5a). Then
path left is expanded backward (Figure 4.5b) moving j till the beginning
of the sequence, that is, iteratively setting j to the values i -2, i -3, ..., 0
(i.e., each backward expansion adds a new node to the left of the path:
〈j+1, ..., i〉 is expanded to 〈j, j+1, ..., i〉). Then, path right is iteratively
expanded in a backward direction with the new edge (i, i + 1), and the
loop on path left is repeated.

The complete SOP-3-exchange procedure performs a forward and a
backward lexicographic search for each value h, visiting in this way all the
possible nodes in the sequence (just like any other 3-exchange procedure).

The important point is that the method for defining path left and
path right permits an easy solution of the feasibility-checking problem:
the search is restricted to feasible exchanges only, since it can be stopped
as soon as an infeasible exchange is found. Consider for example an f-lpp-
3-exchange: once path left=〈h+1, ..., i〉 has been fixed, we set path right
to j = i+1. In this situation it is possible to check exchange feasibility by
testing whether there is a precedence relation between node j and nodes
in path left. Before expanding path right with the new edge (j, j + 1) we
check whether the resulting paths are still feasible by testing again the
precedence relations between the new node j+1 and nodes in path left. If
the test is not feasible we stop the search. In fact, any further expansion
of j +1 in 〈j +2, j +3, ..., n〉 will always generate an infeasible exchange
because it still violates at least the precedence constraint between j + 1
and path left.

Note that expanding path left with edge (i, i + 1) does not induce
any precedence constraint violations because the order of nodes inside
path left is not modified and the search for a profitable f-lpp-3-exchange
always starts by setting path right equal to element j = i+ 1.

Without considering any additional labeling procedure, the feasibility
test in this situation has a computational cost of O(n): each time a new
j is selected we test if there is a precedence relation between j and the
nodes in path left. In the case of the SOP this test should check whether
cjl 6= −1 ∀ l in path left (recall that for sequential ordering problems
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Figure 4.4: Lexicographic forward path-preserving-3-exchange

cjl = −1 if l has to precede j), and in the final solution H1 the order
in which we visit path left and path right is swapped and therefore l will
follow j, (Figure 4.3b). Similar considerations should be made in the
case of b-lpp-3-exchange where the feasibility test checks if cr,j+1 6= −1
∀r ∈ path right.

The previous complete lexicographic search procedure requires a check
of all predecessors/successors of node j. This procedure increases the
computational effort to check 3-optimality from O(n3) to O(n4). In order
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Figure 4.5: Lexicographic backward path-preserving-3-exchange

to keep the cost at O(n3) we introduce the SOP labeling procedure to
handle multiple constraints.

4.3.3 The SOP Labeling Procedure

The SOP labeling procedure is used to mark nodes in the sequence with
a label that allows for feasibility checking for each selected j in constant
time. The basic idea is to associate with each node a label that indicates,
given path left and path right, whether or not it is feasible to expand
path right with the following node j + 1.

We have implemented and tested different SOP labeling procedures
that set and update nodes in different phases of the search. In the fol-
lowing, we will present a combination of the best-performing SOP labeling
procedure with the lexicographic search strategy, with different selection
criteria for node h and with different search-stopping criteria.

Our SOP labeling procedure is based on a set of global variables that
are updated during the lexicographic search procedure. As in the previ-
ous subsection, we will distinguish between forward and backward search.
First we introduce a global variable count h that is set to 0 at the begin-
ning of the search, and which is increased by 1 each time a new node h is
selected. Second, we associate a global variable f mark(v) to each node
v ∈ H in the case of f-lpp-3-exchange, and a global variable b mark(v)
in the case of b-lpp-3-exchange. These global variables are initially set
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to 0 for each v. An f-lpp-3-exchange starts by fixing h, i = h + 1,
and path left=〈i〉. At this point, for all nodes s ∈ successor[i] we set
f mark(s)=count h. We repeat this operation each time path left is ex-
panded with a new node i. Therefore the labeling procedure marks with
the value count h all the nodes in the sequence that must follow one of
the nodes belonging to path left. When path right is expanded moving j
in 〈i+2, ..., n〉 if f mark(j) =count h we stop the search because the label
indicates that j must follow a node in path left. At this point, if no other
search-termination condition is met, the procedure restarts expanding
again path left. In this situation all the previous defined labels remain
valid and the search continues by labeling all the successors of the new
node i. On the other hand, when we move h forward into the sequence we
invalidate all previously set labels by setting count h=count h+1. The
same type of reasoning holds for b-lpp-3-exchange. Each time node i is
selected we identify a new path right=〈i+ 1, ..., h〉 and for all nodes s ∈
predecessor[i+1] we set b mark(s)=count h. When expanding path left
by iteratively adding a new edge (j, j+1), the expansion is not accepted
if b mark(j)=count h.

4.3.4 Heuristics for the Selection of Node h and Search Stop-

ping Criteria

This sequential search procedure for sequential ordering problems is a
general description of how the lexicographic search works in combination
with the SOP labeling procedure. Although the SOP labeling procedure
reduces the complexity of the lexicographic search to O(n3), this is still
too expensive from a practical point of view; in fact, the exploration of
all the feasible exchanges is still required. There are different ways to
reduce this effort: for example, heuristic criteria can be introduced to
reduce the number of visited nodes, or the search can be stopped and
the exchange executed as soon as some improving condition is met.

Heuristic Selection of Node h. In order to reduce the number of
explored nodes, Savelsbergh (1990) and Van der Bruggen et al. (1993)
proposed to use a particular type of k-exchange called OR-exchange (Or
1976) that limits the choice of i among the three closest nodes of h. In
practice, i is selected among (h+1, h+2, h+3) in the case of a forward
exchange, and among (h − 1, h − 2, h − 3) in the case of a backward
exchange. Alternatives decrease the number of visited nodes, introducing
two heuristics that influence how node h is chosen: one is based on the
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don’t look bit data structure introduced by Bentley (1992), while the other
is based on a new data structure called don’t push stack introduced by the
author. The don’t look bit is a data structure in which a bit is associated
with each node of the sequence. At the beginning of the search all bits are
turned off. The bit associated with node h is turned on when a search
for an improving move starts from node h. If a profitable exchange
is executed the bit of the six nodes involved in the exchange (that is,
j + 1, i+ 1, h+ 1, j, i, h) are turned off. The use of don’t look bits favors
the exploration of nodes that have been involved in a profitable exchange.
The search procedure visits all the nodes in the sequence, moving from
the first node 0 to the last node n but only nodes with the don’t look
bit turned off are taken into consideration as candidates for node h. The
search procedure is repeatedly applied until all nodes have their don’t
look bit turned on. The don’t push stack is a data structure based on a
stack, which contains the set of nodes h to be selected, associated with
a particular push operation. At the beginning of the search the stack is
initialized with all the nodes (that is, it contains n+1 elements). During
the search, node h is popped off the stack and feasible 3-exchange moves
starting from h are investigated. If a profitable exchange is executed the
six nodes involved in this exchange (that is, j + 1, i + 1, h + 1, j, i, h)
are pushed onto the stack (if they do not already belong to it). Using
this heuristic, once a profitable exchange is executed starting from node
h, the top node in the don’t push stack remains node h. In addition,
the maximum size of the stack is limited to n + 1 elements. The use
of the don’t push stack gives the following benefits. First, the search
is focused on the neighborhood of the most recent exchange: this has
been experimentally shown to result in better performance than that
obtained using the don’t look bit. Second, the selection of node h is
not constrained to be a sequential walk through the sequence H. This
is an important feature given the fact that the SOP labeling procedure
is designed to work with independent and random choices of h, where
independent means that the choice of the new h is not constrained to
be the choice of the old h. In fact, it does not require, as is the case
of Savelsbergh’s labeling procedure (Savelsbergh 1990), retention of valid
labeling information while walking through the sequence from one h to
the next: in our case a new labeling is started as soon as a new h is chosen;
this allows for selecting h in any sequence position without introducing
additional computational costs.
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Stopping Criteria. The number of visited nodes can be decreased
by stopping the search once an improving exchange is found. In our ex-
periments we have tested three different stopping conditions: (Exchange-
FirstCriterion= h, i, j) stops the search as soon as the first feasible ex-
change is found in the h, i or j loops respectively. We have also tested
the standard exploration strategy where the most profitable exchange is
selected among all the possible exchanges, but this method is not pre-
sented here because the results obtained are much worse given the same
amount of computation time.

4.3.5 The SOP-3-Exchange Procedure: An Example

In this section we discuss briefly the local search procedure using a
simple example. Algorithm 18 presents the pseudo-code of the SOP-
3-exchange procedure with all the possible options. The example we
consider is the following: Let a sequence 〈0, a, b, c, d, e, f, g, n〉 represent
a feasible solution of a SOP in which node e is constrained to follow a
in any feasible solution. The forward SOP-3-exchange procedure works
as follows. Initially, h is set to point to node 0 (i.e., h = 0), variable
count h is set to zero, direction is set to forward, i is set to a and j to
b. In this state of the computation path left (from node h+ 1 to node i)
and path right (from node i + 1 to node j) consist of the sequences 〈a〉
and 〈b〉 respectively. In the following the notation [〈a〉〈b〉] will be used
to indicate the pair path left and path right.

Inside the i loop the successor of node a, node e, is labeled by set-
ting f mark(e) = count h = 0. In the j loop, path right is expanded
by adding nodes of the sequence until either the end of the sequence
is reached or a precedence constraint is violated. The first expansions
are [〈a〉〈b, c〉] and [〈a〉〈b, c, d〉]. At this point, path right should not
be extended to 〈b, c, d, e〉 because e is labeled with a value equal to
count h. In fact, the new sequence generated by using [〈a〉〈b, c, d, e〉]
would be 〈0, b, c, d, e, a, f, g, n〉 where node a follows node e, in contrast
with the precedence constraint. Therefore, the j loop is terminated and
the i loop is resumed. Node i is moved through the sequence by set-
ting i equal to node b and the two paths are set to [〈a, b〉〈c〉]. Node b
does not have any successor node to label; therefore, the j loop is ex-
ecuted again. Paths are expanded to [〈a, b〉〈c, d〉] but, as before, they
should not be extended to [〈a, b〉〈c, d, e〉] due to the precedence con-
straint. The procedure continues generating the paths [〈a, b, c〉〈d〉], while
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Algorithm 18 The SOP-3-exchange Procedure

Procedure SOP-3-exchange
/* input:

a feasible solution given as a sequence (0.......n)
a sequential ordering problem G
a SelectionCriterion for h in (sequential, dont look bit, dont push stack)
a WalkingCriterion for i in (3-exchange, OR-exchange)
an ExchangeF irstCriterion in (h, i, j)

output:
a new feasible solution that is 3-optimal */

repeat
h← 0 /* h is set to the first node in the sequence */
while there is an available h /* h loop */ do

/* Selects node h according to SelectionCriterion.
In case SelectionCriterion=sequential, h is the next node in the sequence.
In case SelectionCriterion=dont look bit, h is the next node in the sequence
with dont look bit[h]=off.
In case SelectionCriterion=dont push stack, h is popped from the stack */

h← SelectAccordingCriterion(SelectionCriterion,G);
direction← forward; /* the search starts in forward direction */
gain← 0; i← h+ 1; j ← i+ 1; SearchTerminated← false
while SearchTerminated /* i loop */ do

/* When i has reached the end of the sequence during a forward search we
start a new search in backward direction starting from the same h. In case
WalkingCriterion=OR-exchange the direction is inverted after three selections
of i */
feasible← true
if (direction=forward and EndOfSequence(i,WalkingCriterion,G)) then

direction← backward; i← h− 1; j ← i− 1
end-if
/* in case direction=forward we update labeling information for successor[i]; in
case direction=backward we update labeling information for predecessor[i+1] */

UpdateGlobalVariables(h, i, direction,G)
while feasible /* j loop */ do

/* Using labeling information we test if the 3-exchange involving h,i,j is fea-
sible */
feasible← FeasibleExchange(h, i, j, direction,G)
/* Checks if the new 3-exchange is better then the previous one; if the case,
saves it */
gain← ComputeBestExchange(h, i, j, direction,G, feasible, gain)
if (gain >0 and ExchangeF irstCriterion=j) then goto EXCHANGE
/* j is moved through the sequence according to direction: in case direc-
tion=forward j ← j + 1, in case direction=backward j ← j − 1 */
j ← jWalkThroughTheSequence(h, i, j, direction,G)
SearchTerminated← f(j, direction,WalkingCriterion)

end while
if (gain >0 and ExchangeF irstCriterion=i) then goto EXCHANGE
/* i is moved through the sequence according to direction; in case
direction=forward i← i+ 1, in case direction=backward i← i− 1*/
i← iWalkThroughTheSequence(h, i, direction,G)
SearchTerminated← f(i, direction,WalkingCriterion)

end while
EXCHANGE
if (gain > 0) then

/* the best exchange is executed and the search starts again */
PerformExchange(h, i, j, direction,G)
goto REPEAT

end if
end while

until
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the following paths [〈a, b, c〉〈d, e〉] and [〈a, b, c, d〉〈e〉] are not feasible be-
cause of the constraint between a and e. The next feasible steps are
[〈a, b, c, d, e〉〈f〉],[〈a, b, c, d, e〉〈f, g〉],[〈a, b, c, d, e, f〉〈g〉] .

