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Abstract

The terrestrial carbon andwater cycles are strongly coupled. As atmospheric carbon dioxide
concentration increases, climate and the coupled hydrologic cycle aremodified, thus altering the
terrestrial water cycle and the availability of soilmoisture necessary for plants’ carbon dioxide uptake.
Concomitantly, rising surface carbon dioxide concentrations alsomodify stomatal (small pores at the
leaf surface) regulation aswell as biomass, thus altering ecosystemphotosynthesis and transpiration
rates. Those coupled changes have profound implications for the predictions of the carbon andwater
cycles. This paper reviews themainmechanisms behind the coupling of the terrestrial water and
carbon cycles.We especially focus on the key role of dryness (atmospheric dryness and terrestrial
water availability) on carbon uptake, as well as the predicted impact of rising carbon dioxide on the
water cycle. Challenges related to this coupling and the necessity to constrain it based on observations
arefinally discussed.

1. Introduction

This review aims at describing recent findings on the
coupling between the terrestrial carbon (dioxide) and
water cycles. The targeted readers include hydrologists
interested in the role of rising CO2 and in the role of
the biosphere on the water cycle, ecologists interested
in the role of water on the carbon cycle or climate
scientists who want to dig further into the role of the
biosphere. By definition, this short review is by no
means exhaustive and is meant to provide a simplified
context aimed at informing readers outside the field of
carbon–water coupling. We nonetheless discuss some
potentially relevant diagnostics of this coupling, pri-
marily at the global scale, both in global Earth system
models (ESMs) andwith remote sensing observations.

1.1. Atmospheric versus surface coupling

The exchange of carbon dioxide and water between
the terrestrial biosphere and the atmosphere plays a
key role in the Earth’s past and future climate. Over the
last century, anthropogenic emissions of carbon
dioxide, which is the greenhouse gas (GHG) contri-
buting themost to warming, havemodified the Earth’s

climate and the coupled hydrologic cycle (Gregory

et al2004, Bony et al2015,Knutti andRugenstein 2015,

Armour 2016, 2017, Knutti et al 2017). Changes in

climate and the hydrologic cycle include changes in

temperature and clouds as well as changes in precipita-

tion distribution, intensity and variability (Friedling-

stein et al 2006, Gregory et al 2009, Friedlingstein et al

2014, Friedlingstein 2015, Green et al 2019) with

important consequences for ecosystems. A changing

and warmer climate impacts continental atmospheric

dryness (Byrne and O’Gorman 2016), soil moisture

(Berg et al 2017), as well vegetation function and

structure (Zhu et al 2016).
In addition to its strong GHG effect, (surface)

atmospheric CO2 is the main source for plant carbo-

hydrates generation through photosynthesis (Sage et al

1989, Harley et al 1992a, 1992b, Sage 1994, Ainsworth

and Long 2005, Ainsworth and Rogers 2007). Plant

stomata (small pores at the leaf surface) open or close

in order to regulate plant water losses, known as tran-

spiration (Tr), while taking up carbon dioxide CO2,

i.e. gross primary productivity (GPP) (Ball et al 1987,

Collatz et al 1991, 1992, Farquhar 2001, 2002, Medlyn

et al 2011). As a result, the continental CO2 and water
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cycles are intimately coupled at the surface through
plant stomata (physiological effect), in addition to the
coupling induced by the GHG forcing of CO2 on cli-
mate, and on the coupled water cycle (GHG effect)
(Friedlingstein et al 2006, Friedlingstein 2015). Those
two effects (physiological and GHG) simultaneously
affect the terrestrial energy, water and carbon cycles
with increasing GHG concentrations and exert pro-
found changes on the biosphere.

1.2. Surface CO2 effects on vegetation

Increased surface [CO2] (concentration) modifies
photosynthesis directly, as (1) it changes the gradient
between intercellular and leaf surface [CO2] and
because (2) it modifies stomatal conductance, instan-
taneously (through stomatal partial closure). Over
long time periods (years to hundreds of years), rising
[CO2] also changes stomatal conductance through
modification of stomata density, number and shape
(de Boer et al 2011, De Boer et al 2012, de Boer et al
2016). As a result, elevated [CO2] typically decreases
stomatal conductance, yet it increases photosynthesis
because of the increased gradient between intercellular
and leaf surface CO2 and increased carboxylation rate
of the carboxylase enzymeRuBisCO (in C3 plants).