4.4 Computational Results

Our experiments were aimed at (i) finding the best parameters for the
SOP-3-exchange procedure, (ii) comparing ACS-SOP and HAS-SOP with
a set of competing methods over a significant set of test problems, and
(iii) evaluating the relative contribution to overall performance of the
SOP-3-exchange local search with respect to the constructive methods.
The results obtained are presented and discussed in the following of
the section. Experiments were run on a SUN Ultra1 SPARC Station
(167Mhz). The code was written in C++. Before presenting and dis-
cussing the computational results we briefly describe the experimental
setting.

4.4.1 Experimental Settings: Test Problems

We tested our algorithms on the set of problems available in the TSPLIB
(http://www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95/).
Sequential ordering problems in TSPLIB can be classified as follows: a
set of problems (rbgxxxa) are real-life problems derived from a stacker
crane application by Ascheuer (1995). These problems were originally
defined as ATSPs with time windows: to obtain SOP instances, time
window precedences are relaxed to generate SOP precedences. Prob.100
(Ascheuer 1995) is a randomly generated problem, and problems (ftxx.x,
and kroxxxp.x) have been generated by Ascheuer (1995) starting from
ATSP instances in TSPLIB by adding a number ≤ k of random prece-
dence constraints, where k = (n/4, n/2, 2, 2n) correspond to the problem
extension (.1, .2, .3, .4). ESC78 is taken from Escudero (1988).

4.4.2 Experimental Settings: Competing Methods

The algorithms with which we compared HAS-SOP are the following:

• MPO/AI: This was previously the best known algorithm for the
SOP (Chen & Smith 1996). MPO/AI (Maximum Partial Order/Arbitrary
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Insertion) is a genetic algorithm explicitly designed to solve sequenc-
ing problems. Each individual is a feasible sequence represented by
an nxn Boolean matrix. An element (i, j) of the matrix is set to
1 if node j follows (not necessary immediately) node i in the se-
quence, and is set to 0 otherwise. New individuals are generated by
a specialized crossover operation. First, the two matrices are inter-
sected; the intersection generates a new matrix where, in general,
only partial subsequences (with fewer than n elements) are present.
Next, the longest subsequence (Maximum Partial Order) in the new
matrix is selected and is completed by using an Arbitrary Insertion
(AI) procedure. AI starts from a sub-tour, picks an arbitrary node
not already included, and inserts it in the feasible position with
minimum cost. This simple local search procedure is applied until
no further elements are available. The code has been implemented
by Chen & Smith (1996). Experiments were run setting the pop-
ulation to many different dimensions. Using 500 individuals, the
same population dimension as proposed by Chen & Smith (1996),
resulted in the best performance, and this value was used in all the
experiments presented in the following.

• MPO/AI+LS: This is MPO/AI to which we added the SOP-3-
exchange local search. The hybridization is similar to what was
done with ACS-SOP: each time a new individual is created by
the MPO/AI crossover operation, it is optimized by the SOP-3-
exchange local search (with the main structure of the genetic algo-
rithm remaining unchanged).

• RND: This algorithm generates random feasible solutions. The
constructive procedure is the same as in ACS-SOP except that
pheromone trail and distance information are not used.

• RND+LS: This is RND plus local search. As with the other hybrid
algorithms considered, each time a new individual is created it is
optimized by the SOP-3-exchange local search.

4.4.3 Computational Results: Selection Criteria for Node i
and Search Stopping Criteria

In this section we test different selection criteria for node i and differ-
ent search stopping criteria. We ran five experiments for each problem,
setting the computational time to 100 seconds for the ft53.x, ft70.x and
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Table 4.1: Ranking of median rank on 22 SOP test problems for different
combinations of selection and stopping criteria. Results are obtained running
five experiments for each problem (CPU time was set to 100 seconds for the
ft53.x, ft70.x and ESCxx problems, to 300 seconds for the kro124p.x problems,
and to 600 seconds for the other problems).

SelectionCriterion ExchangeFirstCriterion WalkingCriterion Median

don’t push stack i 3-exchange 4
don’t push stack j 3-exchange 5
don’t push stack h 3-exchange 6
don’t push stack j OR exchange 6
don’t look bit h 3-exchange 7
don’t push stack h OR exchange 8
don’t look bit j 3-exchange 8
don’t look bit i 3-exchange 8
sequential h OR exchange 9
don’t push stack i OR exchange 10
don’t look bit h OR exchange 10
sequential i OR exchange 11
don’t look bit j OR exchange 12
sequential j OR exchange 12
sequential h 3-exchange 13
sequential j 3-exchange 13
sequential i 3-exchange 13
don’t look bit i OR exchange 14

ESCxx problems, to 300 seconds for the kro124p.x problems, and to 600
seconds for the other problems.

The stopping criteria tested are: ExchangeF irstCriterion = j, i, h.
The selection criteria tested are sequential, don’t look bit, and don’t push
stack, coupled with either the 3-exchange or the OR-exchange walking
criterion. For each test problem (the problems are reported in Table 4.2
and Table 4.3), we ranked results computed by the different combina-
tions of selection and stopping criteria according to the average results
obtained. In Table 4.1 the methods are ranked by the median of each
method over the set of test problems. Results indicate that the don’t
push stack is the best selection criterion, followed by the don’t look bit
and finally by the sequential selection criterion. Figure 4.6 compares
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Figure 4.6: Comparisons of selection criteria on median ranks. Each compari-
son involves the same value of ExchangeFirstCriterion and WalkingCriterion.
Results are obtained running five experiments for each problem (CPU time was
set to 100 seconds for the ft53.x, ft70.x and ESCxx problems, to 300 seconds
for the kro124p.x problems, and to 600 seconds for the other problems).

Table 4.2: Small Problems (≤100 Nodes). Shown are the average percentages
of deviation from the Best-Known solution. Results are obtained over five
runs of 120 seconds. Best results are in boldface.

RND MPO/AI ACS-SOP RND+LS MPO/AI+LS HAS-SOP

ESC78 49.81% 0.86% 2.15% 0.00% 0.00% 0.00%
ft53.1 167.93% 0.49% 13.11% 0.10% 0.00% 0.00%
ft53.2 154.94% 0.72% 12.27% 0.36% 0.00% 0.00%
ft53.3 100.51% 0.59% 18.51% 0.00% 0.00% 0.00%
ft53.4 40.99% 0.00% 5.03% 0.00% 0.00% 0.00%
ft70.1 64.94% 0.76% 11.65% 0.37% 0.10% 0.00%
ft70.2 59.18% 0.03% 11.63% 0.85% 0.00% 0.02%
ft70.3 52.22% 0.03% 13.22% 0.49% 0.00% 0.00%
ft70.4 24.62% 0.09% 3.92% 0.08% 0.02% 0.05%
kro124p.1 301.69% 4.17% 28.81% 2.65% 0.68% 0.00%
kro124p.2 278.99% 3.00% 27.90% 2.90% 0.19% 0.26%
kro124p.3 215.49% 3.20% 24.49% 3.75% 1.40% 0.31%
kro124p.4 94.07% 0.00% 8.66% 1.23% 0.00% 0.00%

Average 123.49% 1.07% 13.95% 0.98% 0.18% 0.05%
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Table 4.3: Big (>100 Nodes). Shown are the average percentages of deviation
from the Best-Known solution. Results are obtained over five runs of 600
seconds. Best results are in boldface.

RND MPO/AI ACS-SOP RND+LS MPO/AI+LS HAS-SOP

prob.100 1440.17% 134.66% 40.62% 50.07% 47.58% 17.46%
rbg109a 64.57% 0.33% 1.93% 0.08% 0.06% 0.00%
rbg150a 37.85% 0.19% 2.54% 0.08% 0.13% 0.00%
rbg174a 40.86% 0.01% 2.16% 0.15% 0.00% 0.08%
rbg253a 45.85% 0.03% 2.68% 0.21% 0.00% 0.00%
rbg323a 80.14% 1.08% 9.60% 1.27% 0.08% 0.21%
rbg341a 125.46% 3.02% 12.64% 4.41% 0.96% 1.54%
rbg358a 151.92% 7.83% 20.20% 4.98% 2.51% 1.37%
rbg378a 131.58% 5.95% 22.02% 4.17% 1.40% 0.88%

Average 235.38% 17.01% 12.71% 7.27% 5.86% 2.39%

Figure 4.7: Comparison across algorithms over small problems. Results are
obtained over five runs of 120 seconds.

the three selection criteria for the same values of ExchangeFirstCriterion
and WalkingCriterion. Again, it is clear that don’t push stack performs
better than the other two criteria. These results were obtained using
HAS-SOP. That is, the SOP-3-exchange local search was applied to fea-
sible solutions generated by ACS-SOP. We ran the same experiment using
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Figure 4.8: Comparison across algorithms over big problems. Results are
obtained over five runs of 600 seconds.

Figure 4.9: Comparison between MPO/AI+LS and HAS-SOP over small prob-
lems. Results are obtained over five runs of 120 seconds. Error bars (1 stan-
dard deviation) are shown.

the other solution generation methods (i.e., MPO/AI and RND), and we
found that also in these cases the best performance was obtained by
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Figure 4.10: Comparison between MPO/AI+LS and HAS-SOP over big prob-
lems. Results are obtained over five runs of 600 seconds. Error bars (1 stan-
dard deviation) are shown.

setting SelectionCriterion=don’t push stack, ExchangeFirstCriterion=i,
and WalkingCriterion=3-exchange. These parameters are therefore used
in all the experiments involving local search presented in the following
sections. (It should otherwise be noted that, for MPO/AI and RND,
although the best parameter settings remained the same, the ordering of
the other possible combinations of parameter values was different).

4.4.4 Computational Results and Comparisons with Other Meth-

ods

In this section, we compare the ACS-SOP, RND, and MPO/AI algo-
rithms and their hybrid versions (using the local search with the best
parameters experimentally found as explained in Section 4.4.3. To run
the comparisons we divided the set of test problems in two sets: smaller
easier problems, and larger more difficult problems. The separation point
was set to be 100 nodes: small problems have 100 or fewer nodes, big
problems have more than 100 nodes (with the exception of prob.100 that,
because of its difficulty, although having 100 nodes was assigned to the
set of big problems). Experiments were run giving a fixed amount of
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Table 4.4: Percentage of improvement due to local search. The last three rows
report respectively the average over the Small, Big and All problems. Results
are obtained over five runs of 120 seconds (Small problems, that is, ft53.x,
ft70.x, ESCxx and kro124p.x problems) and 600 seconds for the others.

△ % RND △% MPO/AI △% ACS-SOP

ESC78 49.81% 0.86% 2.15%
ft53.1 167.83% 0.49% 13.11%
ft53.2 154.58% 0.72% 12.27%
ft53.3 100.51% 0.59% 18.51%
ft53.4 40.99% 0.00% 5.03%
ft70.1 64.57% 0.66% 11.65%
ft70.2 58.33% 0.03% 11.61%
ft70.3 51.73% 0.03% 13.22%
ft70.4 24.55% 0.06% 3.88%
kro124p.1 299.04% 3.50% 28.81%
kro124p.2 276.09% 2.81% 27.65%
kro124p.3 211.74% 1.81% 24.18%
kro124p.4 92.84% 0.00% 8.66%
prob.100 1390.10% 87.08% 23.16%
rbg109a 64.49% 0.27% 1.93%
rbg150a 37.77% 0.07% 2.54%
rbg174a 40.71% 0.01% 2.09%
rbg253a 45.64% 0.03% 2.68%
rbg323a 78.87% 1.00% 9.39%
rbg341a 121.05% 2.06% 11.10%
rbg358a 146.94% 5.31% 18.83%
rbg378a 127.41% 4.55% 21.14%

small avg 122.51% 0.89% 13.90%
big avg 228.11% 11.15% 10.32%
all avg 165.71% 5.09% 12.44%

CPU time to the algorithms. The CPU time was fixed to be the same
for all algorithms running on the same set of problems: 120 seconds for
each small problem, 600 seconds for each big problem. Results at the
end of the experiment are reported in Table 4.2 and Table 4.3 for small
and big problems respectively, while the runtime behavior of the various
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Table 4.5: Results obtained by HAS-SOP and MPO/AI+LS on a set of 22 test
problems. See text for explanation of boldface and total wins row. Results are
obtained over five runs of 120 seconds (Small problems, that is, ft53.x, ft70.x,
ESCxx and kro124p.x problems) and 600 seconds for the others.

MPO/AI+LS HAS-SOP
Avg. Avg.