Over periods from months to years, elevated
[CO2] can lead to increased vegetation biomass, as a
result of increased GPP. This increased biomass can be
allocated to belowground or aboveground biomass
and to the leaves in particular. This increased leaf bio-
mass has been detected by remote sensing observa-
tions and is referred to as a ‘greening’ (Keenan 2015,
Lu et al 2016, Zhu et al 2016, Forzieri et al 2017).

The free-air CO2 enrichment (FACE) was a series
of experiments which aimed at evaluating this impact
of rising surface [CO2] on ecosystems. In this experi-
ment, CO2 was near-continuously injected over a stu-
died area (spanning 10–100 m) to artificially increase
[CO2] and to evaluate the impact on ecosystems, in
particular in terms of changes in biomass, carbon allo-
cation and water use efficiency: WUE=GPP/Tr,
with Tr the transpiration flux. Field experiments with
enriched [CO2] such as FACE have confirmed that
growth generally increased in elevated [CO2] condi-
tions and that it had a large impact on belowground
biomass, especially on fine roots (Warwick et al 1998,
Allen et al 2000, Calfapietra et al 2003, Jackson et al

2009). We note though that measuring belowground
biomass changes is technically more challenging than
aboveground changes (Allen et al 2000, Suter et al

2002, Pritchard et al 2008, Yang et al 2008). The bio-
mass growth response varied across species and cli-
mate, with some species showing limited biomass
growth, especially above ground (Ainsworth and
Long 2005). Elevated [CO2] typically resulted in taller
plants with larger stem diameter, increased branching
and leaf number. Leaf Area Index (LAI) increase varied
widely across species, with a relatively large increase in

trees (∼20%) but with minimal changes in grasses. C3
species are expected to be more sensitive to increased
[CO2] than C4 species (Ehleringer and Bjorkman
1977, Morison and Gifford 1983, Ehleringer et al

1997). C3 plants use RuBisCO to fix CO2 and lose a
portion of their fixed CO2 to photorespiration because
RuBisCO is also an oxygenase. C3 plants should there-
fore increase net photosynthesis under elevated [CO2].
C4 plants add another carbon fixing enzyme in addi-
tion to RuBisCO (PEP carboxylase), which has high
affinity with CO2 and is able to fix carbon at very low
concentration of hydrogen carbonate. When CO2 is
released in the bundle sheath cells it creates a higher
concentration of CO2 than that found in photo-
synthetic cells of C3 plants. As a result, changes in
atmospheric [CO2] havemuch less impact on C4 pho-
tosynthesis and therefore also on the coupled tran-
spiration flux. Some of the FACE observations have
further shown a potential temporal reversal of this
response to [CO2] in C3 versus C4 plants (in grassland
species) over long time periods with C3 plants show-
ing reduced response over decadal time scales (Reich
et al 2018).

Recently, observations of carbonyl sulfide, a proxy
for plant photosynthesis, based on aircrafts or point
measurements have also confirmed the large increase
in growing season GPP over vast regions, such as the
US Midwest, confirming the key role of increased
[CO2] (and temperature in cold regions) on the carbon
cycle (Campbell et al 2008, Berry et al 2013, Campbell
et al 2017a, 2017b), and therefore on the coupled tran-
spiration fluxes. Yet, importantly, most of the
observed greening across the globe appears to be loca-
ted in regions of strong landmanagement (agriculture,
reforestation, forest management) (Chen et al 2019).
This long-term impact of land management, if not
carefully accounted for, could lead to incorrect attri-
bution of the observed greening to elevated [CO2]

only, whereas land management likely explains a large
portion of the observed global changes.

1.3. Soilmoisture effects onwater–carbon coupling

While a variety of variables can be relevant for
photosynthetic activity and plant development (e.g.
nutrients), one important abiotic factor controlling
both carbon and water fluxes is soil moisture (Senevir-
atne et al 2010, Zhu et al 2016, Humphrey et al 2018,
Green et al 2019). Soil moisture content determines
how much water can be extracted by plant roots and
regulates stomatal conductance, which in turn deter-
mines plant water status, as well as the rate of GPP and
Tr (Sperry 2000, Sperry and Love 2015, Anderegg et al
2015b, Wolf et al 2016, Sperry et al 2016, 2017,
Anderegg et al, 2017, Stocker et al 2018). Soil moisture
also regulates plant growth through changes in carbon
allocation (Korner et al 2003, Palacio et al 2014).
Drought stress increases water tension in the xylem
(which conducts sap water from the roots to the
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leaves), and therefore increases the risk of embolism

(due to air bubble formation in the xylem blocking

the liquid flow from roots to leaves) and to

potential dysfunction of a plant’s hydraulic system

(Sperry 2003, 2008, McDowell 2011, McDowell and

Allen 2015, Sperry and Love 2015).
Water limitation also alters the growth of new cells,

especially in the xylem and phloem. The xylem is a

transport tissue bringing water and soluble nutrients to

the shoot though the trunk and branches (Tyree and

Sperry 1989, Hacke and Sperry 2001, Cochard 2002,

Sperry et al 2003, Franks andBrodribb2005, Bittencourt

et al 2016, Gleason et al 2016). Xylem water (sap) trans-

port is also used to replace lost water from transpiration

and thus is strongly connected to the photosynthesis

process. The phloem is the other transport tissue which

brings carbohydrates downward in the plant from the

leaf source to its sinks (Sala et al 2010, Nikinmaa et al

2013, Rathgeber et al 2016, Castagneri et al 2017, Ziaco

et al 2018). Both xylem and phloem interact through

changes in osmotic pressure and water potential, reg-

ulating the water and carbohydrate transports in the

plant (Botha 2005, Cochard et al 2009, Holtta et al 2009,

Rosner et al 2018, Sevanto et al 2018), as well as turgor.

They therefore interact to modify Tr and GPP (Nikin-

maa et al 2013, Konrad et al 2018). Soil moisture in the

root zone strongly regulates both of those xylem (Ken-

nedy et al2018) andphloemprocesses.
Periods of prolonged soil droughts can trigger

extensive hydraulic damage (cavitation) (Sperry and

Tyree 1988, Tyree and Sperry 1989, Cochard 2002,

Cochard et al 2009, Meinzer and McCulloh 2013,

Gentine et al 2016b, Giardina et al 2018), lowering

their defense against pathogens (McDowell et al

2008). These combined effects can result in plant

mortality (McDowell 2011, McDowell and Allen

2015), further reducing transpiration, Tr, and carbon

uptake at the ecosystem scale (Anderegg et al 2012,

Williams et al 2013, Matheny et al 2014, Morillas et al

2017) and releasing carbon through heterotrophic

respiration (i.e. decomposition of dead organic

matter).
Because droughts reduce evapotranspiration,

the partitioning towards the less efficient sensible

heat flux cooling mechanism (Bateni and Ente-

khabi 2012) can markedly increase surface and air

temperature as well as vapor pressure deficit (VPD),

the difference between saturated and actual water

vapor pressure, which represents the atmospheric

dryness (Seneviratne et al 2010, Gentine et al 2016a,

Zhou et al 2018). Those land–atmosphere feedbacks

can further impact the vegetation because of the

increased temperature and VPD, which can stress the

plant and reduce stomatal opening (see next section).