Best Avg. Std. Time Best Avg. Std. Time
PROB Result Result Dev. (sec) Result Result Dev. (sec)

ESC78 18230 18230.0 0.0 12.4 18230 18230.0 0.0 3.5
ft53.1 7531 7531.0 0.0 16.6 7531 7531.0 0.0 16.3
ft53.2 8026 8026.0 0.0 14.0 8026 8026.0 0.0 17.0
ft53.3 10262 10262.0 0.0 7.8 10262 10262.0 0.0 3.8
ft53.4 14425 14425.0 0.0 11.4 14425 14425.0 0.0 0.5
ft70.1 39313 39352.4 33.2 81.4 39313 39313.0 0.0 20.9
ft70.2 40419 40419.6 1.2 81.6 40419 40428.6 12.0 41.0
ft70.3 42535 42535.0 0.0 27.0 42535 42535.0 0.0 36.8
ft70.4 53530 53542.8 15.7 42.2 53530 53554.6 20.5 58.3
kro124p.1 39502 39686.2 214.0 97.4 39420 39420.0 0.0 60.8
kro124p.2 41336 41415.4 114.2 95.2 41336 41442.8 127.8 53.2
kro124p.3 49835 50189.6 298.0 97.4 49499 49653.2 66.3 24.2
kro124p.4 76103 76103.0 0.0 47.8 76103 76103.0 0.0 34.2
prob.100 1722 1756.2 30.6 333.0 1344 1397.8 38.5 404.4
rbg109a 1038 1038.6 0.5 75.8 1038 1038.0 0.0 27.5
rbg150a 1751 1752.2 0.7 17.2 1750 1750.0 0.0 128.1
rbg174a 2033 2033.0 0.0 82.8 2033 2034.6 1.1 189.4
rbg253a 2950 2950.0 0.0 68.6 2950 2950.0 0.0 145.0
rbg323a 3143 3143.6 0.4 458.8 3146 3147.6 2.2 271.1
rbg341a 2588 2598.8 2.0 553.6 2609 2613.6 18.1 421.3
rbg358a 2602 2609.0 6.2 482.8 2574 2579.8 4.8 454.1
rbg378a 2841 2856.4 8.1 516.0 2831 2841.8 6.8 500.6

Total wins 2 6 — 3 6 8 — 5

algorithms is shown in Figure 4.7 and Figure 4.8.

If we analyze the average performance of the algorithms on the set of
small problems (Table 4.2) we can make the following observations: (i)
RND is, as it was expected, the worst performing algorithm; (ii) ACS-
SOP performs better than RND, which means that the additional use of
pheromone trails and local heuristic information (i.e., distance between
nodes) is useful, (iii) MPO/AI was the best of the algorithms not us-
ing our local search (in fact, MPO/AI uses a simple form of local search,
which can explain its better performance), (iv) when the SOP-3-exchange
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Table 4.6: New bounds for Sequential Ordering Problems. New upper bounds
were obtained by HAS-SOP and MPO/AI+LS, while new Lower Bounds were
obtained by a Branch-and-Cut program starting from HAS-SOP solutions. All
Best columns report the best solutions computed by the two algorithms. In
parentheses are the results obtained by applying the post optimization.

NEW NEW
TSPLIB Lower Upper All Best All Best

PROB n | R | Bounds Bounds Bounds HAS-SOP MPO/AI+LS

ESC63 65 95 62 62 62
ESC78 80 77 18230 18230 18230
ft53.1 54 12 [7438,7570] 7531 7531 7531
ft53.2 54 25 [7630,8335] 8026 8026 8026
ft53.3 54 48 [9473,10935] 10262 10262 10262
ft53.4 54 63 14425 14425 14425
ft70.1 71 17 39313 39313 39313
ft70.2 71 35 [39739,40422] 39803 40419 40419 40419
ft70.3 71 68 [41305,42535] 42535 42535
ft70.4 71 86 [52269,53562] 53072 53530 53530 53530
kro124p.1 101 25 [37722,40186] 37761 39420 39420 39420
kro124p.2 101 49 [38534,41677] 38719 41336 41336 41336
kro124p.3 101 97 [40967,50876] 41578 49499 49499 49519
kro124p.4 101 131 [64858,76103] 76103 76103
prob.100 100 41 [1024,1385] 1027 1190 1219 (1190) 1573
rbg109a 111 622 1038 1038 1038
rbg150a 152 952 [1748,1750] 1750 1750
rbg174a 176 1113 2033 2033 2033
rbg253a 255 1721 [2928,2987] 2940 2950 2950 2950
rbg323a 325 2412 [3136,3157] 3137 3141 3141 3141
rbg341a 343 2542 [2543,2597] 2570 2576 (2574) 2572 (2570)
rbg358a 360 3239 [2518,2599] 2529 2545 2549 (2545) 2555
rbg378a 380 3069 [2761,2833] 2816 2817 2816

local search is added all the algorithms, as expected, increase their per-
formance, and HAS-SOP with an average 0.05% deviation from the best-
known solutions is the best performing algorithm. Similar observations
can be done for the set of big problems (Table 4.3). The only difference
is that in the average ACS-SOP performs better than MPO/AI. This
is mainly due to problem prob.100, a difficult problem that ACS-SOP
solves much better than the competing methods. Also in the case of big
problems HAS-SOP is the best performing algorithm, with an average
error of 2.39% from the best-known solutions. Figure 4.7 shows the run-
time behavior of HAS-SOP, MPO/AI, MPO/AI+LS, and RND+LS on
small problems (RND and ACS-SOP are not plotted because they are
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out of scale). It is clear that, besides reaching slightly better results than
MPO/AI+LS, HAS-SOP has also a better convergence speed: it reaches
after 12 seconds the same performance level reached by MPO/AI+LS af-
ter approximately 60 seconds. Similar considerations can be done for big
problems (Figure 4.8) where all algorithms are plotted (with the excep-
tion of RND, which is out of scale). Note the small difference in behavior
between RND+LS and MPO/AI+LS. A more detailed version of Figure
4.7 and Figure 4.8 showing the performance of the two best algorithms,
HAS-SOP and MPO/AI+LS, with error bars is given in Figure 4.9 and
Figure 4.10.

Table 4.4 shows the percentage improvement due to local search (this
is computed as the difference between the performance of the basic al-
gorithm and the performance of the corresponding hybrid algorithm re-
ported in Table 4.2 and Table 4.3). Data show that MPO/AI profits
from local search less than ACS-SOP and RND. This is probably due to
the fact that MPO/AI generates solutions that are already close to local
optima and therefore the SOP-3-exchange procedure quickly gets stuck.
On the contrary, RND is the algorithm that best exploits local search.
Unfortunately, this is due to the very poor quality of the solution given
as a starting point to the local search: notwithstanding the great im-
provement caused by the local search, the final result is not competitive
with that produced by HAS-SOP. In some sense it seems that solutions
generated by ACS-SOP are good enough to let local search work fruit-
fully, yet they are not so good as to impede local search to work, as it is
the case for MPO/AI.

In Table 4.5 we compare HAS-SOP with MPO/AI+LS. As in the pre-
vious experiment, runs lasted different amounts of CPU time, 120 seconds
for small problems and 600 seconds for big problems. Each experiment
was run 5 times. For both algorithms in Table 4.5 we report:

• Best Result: the best result obtained over 5 experiments.

• Avg. Result: average of the best results obtained in each experi-
ment.

• Std. Dev.: standard deviation of the best results obtained in each
experiment.

• Avg. Time: average time (in seconds) needed to reach the best
result in each experiment.
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In the table we have marked in boldface the results according to
these criteria: First we consider the columns Best Result and for each
problem we mark in boldface the best of the best results obtained by
the two algorithms. Similarly we compare and mark in boldface the
best average results. Then, only for those problems on which the two
algorithms obtained the same average result, we mark with boldface the
lowest average time. In the last row of Table 4.5 we report the number of
wins, that is, the number of times one algorithm was better than the other
one for each of the considered criteria (this corresponds to the number
of boldface entries in each column). The Total wins row synthetically
shows that HAS-SOP has a better performance than MPO/AI+LS on
all the measured criteria.

In conclusion, in Table 4.6 we report the new upper bounds obtained
by HAS-SOP and by MPO/AI+LS, as well as new lower bounds ob-
tained by a branch-and-cut program run by Ascheuer (1995) starting
from HAS-SOP solutions. The first column gives the problem names,
the second column gives the size of the problem in term of the number
n of nodes, the third columns gives the number | R | of constraints, and
the fourth column the bounds reported in TSPLIB. The other columns
report the new upper and lower bounds we computed, and finally the All
Best columns report the best solutions computed by the HAS-SOP and
MPO/AI+LS algorithms. In parentheses the results obtained applying
a post optimization consisting of re-running the algorithm (HAS-SOP or
MPO/AI), starting from the best found solution but using as local search
one of the variants presented in Table 4.1 (the post-optimization was run
for all the problems, but only in four cases it was able to improve the
best solution found in the first optimization phase).

4.5 Conclusions

The contribution of this chapter is twofold. First, we have introduced
a new local search procedure for the sequential ordering problem (SOP)
called SOP-3-exchange. This procedure has been shown to produce so-
lutions of quality higher than that of solutions produced by MPO/AI.
This has been shown to be the case even when the local search is ap-
plied to poor-quality, randomly generated initial solutions. Second, we
have shown that the performance of the algorithm obtained by coupling
MPO/AI with SOP-3-exchange can still be improved by coupling the
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local search with ACS-SOP, a straightforward extension of Ant Colony
System (Chapter 2.3).
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Chapter 5

EACS: Coupling Ant Colony

Systems With Strong Local

Searches

5.1 Introduction

Ant Colony System (Gambardella & Dorigo 1996; Dorigo & Gambardella
1997) has been presented in Chapter 2. In this thesis the coupling be-
tween ACS and local search algorithms have been successfully applied
to many combinatorial optimization problems. In particular ACS has
been able to successfully solve symmetric and asymmetric TSP prob-
lems (Chapter 2, Dorigo & Gambardella 1997), the vehicle routing prob-
lems with time windows (MACS-VRPTW, Chapter 3, Gambardella et al.
1999) and the sequential ordering problem (HAS-SOP, Chapter 4, Gam-
bardella & Dorigo 2000).
After these experiences in this chapter we deeply analyze the situation
where a strong local search routine is available for an optimization prob-
lem. It is shown how the original ACS framework can be enhanced to
achieve a better integration between ACS and the local search. Experi-
mental results on SOP optimization problem arising in transportation is
discussed. The results show the effectiveness of the enhancements intro-
duced.

The chapter is organized as follows: Section 5.2 describes in detail
some drawbacks of the classic ACS algorithm when coupled with a strong
local search, and introduces two new operations to overcome these draw-
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backs, leading to the EACS algorithm (Gambardella et al. 2012). Section
5.3 is devoted to the experimental validation of the new EACS paradigm.
In particular, the method is applied to the sequential ordering problem,
and the results are reported in Section 5.4. Section 5.5 contains our
conclusions.

5.2 An Enhanced Ant Colony System

We begin this section with a definition which will be central in the fol-
lowing discussion, and in the remainder of the chapter.

Definition 1. Given an optimization problem, a local search proce-
dure is referred to as a strong local search if it is able to autonomously
and efficiently retrieve high quality solutions for the given problem, with-
out the help of an external procedure guiding it.

The definition above formalizes a well-known concept to practitioners
in the metaheuristics field. An example of strong local search procedure
can be found when considering the classic traveling salesman problem.
With reference to Section 7.6 of Reinelt (1994), the Lin-Kernighan lo-
cal search procedure, that guarantees optimality gaps in the order of 1%,
is a strong local search, while the simpler 2-opt local search procedure
(optimality gaps above 5%) is not.

With reference to the ACS paradigm described in Chapter 2 and Algo-
rithm 19), we can observe that the constructive phase of the original ACS
framework carries out both diversification (exploring new regions of the
search space) and intensification (searching very deeply a given region of
the search space), since the original ACS algorithm did not consider any
local search. The constructive phase of ACS is therefore able to generate
improving solutions that are in a neighborhood of the best solution com-
puted so far. On the other hand, the local search procedure is considered
as a strong intensification process, able to bring each solution computed
by the artificial ants to its local minimum. So, in presence of a strong lo-
cal search procedure, the role of the construction phase is less prominent
and has to be revised, since the local search itself is able to efficiently
cover vast regions of the search space in its intensification process. In
particular the constructive phase could drop any kind of intensification,
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Algorithm 19: ACS Components for EACS, the Enhanced Ant Colony System

Lgb ← ∞
for each move (i, j) do

τij ← τ0
end for each
while (termination criteria not met)

for k := 1 to m do
while (Ant k has not completed its solution) do

for each move (i, j) from the current state i do
Compute µij

end for each
if (uniform random number in [0, 1] > q0) then

Choose the move (i, j) at random, with probability
[τij ]·[µij ]

β

∑
u∈Jk

r
[τij ]·[µij ]β

(2.1)

else

Choose the move (i, j) maximizing pkij with arg maxu∈Jk
r
{[τij ] · [µij ]

β} (2.4)

end if

Append new infeasible moves to the k -th ant’s set Jk
i

Update the trail level τij by means of τij ← (1− ρ) · τij + ρ · τ0 (2.10)
end while
Lk ← Apply a local search to improve the current solution;
if (Lk < Lgb) then

Lgb ← Lk;
end if

end for
for each move (i, j) ∈ Lgb do

Update the trail level τij by means of τij ← (1− α) · τij + α · 1
Lgb

(2.5)

end for each
end while

concentrating only on a (milder) form of diversification. This is the main
consideration at the basis of the EACS framework we propose, together
with the observation that the local search itself can be better integrated
within the framework. Similar considerations had led in the past to ef-
ficient combinations of simulated annealing with local search procedures
Martin & Otto (1996), or path-relinking with scatter search and GRASP
methods (Resende et al. 2010; Resende & Ribeiro 2005), leading however
to algorithmic frameworks that are intrinsically very different from the
one we propose. Finally, it is important to observe that since 1999, when
the first ACO algorithm was introduced, many variants and improve-
ments to the original paradigm have been proposed, with the aim of
improving the performance of the method (we refer the interested reader
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to Dorigo & Blum (2005) and Monmarché et al. (2010)). However, none
of the ideas developed has been in the direction of a better integration
between the constructive phase and the (strong) local search components,
like the method we propose.