Droughts can also change the intra- and interannual

transport efficiency of new xylem (i.e. sap conductivity)

at the expense of safety (i.e. resistance to drought)

(Eilmann et al 2011, Petrucco et al 2017, Guerin et al

2018, Prendin et al 2018).
Soil moisture is also an important regulator of het-

erotrophic respiration (Manzoni et al 2012, Suseela
et al 2012, Ryan et al 2015, Yan et al 2016, 2018, Zhang
et al 2018a), which represents about half of the total
CO2 emissions from soils. Low soil moisture condi-
tions limit heterotrophic respiration rates through the
reduction of solute transport and can triggermicrobial
dormancy in extreme drought conditions (Manzoni
et al 2012, Suseela et al 2012, Ryan et al 2015, Yan et al

2016, 2018, Zhang et al 2018a). On the other end of the
soil moisture spectrum, saturated soil moisture condi-
tions also strongly limit respiration as they suppress
oxygen supply so that respiration rates are only max-
imal at intermediate soil moisture values (Manzoni
et al 2012, Suseela et al 2012, Ryan et al 2015, Yan et al

2016, 2018, Zhang et al 2018a). Soil moisture condi-
tions also regulate surface temperature as evaporation
is a more effective cooling mechanism than sensible
heating (Bateni and Entekhabi 2012). As such these
changes in surface temperature also modifies respira-
tion in addition to biological effects: lower soil moist-
ure conditions increasing respiration because of the
increased surface temperature (Green et al 2019).

1.4. VPD effects on vegetation

Plant stomata, and thereforeGPP andTr, are regulated
by atmospheric dryness, i.e. VPD. Our understanding
of the role of VPD and carbon uptake at the leaf level
has substantially progressed in recent years and is now
relatively well understood (Lin et al 2015), compared
to the ecosystem scale response. It is believed that
plants tend to reduce their stomatal conductance in
response to high VPD in order to minimize water
losses, Tr, for a given carbon gain, GPP (Farquhar and
Sharkey 1982, Katul et al 2009, Medlyn et al 2011),
while maintaining a near steady underlying WUE
(uWUE), defined as WUE.VPD1/2

(Zhou et al

2015, 2016).
Yet, this regulation varies according to the coordi-

nation between xylem and stomatal conductances
(Klein 2014, Martínez-Vilalta et al 2014, Konings and
Gentine 2016), and in particular with soil moisture. In
many biomes, VPD appears to be an important reg-
ulator of carbon and water fluxes, and ecosystem con-
ductance, sometimes having an effect even stronger
than soil moisture (Novick et al 2016, Konings et al
2017, Giardina et al 2018, Lin et al 2018). However, a
major observational challenge is that VPD is tightly
coupled to soil moisture through land–atmosphere
interactions so that correct attribution is difficult
(Zhou et al 2018). Indeed, low soil moisture condi-
tions lead to a lower evaporative fraction, the ratio of
latent heat flux (LE) to available energy (Gentine et al
2011, 2007), which warms and dries the boundary
layer (Gentine et al 2016a), together increasing VPD.
Low soil moisture generally therefore co-occurs with

3

Environ. Res. Lett. 14 (2019) 083003 PGentine et al



high VPD due to reduced latent heat and enhanced
sensible heat, so that droughts (conditions of low soil
moisture and high aridity—VPD) should really be
considered as compound events, i.e. as co-occurring
(Zscheischler and Seneviratne 2017, Zhou et al 2018,
Zscheischler et al 2018). The combination of extre-
mely low soil moisture and high VPD strongly limits
carbon uptake and can potentially trigger vegetation
mortality (Choat et al 2018, Zhou et al 2018).

High VPD conditions are also key determinants
of fire occurrence (Williams and Abatzoglou 2016,
Williams et al 2014, 2018), further regulating CO2

fluxes to the atmosphere. Therefore, year-to-year
changes in soil moisture and VPD have profound
impacts on the net flux of carbon from the atmosphere
to the land (net biome production (NBP)) (Green et al
2019) and are negatively correlated with atmospheric
CO2 growth (Humphrey et al 2018). Finally, VPD
also has important impacts on WUE (Zhou et al

2014, 2015), thus directly modifying the coupling
between photosynthesis andTr.