In this chapter two operations to enhance the performance of ACS are
suggested: the first one regards the constructive phase, and the second
the integration between the constructive phase itself, and the local search
procedure. These enhancements, introduced with the aim of speeding up
the original ACS algorithm, will be described in detail in the remainder
of this section. Notice that the enhancements proposed are in line with
the theoretical results discussed in Kötzing et al. (2010). Thanks to
the two enhancements we propose to heuristically limit the search space
considered by the algorithm, the quality of the solution produced by the
Enhanced Ant Colony System will be shown to be higher than those of
the classic ACS (and often than those of state-of-the-art methods), due
to the remarkable speed-up guaranteed by the enhancements introduced.

One known drawback of the ACS approach is the large total running
time required to build new solutions by each artificial ant. Let n be the
number of steps necessary to build a solution. Usually the constructive
process takes time O(n) for each of the n steps required. This is accept-
able in case of small problems, but it is too expensive in case of larger
problems. In fact, ACS algorithms are not usually able to replicate on
large instances the good performance they are able to provide for smaller
instances. We propose to modify the ACS algorithm in two directions to
overcome the computational speed issue, as described in the remainder
of this section.

5.2.1 An Improved Constructive Phase

Our proposal to speed up the constructive phase is based on a new ap-
proach which - in contrast with the classic ACS algorithm - directly
considers the best solution computed so far Lgb already during the con-
structive phase. In the classic ACS algorithm an ant in state i selects
the next state j according to a probabilistic criterion. With probability
q0 the state selected is that with the best weighted compromise between
pheromone trail and heuristic desirability, while with probability (1− q0)
the edge is selected according to a Monte Carlo sampling mechanism.
In our new proposal, the state selected with probability q0 is the state
reached after the current state i in the best solution Lgb computed so far
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(in case this state is not feasible, the classic mechanism described above
is applied). Since probability q0 is usually greater than or equal to 0.9,
the new approach drastically reduces the running time required to select
the next edge to visit (typically from O(n) to something approximable
by a constant).

5.2.2 A Better Integration Between the Constructive Phase

and the Local Search Procedure

In the conventional ACS framework, after the constructive phase is com-
pleted, each solution is brought to its local minimum using a local search
procedure. The second enhancement we propose is again in the direction
of speeding up the whole algorithm, and concerns a better integration
between the constructive and the local search phases of the algorithm,
leading to a faster overall method. Three different ways to obtain such
an integration can be identified:

1. A first idea is to apply the local search procedure only on a (promis-
ing) subset of the solutions generated, contrary to the canonical
ACS paradigm, where the local search is applied to all the solutions
generated.

2. The local search procedure is applied (probabilistically) only on
those solutions on which the local search has not been recently
applied, in order to avoid searching the neighborhood of the same
solution over and over again.

3. The local search procedure is run only from those solution compo-
nents (parts of a solution, e.g. subtours) which are not present in
the solutions obtained during the previous iterations.

All the three strategies listed above are very general, and their imple-
mentation is extremely problem-dependent.

5.2.3 Pseudo-Code

A pseudo-code for the new EACS framework is provided in Algorithm
20. Lines marked with an asterisk are those containing differences with
respect to the original ACS algorithm (see Algorithm 19).
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Algorithm 20: EACS, the Enhanced Ant Colony System

Lgb ←∞
for each move (i, j) do

τij ← τ0
end for each
while (termination criteria not met)

for k := 1 to m do
while (Ant k has not completed its solution)

(*) if (uniform random number in [0, 1] > q0) then
(*) // The next loop is executed with low probability
(*) for each move (i, j) from the current state i do
(*) Compute µij

(*) end for each

(*) Choose the move (i, j) at random, with probability
[τij ]·[µij ]

β

∑
u∈Jk

r
[τij ]·[µij ]β

(2.1)

(*) else
(*) b∗ ← state such that move (i, b∗) ∈ Lgb

(*) if (move (i, b∗) /∈ Jk
i ) then

(*) Choose the move (i, b∗)
(*) else
(*) for each move (i, j) from the current state i do
(*) Compute µij

(*) end for each

(*) Choose the move (i, j) maximizing pkij with arg maxu∈Jk
r
{[τij ] · [µij ]

β} (2.4)

(*) end if
(*) end if

Append new infeasible moves to the k -th ant’s set Jk
i

Update the trail level τij by means of τij ← (1− ρ) · τij + ρ · τ0 (2.10)
end while
// be Lk the current solution computed by ant k

(*) // Depending on the implementation, some of the following
(*) // conditions might be not implemented
(*) if (Lk is close enough to Lgb)
(*) and (local search has not been recently run on the current solution Lk)
(*) and (the current solution Lk is different from Lgb) then
(*) Apply a local search to those components of the current
(*) solution Lk that are not in common with Lgb

(*) end if
if (Lk < Lgb) then

Lgb ← Lk

end if
end for
for each move (i, j) ∈ Lgb do

Update the trail level τij by means of τij ← (1− α) · τij + α · 1
Lgb

(2.5)

end for each
end while
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5.3 Applications

The EACS paradigm was tested on different combinatorial optimization
problems. EACS was compared both with the standard ACS method,
and with state-of-the-art methods. For some well-known combinatorial
optimization problems for which a strong, dominant local search is avail-
able, the EACS was however able to improve both ACS and the best
known methods, leading to new reference results. Experiments in this
direction have been presented in Gambardella et al. (2012) for the Team
Orienteering Problem (TOP, Butt & Cavalier 1994; Chao et al. 1996) for
the Probabilistic Traveling Salesman Problems (PTSP, Jaillet 1985) and
for the Sequential Ordering Problem (SOP, Chapter 4). In the remain-
der of this section we concentrate on the Sequential Ordering Problem
(SOP).

5.3.1 SOP: The Sequential Ordering Problem

Problem description and literature review

The Sequential Ordering Problem (SOP), also referred to as the Asym-
metric Travelling Salesman Problem with Precedence Constraints has
been presented in Section 4.1.

The SOP models real-world problems such as production planning
(Escudero 1988), single vehicle routing problems with pick-up and de-
livery constraints (Pulleyblank & Timlin 1991; Savelsbergh 1990), trans-
portation problems in flexible manufacturing systems (Ascheuer 1995).

The first mathematical model and exact algorithms for the SOP were
introduced in Ascheuer et al. (1993), Escudero et al. (1994), Ascheuer
(1995) and Balas et al. (1995). Next, a branch and bound algorithm was
presented by Hernàdvölgyi (2003) and Hernàdvölgyi (2004). A genetic
algorithm has been proposed Chen & Smith (1996). A hybrid genetic
algorithm was discussed by Seo & Moon (2003). A parallelized roll-out
algorithm was described by Guerriero & Mancini (2003). Chapter 4, pre-
sented an approach based on Ant Colony System (ACS) coupled with a
sophisticated Local Search (LS) procedure (Gambardella & Dorigo 2000).
Montemanni et al. (2007), Montemanni et al. (2008) and Montemanni
et al. (2009) built on top of this method, adding a Heuristic Manipula-
tion Technique (HMT). A Discrete Particle Swarm Optimization (DPSO)
method has been finally discussed in Anghinolfi et al. (2009) and Angh-
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inolfi et al. (2011).

ACS for the SOP

The adaptation of the ACS paradigm (see Chapter 2) to the SOP is
straightforward (see also Chapter 4). The constructive phase of each ant
starts at the origin node and chooses the next nodes probabilistically.
The only complication is represented by precedence constraints: each
time the next node has to be chosen, nodes that if selected would violate
some precedence constraint have to be inserted in the list of forbidden
nodes. This can be easily done without any increase in the computation
time of the classic constructive phase.

The local search adopted by the ACS for the SOP is extremely efficient
(Section 4.3). This local search routine is a specialization to the sequen-
tial ordering problem of a known local search method for the asymmetric
travelling salesman problem (Savelsbergh 1990). It is able to directly
handle multiple constraints without increasing the computational com-
plexity of the original local search by using a special labeling procedure
(Section 4.3.3). Other important SOP-3-exchange features are related to
the way nodes are selected during the local search (Section 4.3.4). The
goal is to decrease the number of visited nodes by introducing two heuris-
tics that influence how nodes are chosen: one is based on a don’t look
bit data structure proposed by Bentley (1992), while the other is based
on a data structure called don’t push stack introduced in Gambardella
& Dorigo (2000). The don’t look bit (Section 4.3.3) is a data structure
in which a bit is associated with each node of the sequence. At the be-
ginning of the search all bits are turned off. The bit associated with the
selected node is turned on when a search for an improving move starting
from this node fails. The bit associated with the node is turned off again
when an improving exchange involving the node is executed. The use of
don’t look bits favors the exploration of nodes that have been involved
in a profitable exchange. The don’t push stack (Section 4.3.3) is a data
structure based on a stack, which contains the set of nodes to be selected.
At the beginning of the search the stack is initialized with all the nodes
in the sequence (that is, it contains n+ 1 elements). During the search,
nodes are popped off the stack and feasible 3-exchanges starting from
these nodes are investigated. In case a profitable exchange is executed
the six nodes involved in this exchange are pushed onto the stack (if they
do not already belong to it).
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EACS for the SOP

With respect to the classic ACS implementation (see Chapter 2), the
modification to the constructive phase, according to Section 5.2, is straight-
forward. If we are in node i, with probability q0 we move to node j if it
follows i in the best solution available, unless j is not feasible (already
visited or violating some precedence constraint). Otherwise the classic
Monte Carlo sampling technique is applied.

The implementation of the integration between the constructive phase
and the local search (see Section 5.2.2) works as follows. The local search
is run only if the cost of the solution produced in the constructive phase
is within 20 % of the best solution retrieved so far (this implements
point 1 of Section 5.2.2. Moreover, the don’t push stack (see Section
4.3.3) is initialized in such a way that only the elements that in the
current solution are out of sequence with respect to the best solution,
are in the stack. This pushes the exploration of the search space towards
areas that were potentially unexplored in the previous iterations, and is
an implementation of point 3 of Section 5.2.2. Notice that in case the
current solution coincides with the best solution, the local search is not
applied.

Benchmark problems

Benchmark problems are those adopted by Anghinolfi et al. (2011). The
instances are publicly available1. Each instance is identified as n-r-p,
where the following naming convention is adopted: n is the number of
nodes of the problem, i.e. V = {1, 2, . . . , n}; r is the cost range, i.e.
0 ≤ cij ≤ r, ∀i, j ∈ V ; p is the approximate percentage of precedence
constraints, i.e. the number of precedence constraints of the problem will

be about p
100
· n(n−1)

2
. Instances were created from the following values

for the parameters: n ∈ {200, 300, 400, 500, 600, 700}; r ∈ {100, 1000};
p ∈ {1, 15, 30, 60}.

5.4 Results

The EACS algorithm has been coded in ANSI C, and the experiments
presented have been run on a Dual AMD Opteron 250 2.4 GHz/4GB

1 The SOPLIB2006 library is available at http://www.idsia.ch/˜roberto/SOPLIB06.zip.
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computer. The parameter settings adopted are as follows both for ACS
and EACS (settings are those used in Gambardella & Dorigo (2000) and
reported in Chapter 4). Comparison are executed among HAS-SOP in
Table 5.1 and Table 5.2 referred as ACS (Gambardella & Dorigo 2000,
Chapter 2), Discrete Particle Swarm Optimization (DPSO, Anghinolfi
et al. 2009, 2011), and a heuristic manipulation technique for the se-
quential ordering problem (HMT, Montemanni et al. 2008).

Comparison of the constructive phases (without local search). In
this set of experiments only the constructive phases of ACS and EACS
are considered, and no local search is run, similarly to what was already
presented in Gambardella et al. (2012) for the TOPTW. In Table 5.1 the
instances are grouped by number of nodes, and the results obtained by
the two methods are presented. For each instance-group some statistics
over 10 runs with a maximum computation time of 600 seconds for each
instance are reported. In particular, the average percentage deviation
from the best known solutions, the percentage deviation of the best so-
lutions produced over 10 runs from the best known solutions and the
average number of solutions generated in the given time are reported
both for ACSNoLS and EACSNoLS. It emerges that the role of the local
search for the SOP is more prominent than for the TOPTW (Team Ori-
entiring Problems with Time Windows) as reported in Gambardella et al.
(2012) since the constructive phases alone obtain poor results in general,
both in terms of average and best results over the 10 runs considered.
ACSNoLS is better than EACSNoLS both in terms of average and best
results, indicating once more that the idea at the basis of EACS makes
sense only when coupled with a good local search. Notice also that the
best solutions provided by EACSNoLS are consistently worse than those
of ACSNoLS. In general, the experiments suggest once more that the
pheromone has an important role in the original ACS paradigm when no
(strong) local search is available. It is also interesting to observe that the
difference in the average number of solutions generated in the given time
is extremely favorable to EACS (more than in the TOPTW case), giving
a measure of the speed-up guaranteed by the new constructive phase.
Finally, it is interesting to observe how the quality of the solutions re-
ported in the table deteriorates as the number of nodes increases. This
is a known drawback of the ACS paradigm in general.
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Table 5.1: The Sequential Ordering Problem. Comparison of the constructive
phases (without local search).

Instance Avg results Best results Solutions generated
group ACSNoLS EACSNoLS ACSNoLS EACSNoLS ACSNoLS EACSNoLS

R.200.*.* 43.36 69.38 37.08 54.22 182721 1003445
R.300.*.* 101.28 135.03 86.93 115.20 66887 567957
R.400.*.* 180.92 239.35 161.42 203.79 34419 381810
R.500.*.* 354.32 480.12 317.36 423.35 22989 269501
R.600.*.* 972.04 1310.45 884.54 1178.18 16221 211691
R.700.*.* 1430.92 1950.37 1254.06 1663.41 11953 151956

Average 513.80 697.45 456.90 606.36 55864.94 431060.10

Comparison with the state-of-the-art, and new best known solu-

tions. The comparison is presented in Table 5.2. For the best known
results we indicate the method used to obtain the result, and the cost of
the solution (cost). For ACS and EACS we present the average and the
best result obtained over 10 runs, where a maximum computation time
of 600 seconds for each run is imposed. We also report in the last column
the overall best results obtained during the parameter tuning campaign
by the EACS algorithm (again with a maximum computation time of
600 seconds). Bold entries indicate the lowest average and best values
for each line of the table.

The results of Table 5.2 give clear indications: over the 48 instances
considered, EACS was able to improve 45 average results and 43 best
results of ACS, never being worse than ACS. When compared with the
best-known results, EACS was able to improve 32 of them, while match-
ing the best known results in the remaining 16 cases.

5.5 Conclusions

In this chapter two main directions for improving Ant Colony System
when a strong local search routine is available have been presented. With
respect to the original framework - which performs better and is still the
reference one in case a strong local search is not available - the Enhanced
Ant Colony System better exploits the presence of the given local search,
that itself already provides a strong intensification: the intensification
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Table 5.2: The Sequential Ordering Problem. Computational results.

Instance Best known ACS EACS EACS
method cost avg best avg best overall best

R.200.100.1 DPSO 64 90.3 88 67.2 63 63
R.200.100.15 DPSO 1799 2066.0 2002 1818.3 1792 1792
R.200.100.30 HMT 4216 4254.6 4247 4216.0 4216 4216
R.200.100.60 ACS 71749 71749.0 71749 71749.0 71749 71749
R.200.1000.1 DPSO 1414 1549.5 1532 1432.5 1411 1411
R.200.1000.15 DPSO 20481 22602.9 21775 20717.0 20481 20481
R.200.1000.30 HMT 41196 41371.6 41278 41196.0 41196 41196
R.200.1000.60 ACS 71556 71556.0 71556 71556.0 71556 71556
R.300.100.1 DPSO 31 76.4 74 34.6 31 30
R.300.100.15 DPSO 3167 3738.6 3520 3207.1 3162 3161
R.300.100.30 DPSO 6120 6228.2 6151 6120.0 6120 6120
R.300.100.60 ACS 9726 9726.0 9726 9726.0 9726 9726
R.300.1000.1 DPSO 1338 1586.7 1536 1369.6 1331 1331
R.300.1000.15 DPSO 29475 34447.9 33533 29784.4 29248 29183
R.300.1000.30 DPSO 54147 55013.4 54367 54172.6 54147 54147
R.300.1000.60 ACS 109471 109530.5 109471 109471.0 109471 109471
R.400.100.1 DPSO 21 64.1 59 22.6 21 17
R.400.100.15 DPSO 3946 5087.1 4838 3986.2 3925 3906
R.400.100.30 DPSO 8165 8476.5 8289 8165.9 8165 8165
R.400.100.60 ACS 15228 15232.4 15228 15228.0 15228 15228
R.400.1000.1 DPSO 1484 1811.1 1783 1475.5 1456 1419
R.400.1000.15 DPSO 40054 46638.6 45055 40122.9 39612 29685
R.400.1000.30 DPSO 85221 85979.6 85579 85203.3 85192 85132
R.400.1000.60 HMT 140816 140994.9 140862 140816.0 140816 140816
R.500.100.1 DPSO 14 55.0 51 16.1 11 8
R.500.100.15 DPSO 5525 6931.5 6584 5507.8 5431 5361
R.500.100.30 DPSO 9683 10333.2 10047 9668.1 9665 9665
R.500.100.60 HMT 18240 18260.4 18246 18247.4 18240 18240
R.500.1000.1 DPSO 1514 1877.4 1840 1522.5 1501 1436
R.500.1000.15 DPSO 51624 62693.7 60175 51763.0 51091 50880
R.500.1000.30 DPSO 99181 101751.8 100453 99112.0 99018 98987
R.500.1000.60 HMT 178212 178478.1 178323 178212.0 178212 178212
R.600.100.1 DPSO 11 49.8 44 9.4 6 3
R.600.100.15 DPSO 5923 7806.6 7610 5881.7 5798 5684
R.600.100.30 DPSO 12542 13001.8 12810 12475.5 12465 12465
R.600.100.60 DPSO 23293 23357.4 23342 23293.0 23293 23293
R.600.1000.1 DPSO 1628 1986.7 1936 1598.9 1534 1521
R.600.1000.15 DPSO 59177 72701.1 70454 58281.6 57812 57387
R.600.1000.30 DPSO 127631 132314.3 130244 126961.7 126789 126789
R.600.1000.60 HMT 214608 214970.2 214724 214608.0 214608 214608
R.700.100.1 DPSO 9 42.6 41 7.9 5 2
R.700.100.15 DPSO 7719 9573 9383 7444.0 7380 7331
R.700.100.30 DPSO 14706 15905.8 15733 14520.0 14513 14510
R.700.100.60 DPSO 24106 24192.3 24151 24172.0 24102 24102
R.700.1000.1 DPSO 1606 1969.2 1912 1614.8 1579 1461
R.700.1000.15 DPSO 72618 85177.7 81439 68630.0 67510 66837
R.700.1000.30 DPSO 136031 141557.9 139769 134651.2 134474 134474
R.700.1000.60 DPSO 245589 246489.6 246128 245684.0 245632 245589
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capabilities of the original constructive phase of the Ant Colony System
are traded with a computational speed-up. Moreover, some mechanisms
to prevent the local search to be run on non promising solutions, are
introduced. As a result, the enhanced method is shown to improve the
original one, leading to better solutions.

The new enhanced framework has been implemented for some known
combinatorial optimization problems: the Team Orienteering Problem
with Time Windows, the Sequential Ordering Problem and the Prob-
abilistic Traveling Salesman Problem. Experimental results reported
in this Chapter for the Sequential Ordering Problem suggest that the
enhanced algorithms are able to outperform the original one in many
occasions, leading to many new best-known results. This provides an
experimental validation of the new proposed ideas.

Possible further research directions consist in implementing the en-
hanced framework for other combinatorial optimization problems: there
are many problems for which a strong dominant local search is known.
The application of the Enhanced Ant Colony System framework to these
cases might potentially lead to extremely effective algorithms.
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Chapter 6

Ant Colony Optimization for

Real-World Vehicle Routing

Problems: From Theory To

Applications

6.1 Introduction

In this chapter (Rizzoli et al. 2007) we report on the successful applica-
tion of ant colony optimization to the real-world vehicle routing problem
(VRP). First, we introduce the VRP and some of its variants, such as
the VRP with time windows, the time dependent VRP, the VRP with
pickup and delivery, and the dynamic VRP. These variants have been
formulated in order to bring the VRP closer to the kind of situations
encountered in the real-world.
Then we briefly present the application of ant colony optimization to the
solution of the VRP and of its variants.
Last, we discuss the applications of ACO to a number of real-world
problems: a VRP with time windows for a major supermarket chain
in Switzerland; a VRP with pickup and delivery for a leading distribu-
tion company in Italy; a time dependent VRP for freight distribution in
the city of Padua, Italy, where the travel times depend on the time of
the day; and an on-line VRP in the city of Lugano, Switzerland, where
customers orders arrive during the delivery process. In all these appli-
cations ACO has been successfully coupled with dedicated local searches

139
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in Section 1.5.
The vehicle routing problem (VRP) concerns the transport of items be-
tween depots and customers by means of a fleet of vehicles. Examples
of VRPs are: milk delivery, mail delivery, school bus routing, solid waste
collection, heating oil distribution, parcel pick-up and delivery, dial-a-
ride systems, and many others. Although finding the most cost efficient
way to distribute goods across the logistic network is the main objec-
tive of supply-chain systems, only in the early ’90s enterprise resource
planning software vendors started to integrate tools to solve the VRP in
supply chain management software (a review of software for supply chain
management can be found in Aksoy & Derbez (2003)).

The practical interest of the VRP has spawn a number of studies,
which tackled the problem from many sides. Yet, the VRP is combina-
torially complex, and therefore, as the size of the problem increases, it
becomes harder and harder to obtain an exact solution for it in a rea-
sonable amount of time. Thus, even the most advanced exact solution
methods impose particular constraints on the problem instance, which
are often violated when dealing with real-world vehicle routing problems,
leaving practitioners unsatisfied with the performance and applicability
of the algorithms.

Given the shortcomings of exact solution methods, researchers in the
field of operations research (OR) started to developmetaheuristics (Blum
& Roli. 2003), heuristic methods that can be applied to a wide class of
problems. One of the advantages metaheuristics have over traditional
optimization algorithms is their ability to produce a good suboptimal
solution in short time. The integration of optimization algorithms based
on metaheuristics, such as tabu search (Glover & Laguna 1997), simu-
lated annealing (Kirkpatrick et al. 1983), ant colony optimization (Chap-
ter 2, Dorigo & Gambardella 1997), and iterated local search (Lourenço
et al. 2003), with advanced logistic systems for supply chain management
opened new perspectives for operations research applications in indus-
try. In particular, for the solution of VRP and its variants, a number
of metaheuristics have been successfully applied, such as: simulated an-
nealing (Osman 1993), tabu search (Gendreau et al. 1994; Taillard et al.
1997), granular tabu search (Toth & Vigo 2003), genetic algorithms (Van
Breedam 1996), guided local search (Kilby et al. 1999), variable neigh-
bourhood search (Bräysy 2003), greedy randomized adaptive search pro-
cedure (Resende & Ribeiro 2003), and Ant Colony Optimization (Chap-
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ter 3, Gambardella et al. 1999; Reimann et al. 2003).

Ant Colony Optimization has been also used for the approximate so-
lution of a number of traditional OR problems, among which the job shop
scheduling problem, the quadratic assignment problem, the sequential or-
dering problem (Chapter 4), the graph coloring problem, and the shortest
common supersequence problem by Dorigo & Stützle (2004). ACO has
been also employed in a number of open shop scheduling problems (Blum
2005), in optimal product design (Albritton & McMullen 2007), and has
also been used in some environmental problems, such as the design of
a water distribution network (Zecchin et al. 2007) or the planning of
wells for groundwater quality monitoring (Li & Chan Hilton 2007), thus
proving its adaptability to very different domains of application.

The flexibility of the ACO metaheuristic allowed its application to
many vehicle routing problems where heterogeneous vehicle fleets, limi-
tations on customer accessibility, time windows and the order imposed
by pick-ups and deliveries considerably complicate the problem formula-
tion. These kinds of problems have been labelled as rich vehicle routing
problems Hartl et al. (2006). Yet, real-world problems are even more
complex; for instance, travel times may be uncertain and depend on
traffic conditions, and not all customers’ orders may be perfectly known
in time and dimension. These problem variants have been called dy-
namic VRP and they are currently attracting a lot of research efforts,
because of their closeness to real-world traffic and distribution models
(Zeimpekis et al. 2007). The objective of this chapter is to describe how
ant colony optimization can be successfully used to solve a number of
VRP variants, both for some of the basic problem instances (the capac-
itated VRP, the VRP with time windows, the VRP with pickup and
delivery) and for some of the dynamic extensions (the time dependent
vehicle routing problem and the on-line vehicle routing problem) where
ACO has been applied and its ability to find efficient solutions in a short
time has been proven useful also in this setting.

The chapter is structured as follows: Section 6.2 outlines the VRP
with its static and dynamic variants. Then Section 6.3 is devoted to
real world applications: here we first introduce two large-scale industrial
applications, showing how ACO can be successfully applied in the day-to-
day operations of large real-world distribution processes, then we present
the application of ACO to dynamic VRPs, showing its applicability in
the context of urban freight distribution.
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6.2 Vehicle Routing Problems

Finding optimal routes for a fleet of vehicles performing assigned tasks
on a number of spatially distributed customers can be formulated as
a combinatorial optimization problem: the vehicle routing problem. A
solution of this problem is the best route serving all customers using a
fleet of vehicles, respecting all operational constraints, such as vehicle
capacity and the driver’s maximum working time, and minimising the
total transportation cost.

The algorithm solving the problem requires defining an objective func-
tion that may include multiple objectives that are often conflicting. The
most common objective is the minimisation of transportation costs as a
function of the travelled distance or of the travel time; the number of ve-
hicles can be minimised expressing the costs associated with vehicles and
drivers (Section 6.2.1). Vehicle efficiency, expressed as the percentage of
load capacity weighted by distance, can be taken into account. “Soft”
constraints, which can be violated paying a penalty, can be included. For
instance, if a customer is not served according to the agreed time sched-
ule, a penalty might have to be paid. Road pricing schemes can also be
considered, for example attributing a higher cost to routes through city
centres.

The elements that define and constrain each model of the VRP are:
the road network, describing the connectivity among customers and de-
pots; the vehicles, transporting goods between customers and depots on
the road network; the customers, which place orders and receive goods.

The road network graph can be obtained from a detailed map of
the distribution area on which the depots and the customers are geo-
referenced. Standard algorithms can then be used to find the shortest
routes between all couples of nodes in order to build the travel cost
matrix. The matrix coefficients can represent the time required to travel
from node i to node j, or the distance between the nodes, or any other
metric that measures the travel cost. According to the adopted metric,
different instances of the VRP may arise. For instance, if the travel time
on edges depends on the time of the day, then we encounter the time
dependent VRP (see paragraph 6.3.3 below).

The fleet of vehicles and their characteristics also impose constraints
on the vehicle routing model. The fleet can be homogeneous, if all vehicles
are equal in their characteristics, heterogeneous if this is not the case.
Most real-world fleets are heterogeneous. Mechanical features (length,
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weight, width) and configuration (trailer, semi-trailer, van, etc.) con-
strain the ability of a vehicle to access road segments. For instance, a
vehicle cannot travel on some arcs of a road network because of excessive
weight or dimensions. On-board equipment, such as loading/unloading
devices, may also impose constraints that depend on the type of cus-
tomer to be served. Capacity constraints, stating the maximum load to
be transported by a vehicle, are also important.

Each customer requests a given amount of goods, an order, which
must be delivered or collected at the customer location. Time windows
within which the customer must be served can be specified. These time
windows can be single (only one continuous interval) or multiple (disjoint
intervals). If time windows cannot be violated at any cost they are said to
be “hard”; on the other hand, when a penalty is paid in case of violation,
time windows are said to be “soft”. Finally, the vehicle routing model
can also include an estimation of the loading and unloading times at the
customer – the so-called service time.

6.2.1 Basic Problems of the Vehicle Routing Class

Combining the various elements of the problem, we can define a whole
family of different VRPs. Toth & Vigo (2001b) present a detailed overview
of the various VRPs.

The capacitated vehicle routing problem (CVRP, Section 3.2) is the
basic version of the VRP. The name derives from the constraint of having
vehicles with limited capacity. Customer demands are deterministic and
known in advance. Deliveries cannot be split, that is, an order cannot
be served using two or more vehicles. The vehicle fleet is homogeneous
and there is only one depot. The objective is to minimise the total
travel cost, usually expressed as the travelled distance required to serve
all customers. The CVRP is NP-hard (Labbé et al. 1991) and the size
of the problems which can be solved exactly in a reasonable time is up
to 50 customers, using the branch-and-bound, branch-and-cut, and set-
covering approaches (see Toth & Vigo 2001a).

When constraints on the delivery times are present, we have a vehicle
routing problem with time windows (VRPTW): the capacity constraint
still holds and each customer i is associated with a time window [bi, ei]
and with a service time si. VRPTW is also NP-hard, and even find-
ing a feasible solution to the VRPTW is an NP-hard problem (Savels-
bergh 1985). Good overviews on the VRPTW formulation and on exact,
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heuristic, and metaheuristic approaches to its solution can be found in
Mester & Bräysy (2005), Li et al. (2005) and in Kytöjoki et al. (2007).
Kallehauge et al. (2006) have solved VRPTW problems with 400 and
1000 customers by Lagrangian relaxation, but the problem formulation
requires hard time windows.

In the VRP with pick-up and delivery (VRPPD) the transport items
are not originally concentrated in the depots, but they are distributed
over the nodes of the road network. A transportation request consists
in transferring the demand from the pick-up point to the delivery point.
These problems always include time windows for pick-up and/or delivery.
A review of various approaches to the solution of the VRPPD is presented
in Desaulniers et al. (2000).

In all of these approaches the problem data is supposed not to change,
neither during the planning phase (computation of the solution), nor
during the management phase (implementation of the solution). More
realistic situations might require the relaxation of this assumption.

6.2.2 Dynamic Extensions of the VRP

The static formulations of the VRP, where customer demand is determin-
istic and travel times do not depend on the time of the day, have proven
to be successful in modeling many practical problems. This is especially
true for the VRPTW and VRPPD extensions. Yet, the availability of
online information on the traffic conditions and the possibility of moni-
toring the vehicles’ positions via the global positioning system, together
with the online update of customer orders, can considerably change the
problem settings. The availability of this information has a price: the
assumption of time-invariancy must be relaxed and data become time-
dependent. Moreover, using data on current traffic conditions to estimate
travel times requires the relaxation of the assumption of determinism,
introducing uncertainty and adding another level of complexity to the
problem.

In the literature these problems have been labelled with different
terms: probabilistic, dynamic, and stochastic vehicle routing. These
terms are often interchanged, but in practice we can assume that in gen-
eral we are confronted with a dynamic vehicle routing problem, where
problem data are often generated by a stochastic process. For instance,
a stochastic process can be assumed to be responsible for the presence
or absence of the customers, for the quantity of their orders, and for the
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travel and service times (Laporte & Louveaux 1998).
Stochastic customers and demands are typically formed when the

planning horizon is longer than the horizon of the currently available
data. These kinds of problems have been extensively studied (see for
instance Gendreau et al. (1996), Bianchi et al. (2004)) also studied how
various metaheuristics can used in the solution of the VRP with stochas-
tic demands.

One approach to solve the problem of unknown orders is to remove
uncertainty by processing new orders as they come, in batches of vari-
able size, according to what is called a reactive strategy. Potvin et al.
(2006) list a number of reactive dynamic strategies for vehicle routing
and scheduling problems; in the case of VRP this has been called the on-
line variant (OLVRP). Among possible applications of the OLVRP we
find feeder systems, which typically are local dial-a-ride systems aimed
at feeding another, wider area, transportation system at a particular
transfer location (Gendreau & Potvin 1998; Psaraftis 1988, 1995).

Another side of the problem is the presence of stochastic travel and
service times, which are very frequent in urban environments. Especially
with respect to travel times, the variability can be very high and consid-
erably affect the solution. In the time dependent VRP variant (TDVRP)
the variability can be reduced if one assumes that travel times are nearly
constant within time periods in a day. This is quite true for peak and off-
peak traffic conditions, which are observed in most cities. Ichoua et al.
(2003) present a structured introduction to the problem and a model
formulation.

6.3 Solving the VRP with ACO

Sales and distribution processes require the ability to forecast customer
demand and to optimally plan the distribution of the products to the
consumers. These two strategic activities, forecast and optimization,
must be tightly interconnected in order to improve the performance of
the system as a whole (Gambardella et al. 1998).

In Figure 6.1 the workflow of a distribution-centred company is sketched.
The sales department generates new orders by contacting the customers
(old and new ones) to check whether they need a new delivery. The
effectiveness of this operation can be increased thanks to inventory man-
agement modules, which estimate the demand of every customer, indi-
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Figure 6.1: The Forecast-Optimise-Simulate loop: the role of optimisation in
the efficient management of a distribution process.

cating the best re-order time for each of them. New orders are then
processed by the planning department, which, according to the quan-
tities requested, the location of the customers, and the time windows
for the delivery, decides how many vehicles to employ and computes the
best routes for the delivery, in order to minimise the total travel time
and space. This task is assisted by a vehicle routing algorithm, repre-
sented by the OPTIMIZE block. The vehicle tours are then assigned
to the fleet, which is monitored by the fleet operational control station,
which monitors the evolution of deliveries in real time. This process is as-
sisted by the SIMULATE/MONITOR/RE-PLAN module, which allows
re-planning online in face of new urgent orders, which were not available
during the previous off-line planning phase. Finally, after vehicles have
returned to the depot, delivery data are off-loaded and transferred back
to the company database.

In the next sub-sections, we describe a number of real-world applica-
tions, where ACO has been used for the implementation of the vehicle
routing algorithms that are executed in the OPTIMIZE block of Figure
6.1.
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6.3.1 A VRPTW Application for the Secondary Level in the

Supply Chain

In this application the client is one of the major supermarket chains in
Switzerland. The problem is to distribute palletized goods to more than
600 stores, all over Switzerland. The stores order daily quantities of
goods to replenish their local stocks. They want the goods to be deliv-
ered within time windows, in order to plan in advance the daily avail-
ability of their personnel, allocating a fraction of their time to inventory
management tasks.

There are three types of vehicles: trucks (capacity: 17 pallets), trucks
with trailers (35 pallets), and tractor units with semi-trailers (33 pallets).
Whether a vehicle can access a store or not depends on the store location.
In some cases the truck with trailer can leave the trailer at a previous
store and then continue to other less accessible locations. The number
of vehicles is assumed to be infinite, since transport services can be pur-
chased on the market according to the needs.

The road network graph has been computed using digital road maps.
The distances in kilometres between couples of stores have been rescaled
using a speed model, which depends on the distance: longer distances
allow a higher average speed. For instance, if the distance is less than 5
km, the average speed is 20 km/h; if the distance is more than 90 km, the
speed is 60 km/h; in between there is a range of other speed values. The
data have been collected over many years and they have been validated
by the drivers’ experience. The time to set-up a vehicle for unloading
and the time required to hook/unhook a trailer are constant. The service
time is variable and depends on the number of pallets to unload.

All the routes must be performed in one day, and the client imposes
an extra constraint stating that a vehicle must perform its latest delivery
as far as possible from the inventory, since it could be used to perform
extra services on its way back. These extra services were not included in
the planning by explicit request of the client.

The algorithm.

This problem was modeled as a VRPTW, and solved by an implemen-
tation of the MACS-VRPTW algorithm (Chapter 3, Gambardella et al.
1999), named ANTROUTE. MACS-VRPTW is the most efficient ACO
algorithm for the VRPTW and one of the most efficient metaheuristics
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overall for this problem. ANTROUTE adds to MACS-VRPTW the abil-
ity to handle the choice of the vehicle type: at the start of each tour the
ant chooses a vehicle. A waiting cost was also introduced in order to
prevent vehicles arriving too early at the stores.

The central idea of the MACS-VRPTW algorithm (Section 3.3) is
to use two ant colonies (MACS stands for multi ant colony system).
One colony, named ACS-VEI (Algorithm 16), minimizes the vehicles
while the other one, named ACS-TIME (Algorithm 15), minimizes time.
The two colonies are completely independent, since each one has its own
pheromone trail, but they collaborate by sharing the variable Lgb, which
describes the best solution found so far (Algorithm 14). Each colony is
composed of a number of ants. Every ant in the colony tries to build a
feasible solution to the problem.

Note that in the ACS-VEI colony the ants usually construct infeasible
solutions, that is, not all customers can be visited under the constraints
given.

Given that the algorithm uses two colonies, at the end of each cy-
cle, pheromone trails are globally updated for two different solutions:
LACS−V EI , the infeasible solution with the highest number of visited cus-
tomers, and Lgb, the feasible solution with the lowest number of vehicles
and the shortest travel time. Thus, pheromone is updated also on arcs
that are not included in a feasible solution, which could still become
feasible in the next iteration.

ACS-TIME is coupled with a local search procedure to improve the
quality of the feasible solutions, which is similar to the CROSS procedure
of Taillard et al. (1997). Given that the CROSS procedure requires a
feasible solution to operate on, such a local search can not be applied
during ACS-VEI, where unfeasible solutions can still be returned at the
end of a cycle. Both ACS-TIME and ACS-VEI try to repair infeasible
solutions by inserting unvisited customers.

Results.

The first tours computed by ANTROUTE were not accepted as feasible
by the human tour planners, even if the performance was considerably
higher than theirs and no explicit constraints were violated. Thus, a fur-
ther modelling iteration was required, to let “hidden” constraints emerge.
The human planners were actually using a regional planning strategy,
that led to petal shaped tours. This preference was included in the re-
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Table 6.1: Comparison of the computer-generated vs. man-made tours in the
VRPTW application

Human AR-RegTW AR-Free
Planner

Total number of tours 2056 1807 1614
Total km 147271 143983 126258
Average truck loading 76.91% 87.35% 97.81%

formulation of the problem, but at the same time we tried to loosen the
constraint. We attributed stores to distribution regions, but at the same
time we allowed stores near the border of the distribution region to also
belong to the neighbouring region. This allowed the generation of tours
which were slightly worse than the unconstrained solution, but neverthe-
less better than the solutions found by the human planners. In Table 6.1
we present the results obtained by ANTROUTE compared with those
of the human planners. ANTROUTE was run under two configurations:
AR-RegTW, with regional planning and 1-hour time windows; AR-Free,
where the regional and the time windows constraints were relaxed. The
problem was to distribute 52000 pallets to 6800 customers over a period
of 20 days. Every day ANTROUTE was run on the available set of orders
and it took about 5 minutes to find a solution. At the same time, the
planners were at work and it took them at least 3 hours to find a solution.
At the end of the testing period, the performances of the algorithm and
of the planners have been compared using the same objective function.

The advantage of an algorithm able to find the solution to an other-
wise very hard problem in such a short time is the possibility of using it
as a strategic planning tool. In Figure 6.2 it is shown how running the al-
gorithm with wider time-windows at the stores returns a smaller number
of tours, which can be translated in a substantial reduction of trans-
portation costs. The logistic manager can therefore use the optimization
algorithm as a tool to investigate how to re-design the time-windows in
the stores.
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Figure 6.2: The relationship between the time window width and the number
of vehicle routes.

6.3.2 A VRPPD Application for the Primary Level in the Sup-

ply Chain

In this application the client is a major logistics operator in Italy. The
distribution process involves moving palletized goods from factories to
inventory stores, before they are finally distributed to shops. A customer
in this vehicle routing problem is either a pick-up or a delivery point.
There is no central depot, and approximately 1000 – 1500 trucks per day
are used. Routes can be performed within the same day, over two days,
or over three days, since the Italian peninsula is quite long and there’s
a strict constraint on the maximum number of hours per day that a
driver can travel. All pick-ups of a tour must take place before deliveries.
Orders cannot be split among tours. Time windows are associated with
each store.

There is only one type of truck: tractor with semi trailer. The load is
measured in pallets, in kilograms, and in cubic metres. There are capacity
constraints on each one of these measurement units, and the first one that
is exceeded triggers the violation of the constraint. The availability of
vehicles is assumed to be infinite, since they are provided by flexible sub-
contractors. Sub-contractors are distributed all over Italy, and therefore
vehicles can start their routes from the first assigned customer, and no
cost is incurred in travelling to the first customer in the route.

The road network graph has been elicited from digital road maps,
computing the shortest path between each couple of stores. The travel
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times are computed according to the travelled distance, given the average
speed that can be sustained on each road segment according to its type
(highway, extraurban road, urban road). Loading and unloading times
are assumed to be constant. This is a rough approximation imposed by
the client, since they have been unable so far to provide better estimates.
The client also imposed another constraint, related to the same problem,
setting a maximum number of cities to visit per tour (usually less than
six). Note that more than one customer can reside in a city. Moreover,
the client requested that the distance between successive deliveries should
be limited by a parameter.

The algorithm.

The problem can be modeled as a VRP with pickup and delivery and
time windows (VRPPDTW). The objective function measures the aver-

age tour efficiency, f =
∑N

i=1 ei
N

, where ei is the efficiency of tour i: the
occupancy ratio of a vehicle over the travelled distance within the tour.

It is computed according to the formula ei =
∑Mi

j=1 qj lj

QiLi
, where Mi is the

number of orders in the i-th tour; qj is the number of pallets in the j-th
order; lj is the distance between source and destination points of the j-th
order; Qi is the capacity of the vehicle serving the i-th tour, and Li is
the total length of the i-th tour.

The ANTROUTE algorithm has also been used in this context, but
since there is a single objective – to maximise average efficiency – it
has been adapted removing the ant colony minimising the number of
vehicles. The first step of an artificial ant is to select the starting city.
Since this is a pickup and delivery problem, each source node must be
paired with the corresponding destination node, and the search space is
therefore harder to explore than in a delivery problem. The algorithm
tries to simplify exploration using an approximation of the delivery phase,
assuming that all deliveries will be performed in the reverse order with
respect to pickups. Thus, a first stage local search exchanges nodes
between tours, while preserving the order of deliveries; later, another
local search procedure is applied, in which nodes are exchanged within
the same tour.
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Table 6.2: Comparison of the computer-generated vs. man-made tours in the
VRPPDTW application

Human ANTROUTE Absolute Relative
Planner difference difference

Total nr of tours 471.5 460.8 -10.7 -2.63%
Total km 175441 173623 -1818.2 -1.32%
Efficiency 84.08% 88.27% +4.19% -

Results.

Table 6.2 summarises the comparison between man-made and computer-
generated tours over a testing period of two weeks. A noticeable improve-
ment in the efficiency of computer-generated tours can be observed.

It is also interesting to remark that the algorithm performance is cor-
related with the difficulty of the problem, which is related to the number
of orders to satisfy. In Figure 6.3 we plot on the x-axis the efficiency of the
man-made tours, and on the y-axis the efficiency improvement obtained
using the computer-generated tours. When the problem is easy, because
it involves a limited number of orders, and the human planner performs
well, the computer is not able to provide a significative improvement,
but when the planner starts to fail coping with the problem complexity,
and the performance decreases, the gain in using the algorithm sensibly
increases.

6.3.3 Time Dependent VRPTW in the City of Padua

The city of Padua, Italy, set up a logistic platform to collect all incoming
goods to be distributed to a number of shops in the city centre. Such
a platform aims at a better organisation of the flow of goods into the
city centre, which is affected by traffic congestion problems and where
loading and unloading space is scarcely available. Centralised planning
of vehicle routes can sensibly reduce pollution and traffic problems due
to commercial transport. For this purpose, Donati et al. (2008) have
developed an algorithm solving the time dependent VRPTW for a logistic
platform serving the city of Padua. In the study, the central depot was
open from 8 am to 6 pm and traffic data on the Padua road network
during that period was collected. Four time intervals, with similar traffic
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Figure 6.3: Comparing man-made and computer-generated tours. Higher ef-
ficiency improvements are observed when the human planner performance is
lower. The dots are experimental values, and the solid line is a regression on
those values.

patterns and the relative travel speeds on network arcs, were identified.
A set of 30 customers was considered.

The algorithm.

The basic idea is the ACO algorithm of Donati et al. (2008). is to de-
fine a pheromone trail that is time dependent assuming that the travel
times over the arcs of the graph depend on the time of the day. While
the variation of travel times over time is continuous, it can be assumed
that there are some distinctive time slices during one day when they are
roughly constant. It is assumed that the duration of one working day can
be partitioned in l time slices, and therefore the pheromone trails can be
described by τij(l), with l ∈ Tl, where Tl is the set of time slices into
which the working time horizon is split. The objective is to minimise the
total travel time.

The algorithm, based on MACS-VRPTW (see Chapter 3), then builds
a solution making a probabilistic choice to select the next node j starting
from i using the standard Equation 2.4. The attractiveness ηij of the next
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node is given by:

ηij(t) =
1

fij(t) + wj

(6.1)

where fij(t) is the travel time from i to j evaluated at time t ∈ Tl and
wj is the waiting time at node j.

Pheromone updating is carried out as described in Chapter 3, inde-
pendently for the pheromone corresponding to each time slice.

Results.

Donati et al. (2008) compared the solution of the VRPTW using the time
dependent variant with a solution of the same problem where the travel
times on the road arcs were constant, depending only on the distance.
In a series of nine tests, where customers were chosen randomly out of
a set of real customers, it turned out that the time dependent variant
performed 7% better than the standard VRPTW algorithm.

6.3.4 On-line VRP for Fuel Distribution

A leading Swiss fuel oil distribution company, which serves its customers
from its main depot located near Lugano with a fleet of 10 vehicles,
observed that during every Winter season there was always a subset of
their customers that ran out of fuel and had to place urgent orders. These
unexpected orders affects the planned delivery routes of the vehicles, and
the vehicle routing problem becomes very “dynamic”, since a noticeable
percentage of orders must be fulfilled after the vehicles have already left
the depot.

The objective of this study was to evaluate the impact of a reactive
strategy for vehicle routing, starting from an analysis of the data col-
lected in periods when urgent deliveries were in high demand. From the
company data base, a sample of 50 customers was randomly selected,
and travel times among them were calculated. In the company records,
customers randomly appeared during the working day with random re-
quests for a quantity of fuel to be delivered. A working day of 8 hours
was considered, assuming a service time of 10 minutes for each customer.
The cut-off time, after which the new orders received were postponed to
the following working day, was set to 4 hours.
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The algorithm.

The problem description above matches the on-line VRP variant, where
new orders can be assigned to vehicles which have already left the depot
(e.g., parcel collection, feeder systems, fuel distribution, etc.).

To solve the on-line fuel oil distribution problem, (Montemanni et al.
2005) have developed an ACO-inspired algorithm, ACS-DVRP, based on
the decomposition of the on-line VRP into a sequence of static VRPs.
There are three main elements in the algorithm architecture: the event
manager, the ant colony algorithm, and the pheromone conservation
strategy.

The event manager receives new orders and keeps track of the already
served orders and of the position and the residual capacity of each vehicle.
This information is used to construct the sequence of static VRP-like
instances. The working day is divided into time slices and for each of
them a static VRP, which considers all the already received (but not yet
executed) orders, is created. New orders received during a time slice are
postponed until its end. At the end of each time slice, customers whose
service time starts in the next time slice (according to the solution of the
last static VRP) are assigned to the vehicles. They will not be taken into
account in the following static VRPs.

The ACS algorithm employed is based on the one described in Chapter
3 for the VRPTW. The single ant colony is in charge of minimizing the
total travel time.

Finally, the pheromone conservation strategy is based on the fact
that, once a time slice is over and the relative static problem has been
solved, the pheromone matrix contains information about good solutions.
As each static problem is potentially very similar to the next one, this
information is passed on to the next problem (Guntsch & Middendorf
2001): if a couple of customers appears in both the previous and the
current time slice, the pheromone on the arcs connecting two nodes is
brought forward as a fraction of its value in the previous problem.

Results.

Algorithm ACS-DVRP was executed on a number of test problems, ob-
tained varying the number nts of time slices into which the working day
was divided. As the size of each problem in a time slice increases as the
length of the time slice decreases, the time tacs allocated to executing the



156 CHAPTER 6. ACO FOR REAL-WORLD VRP PROBLEMS

Table 6.3: Experimental results on the case study of Lugano.
nts 200 100 50 25 10 5
tacs 144 288 576 1152 2880 5760
tls 15 30 60 120 240 480

Travel time 12702 12422 10399 9744 10733 11201

ant colony system and the time tls dedicated to local search improving
the solution were adjusted accordingly. In particular the ratio between
tacs and tls was kept approximately equal to 10.

The first three rows of Table 6.3 define the settings of the experiments,
that is, the values of parameters nts, tacs and tls. The fourth row shows
the total travel time of the solutions found by the ACS-DVRP algorithm.

The results suggest that, for the case study analyzed, good values
for nts are between 10 and 50. In particular, 25 seems to be the best
choice. Large values of nts did not lead to satisfactory results because
optimization was restarted too often, before a good local minimum could
be reached. On the other hand, when nts was too small, the system was
not able to take advantage of information on new incoming orders.

6.3.5 Conclusions

In this chapter we have described how the ant colony optimization meta-
heuristic couple with local searches can be successfully used to solve a
number of variants of the basic vehicle routing problem. We presented
two industrial-scale applications of ACO for the solution of static VRP
problems: a VRP with time windows and a VRP with pickup and deliv-
ery. We then focused our attention on two important dynamic variants
of the VRP: the time dependent VRP, and the on-line VRP. Both these
problems are receiving increasing attention due to their relevance to real
world problems, in particular for distribution in urban environments.

In conclusion, after more than ten years of research, ACO has been
shown to be one of the most successful metaheuristics for the VRP and its
application to real-world problems demonstrates that it has now become
a fundamental tool in applied operations research.
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Conclusions

Ant Colony Optimization (Section 1.4.4, Dorigo et al. 1999) is an op-
timization framework inspired by the observation, made by ethologists,
that ants use pheromone trails to communicate information regarding
the shortest paths to food. A moving ant lays some pheromone (in vary-
ing quantities) on the ground, thus marking a path with a trail of this
substance. An isolated ant moves mostly randomly and when it detects
a previously laid pheromone trail it can decide, with high probability, to
follow it, thus reinforcing the trail with its own pheromone. The collec-
tive behaviour that results is a form of autocatalytic behaviour, where
the more ants follow a trail, the more attractive it becomes to other ants.
The process is thus characterized by a positive feedback loop, where the
probability with which an ant chooses a path increases with the number
of ants that have previously chosen the same path.

The above process inspired the ACO metaheuristic. The main ele-
ments are artificial ants (from now on simply ants), simple computa-
tional agents that individually and iteratively construct solutions to the
problem, which has been modelled as a graph. Ants explore the graph
by visiting nodes connected by edges. A problem solution is an ordered
sequence of nodes. The search process is executed in parallel over several
constructive computational threads. A dynamic memory structure, in-
spired by the pheromone laying process, which incorporates information
on the effectiveness of previously obtained results, guides the construc-
tion process of each thread.

The AS (Section 2.2, Dorigo et al. 1996) was the first ACO algorithm
to be proposed to solve TSPs. It is organized into two main stages:
construction of a solution and updating of the pheromone trail. In AS
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each ant builds a solution. An ant is in a given state and it computes a
set of feasible expansions from it. The ant selects the move to expand
the state, taking into account the following two values: the attractiveness
ηij of the move, as computed by some heuristic indicating the a priori
desirability of that move, and the pheromone trail level τij of the move,
indicating how useful it has been in the past to make that particular
move; it therefore represents an a posteriori indication of the desirability
of that move.

Once a solution has been obtained, pheromone trails are updated.
First, the pheromone is evaporated on all arcs, in order to progressively
forget bad solutions; then all ants deposit pheromone on the arcs which
are part of the solutions they have just computed.

The basic AS principle is very interesting but the performance of the
final system has not yet been very convincing for medium-sized TSPs.
Therefore, the first research work presented in this thesis has been to
propose two new ACO algorithms, called Ant-Q and Ant Colony System
(ACS, Chapter 2, Gambardella & Dorigo 1995, 1996), which are much
more high-performing and efficient.

Ant-Q and ACS introduce a new way to build solutions with choices
which exploit the accumulated pheromone and choices which allows the
exploration of new paths. The management of the pheromone in Ant-
Q and ACS is also different from that in AS. Part of the pheromone
evaporates once it has been used by ants and only the best solution is
used to reinforce the pheromone. Together with a special initialization of
the pheromone, these innovations also lead to high quality solutions for
problems of medium size. The next step has been to tackle larger prob-
lems coupling ACS with specialized local search techniques (Section 2.7).
This is an interesting combination since local search often suffers from the
initialization problem and metaheuristics are usually too slow (Section
1.5). The resulting system has been able to compete with the best avail-
able TSP algorithms. Once the framework has been established, we then
decided to apply it to different combinatorial optimization problems.

This gives rise to the Multiple Ant Colony System for the Vehicle
Routing Problems with Time Windows (MACS-VRPTW, Chapter 3,
Gambardella et al. 1999) and Hybrid Ant System for the Sequential Or-
dering Problem (HAS-SOP, Chapter 4, Gambardella & Dorigo 2000).
MACS-VRPTW realizes a system composed of two artificial colonies
able to minimize in parallel the number of vehicles used and the to-
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tal distance travelled. MACS-VRPTW is coupled with a sophisticated
local search for the VRPTW and has been able to compete with state-of-
the-art algorithms and to discover the new best known solutions. SOP is
an asymmetric TSP with precedence constraints between nodes. HAS-
SOP addresses this problem by coupling ACS with a new local search
(SOP-3-Exchange, Section 4.3) able to handle precedence constraints in
constant time and it has been able to enhance several benchmarks in the
literature.

When we decided to tackle problems with thousands of nodes we
struggled with the fact that the computation time was mostly too high
for the time required by ants to construct new solutions. We then defined
the Enhanced Ant Colony System (Chapter 5, Gambardella et al. 2012),
which combines ACS with local searches in a more efficient way. In
particular, EACS exploits the presence of the best solution computed so
far to guide the construction of new solutions and uses the local search
in a more efficient way. EACS has been able to solve problems of large
size effectively, and for the SOP in particular, new results of excellent
quality have been reported in this thesis.
Finally, we have shown how these ACO-based methods can be used to
solve routing problems in the real world by presenting case studies and
real-life applications (Chapter 6, Rizzoli et al. 2007).
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Dorigo, M. & Stützle, T. (2004). Ant Colony Optimization. Cambridge,
Massachusetts: MIT Press.

Durbin, R. & Willshaw, D. (1987). An analogue approach to the trav-
elling salesman problem using an elastic net method. Nature, 326,
689–691.

Eilon, S., Watson-Gandy, C., & Christofides, N. (1969). Distribution
management: mathematical modeling and practical analysis. Opera-
tional Research Quarterly, 20, 37–53.



166 BIBLIOGRAPHY

Escudero, L., Guignard, M., & Malik, K. (1994). A lagrangian relax-
and-cut approach for the sequential ordering problem with precedence
relationships. Annals of Operations Research, 50, 219–237.

Escudero, L. F. (1988). An inexact algorithm for the sequential ordering
problem. European Journal of Operational Research, 37, 232–253.

Fisher, M. (1994). Optimal solution of vehicle routing problems using
minimum k-trees. Operations Research, 42, 626–642.

Fleurent, C. & Ferland, J. A. (1994). Genetic hybrids for the quadratic as-
signment problem. In P. M. Pardalos & H. Wolkowicz (Eds.), Quadratic
Assignment and Related Problems, volume 16 of DIMACS Series on
Discrete Mathematics and Theoretical Computer Science (pp. 173–
187). Providence, Rhode Island.

Flood, M. M. (1956). The traveling-salesman problem. Operations Re-
search, 4, 61–75.

Fogel, D. B. (1993). Applying evolutionary programming to selected trav-
eling salesman problems. Cybernetics and Systems: An International
Journal, 24, 27–36.

Fredman, M., Johnson, D., McGeoch, L., & Ostheimer, G. (1995). Data
structures for traveling salesmen. Journal of Algorithms, 18, 432–479.

Freisleben, B. & Merz, P. (1996a). Genetic local search algorithm for
solving symmetric and asymmetric traveling salesman problemss. In
of IEEE International Conference on Evolutionary Computation IEEE-
EC 96, P. (Ed.), Proceedings of the 1996 IEEE International Confer-
ence on Evolutionary Computation (ICEC’96), (pp. 616–621). IEEE
Press, Piscataway, NJ.

Freisleben, B. & Merz, P. (1996b). New genetic local search operators for
the traveling salesman problem. In of PPSN IV Fourth International
Conference on Parallel Problem Solving From Nature 1996, P. (Ed.),
Proceedings of the 1996 IEEE International Conference on Evolution-
ary Computation (ICEC’96), (pp. 890–899). Springer-Verlag, Berlin,
1996.

Gambardella, L. M. & Dorigo, M. (1995). Ant-Q: A reinforcement learn-
ing approach to the traveling salesman problem. In Prieditis, A. &



BIBLIOGRAPHY 167

Russell, S. (Eds.), Proceedings of the Twelfth International Conference
on Machine Learning (ML-95), (pp. 252–260). Morgan Kaufmann Pub-
lishers, Palo Alto, CA.

Gambardella, L. M. & Dorigo, M. (1996). Solving symmetric and asym-
metric TSPs by ant colonies. In Baeck, T., Fukuda, T., & Michalewicz,
Z. (Eds.), Proceedings of the 1996 IEEE International Conference on
Evolutionary Computation (ICEC’96), (pp. 622–627). IEEE Press, Pis-
cataway, NJ.

Gambardella, L. M. & Dorigo, M. (2000). An ant colony system hy-
bridized with a new local search for the sequential ordering problem.
INFORMS Journal on Computing, 12 (3), 237–255.

Gambardella, L. M., Montemanni, R., & Weyland, D. (2012). Coupling
ant colony systems with strong local searches. European Journal of
Operational Research, 220 (1), 831–843.

Gambardella, L. M., Rizzoli, A., & Zaffalon, M. (1998). Simulation and
planning of an intermodal container terminal. Simulation, 71 (2), 107–
116.
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Gendreau, M., Laporte, G., & Séguin, R. (1996). Stochastic vehicle
routing. European Journal of Operational Research, 88 (1), 3–12.

Gendreau, M. & Potvin, J.-Y. (1998). Dynamic vehicle routing and
dispatching. In T. Crainic & G. Laporte (Eds.), Fleet management
and logistic (pp. 115–226). Berlin, Germany: Springer.



168 BIBLIOGRAPHY

Glover, F. (1989). Tabu search – Part I. ORSA Journal on Computing,
1 (3), 190–206.

Glover, F. & Laguna, M. (1997). Tabu Search. Boston, Massachusetts:
Kluwer Academic Publishers.

Goldberg, D. E. (1989). Genetic Algorithms in Search, Optimization and
Machine Learning. Addison-Wesley, Reading, MA.

Golden, B. L. & Stewart, W. R. (1985). Enpirical analysis of heuristics.
In E. L. Lawler, J. K. Lenstra, A. H. G. Rinnooy Kan, & D. B. Shmoys
(Eds.), The Traveling Salesman Problem (pp. 307–360). John Wiley &
Sons, Chichester, UK.

Goss, S., Aron, S., Deneubourg, J. L., & Pasteels, J. M. (1989). Self-
organized shortcuts in the Argentine ant. Naturwissenschaften, 76,
579–581.
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Taillard, É. D., Gambardella, L. M., Gendreau, M., & Potvin, J.-Y.
(1998). Adaptive memory programming: A unified view of meta-
heuristics. Technical Report IDSIA-19-98, IDSIA.

Thangiah, S. R., Osman, I. H., & Sun, T. (1994). Hybrid genetic algo-
rithm simulated annealing and tabu search methods for vehicle routing



BIBLIOGRAPHY 177

problem with time windows. Technical Report 27, Computer Science
Department, Slippery Rock University.

Toth, P. & Vigo, D. (2001a). Branch-and-bound algorithms for the ca-
pacitated VRP. In P. Toth & D. Vigo (Eds.), The Vehicle Routing
Problem (pp. 29–51). SIAM, Society for Industrial and Applied Math-
ematics.

Toth, P. & Vigo, D. (2001b). An overview of vehicle routing problems.
In P. Toth & D. Vigo (Eds.), The Vehicle Routing Problem (pp. 1–26).
SIAM, Society for Industrial and Applied Mathematics.

Toth, P. & Vigo, D. (2003). The granular tabu search and its application
to the vehicle routing problem. INFORMS Journal on Computing,
15 (4), 333–346.

Tsubakitani, S. & Evans, J. R. (1998). Optimizing tabu list size for
the traveling salesman problem. Computers and Operations Research,
25 (2), 91–97.

Ulder, N. L. J., Aarts, E. H. L., Bandelt, H.-J., van Laarhoven, P. J. M.,
& Pesch, E. (1991). Genetic local search algorithms for the travelling
salesman problem. In Schwefel, H.-P. & Männer, R. (Eds.), Proceedings
of PPSN-I, First International Conference on Parallel Problem Solving
from Nature, number 496 in Lecture Notes in Computer Science, (pp.
109–116). Springer Verlag, Berlin, Germany.

Van Breedam, A. (1996). An analysis of the effect of local improvement
operators in genetic algorithms and simulated annealing for the vehicle
routing problem. RUCA Working Paper 96/14, University of Antwerp,
Belgium.

Van der Bruggen, L., Lenstra, L., & Schuur, P. (1993). Variable depth
search for the single-vehicle pickup and delivery problem with time
windows. Transportation Science, 27, 298–311.

Watkins, C. J. (1989). Learning with Delayed Rewards. PhD thesis,
Psychology Department, University of Cambridge, UK.

Whitley, D., Starkweather, T., & Fuquay, D. (1989). Scheduling problems
and travelling salesman: The genetic edge recombination operator. In
Schaffer, J. D. (Ed.), Proceedings of the Third International Conference



178 BIBLIOGRAPHY

on Genetic Algorithms (ICGA’89), (pp. 133–140). Morgan Kaufmann
Publishers, Palo Alto, CA.

Xu, J. & Kelly, J. (1996). A network flow-based tabu search heuristic for
the vehicle routing problem. Transportation Science, 30, 379–393.

Zecchin, A., Maier, H. R., Simpson, A. R., Leonard, M., & Nixon, J. B.
(2007). Ant colony optimization applied to water distribution system
design: Comparative study of five algorithms. Journal of Water Re-
sources Planning and Management, 133 (1), 87–92.

Zeimpekis, V., Tarantilis, C., Giaglis, G., & Minis, I. (Eds.). (2007). Dy-
namic Fleet Management – Concepts, Systems, Algorithms & Case
Studies. Operations Research/Computer Science Interfaces. Berlin,
Germany: Springer.


	Summary
	Acknowledgments
	Original Contributions
	List of Algorithms
	Metaheuristics and Local Search
	Introduction
	Constructive Methods
	Local Search Methods
	Metaheuristics
	Simulated Annealing
	Tabu Search
	Genetic Algorithms
	ACO: Ant Colony Optimization Algorithms

	Coupling Metaheuristics with Local Search

	ACS: Ant Colony System
	Introduction
	Background
	ACS: Ant Colony System
	ACS State Transition Rule
	ACS Global Updating Rule
	ACS Local Updating Rule
	ACS Parameter Settings

	A Study of Some Characteristics of ACS
	Pheromone Behavior and its Relation to Performance
	The Optimal Number of Ants

	Cooperation Among Ants
	The Importance of the Pheromone and the Heuristic Function

	ACS: Some Computational Results
	Comparison with Other Heuristics
	ACS on Some Bigger Problems 

	ACS Plus Local Search
	Experimental Results

	Discussion and Conclusions

	MACS-VRPTW: A Multiple Ant Colony System for Vehicle Routing Problems with Time Windows
	Introduction
	Vehicle Routing Problems
	MACS-VRPTW for Vehicle Routing Problems with Time Windows
	Solution Model
	Solution Constructive Procedure

	Computational Results
	Conclusions

	HAS-SOP: An Ant Colony System Hybridized with a New Local Search for the Sequential Ordering Problem
	The Sequential Ordering Problem
	Problem Definition
	Heuristic Methods for the SOP
	Approaches Based on the ATSP
	Approaches Based on the Pick-up and Delivery Problem

	ACS for the Sequential Ordering Problem
	HAS-SOP. ACS-SOP Coupled with SOP-3-exchange Local Search

	Locas Search: SOP-3-Exchange
	Path-Preserving Edge-Exchange Heuristics
	Lexicographic Search Strategy in the Case of Precedence Constraints
	The SOP Labeling Procedure
	Heuristics for the Selection of Node h and Search Stopping Criteria
	The SOP-3-Exchange Procedure: An Example

	Computational Results
	Experimental Settings: Test Problems
	Experimental Settings: Competing Methods
	Computational Results: Selection Criteria for Node i and Search Stopping Criteria
	Computational Results and Comparisons with Other Methods

	Conclusions

	EACS: Coupling Ant Colony Systems With Strong Local Searches
	Introduction
	An Enhanced Ant Colony System
	 An Improved Constructive Phase
	 A Better Integration Between the Constructive Phase and the Local Search Procedure
	Pseudo-Code

	Applications
	SOP: The Sequential Ordering Problem

	Results
	Conclusions

	Ant Colony Optimization for Real-World Vehicle Routing Problems: From Theory To Applications
	Introduction
	Vehicle Routing Problems
	Basic Problems of the Vehicle Routing Class
	Dynamic Extensions of the VRP

	Solving the VRP with ACO
	A VRPTW Application for the Secondary Level in the Supply Chain 
	A VRPPD Application for the Primary Level in the Supply Chain 
	Time Dependent VRPTW in the City of Padua
	On-line VRP for Fuel Distribution
	Conclusions


	Conclusions