1.5.Water use efficiency=GPP/Tr

A key indicator of ecosystem CO2–water coupling is
the ecosystemWUE. At the leaf level, increased atmo-
spheric [CO2] facilitates photosynthesis while redu-
cing stomatal opening and conductance, which tends
to increases WUE, at least in the short term. Observa-
tions support such increase in both leaf-level- and
ecosystem-scale WUE across time scales, even though
the WUE dependence on ambient CO2 concentration
also exhibits some species and climate dependence
(Frank et al 2015, Dekker et al 2016). Other factors can
modifyWUE such as variations in anatomical stomatal
conductance (e.g. stomatal density or stomatal shape)
(de Boer et al 2011, De Boer et al 2012, de Boer et al
2016), variations in mesophyll conductance with
changing environmental conditions (Bernacchi 2002,
Flexas et al 2008, 2012, Niinemets et al 2009, Campany
et al 2016), as well as the degree of coupling of the
biosphere with the overlying atmosphere as influenced
by changes in ecosystem conductance and ecosystem
aerodynamic roughness (increasingwith aboveground
biomass) (Jarvis 1986, Jarvis and Mcnaughton 1986,
De Kauwe et al 2017). Ecosystem WUE is also
significantly impacted by VPD at hourly and daily
scales, as demonstrated with eddy-covariance flux
tower observations (Zhou et al 2015, Dekker et al

2016). Interestingly, to our knowledge, the influence
of soil moisture on long-term (years to decades) WUE
has rarely been assessed, likely because of the chal-
lenges in continuously measuring and disentangling
the effects of confounding factors such asVPD.

1.6. Extremes

Extremes, especially droughts and heat waves, have
now clearly been identified as key components of the
terrestrial water and carbon cycles (Knapp et al 2008,

Jaeger and Seneviratne 2010, Reichstein et al 2013,
Zscheischler et al 2014, Sippel et al 2017, Vogel et al
2017, von Buttlar et al 2018, Yin et al 2018, Green et al

2019). The interannual variability in the carbon cycle
is in particular dominated by the occurrence of
extremes, especially in transitional climates (monsoo-
nal or semi-arid) (Seneviratne et al 2010), where soil
moisture and temperature regulation exert key control
on carbon uptake (Poulter et al 2014, Zscheischler et al
2014). The impact of droughts and heat waves can be
directly observed over short periods of times (weeks)
but extend to multiple years (legacy effects), if there
has been major impact on ecosystems, such as large-
scale die-off (Anderegg et al 2013, 2015c). Similarly
those extremes are important for the water cycle such
as the rate of transpiration (Teuling et al 2010, Teuling
et al 2013, Miralles et al 2019) or runoff (Yin et al

2018).

2.Global soilmoisture impact on carbon
cycle

As discussed earlier, soil moisture has a large impact
on biosphere-atmosphere gas exchanges, especially on
photosynthesis. Plant physiological studies at the level
of individual plants have suggested that the soil
moisture effect mostly affects the stomatal sensitivity
to VPD, and enzyme activity that related to photo-
synthesis and respiration. However, the soil moisture
effect on carbon cycle, especially on ecosystem to
global scales, is still less understood mostly due to lack
of direct observations.

The effect of soil moisture is usually represented in
land–surface models through an empirical regulation
of stomata conductance as a function of soil moisture
content between a wilting point and unstressed value
(Dai et al 2002, De Kauwe et al 2015, Fu et al 2016).
These stomata models omit the connection with the
xylem and phloem except for a few exceptions (Xu et al
2016, Kennedy et al 2018). These stomatal models also
have an atmospheric dryness dependence either in
terms of relative humidity (Ball et al 1987), or in terms
of VPD: with either a VPD−1 dependence (Leun-
ing 1995), or more recently a VPD−0.5 dependence. as
implemented in a few land–surface models such as the
Community Atmosphere Land Exchange or the Com-
munity Land Model v5.0 (Medlyn et al 2011, De
Kauwe et al 2015, Kennedy et al 2018). This latter VPD
exponent is based on a stomatal optimality principle,
which assumes that stomata try to maximize GPP
while minimizing water losses (Tr). Observations tend
to suggest that, at the ecosystem scale, the dependence
on VPDmight be suboptimal, with an ecosystem con-
ductance exponent ranging between −1 and −0.5
depending on the plant functional type (Lin et al

2018). Importantly, as discussed earlier, we note
that because of land–atmosphere interactions, soil
moisture and VPD are strongly negatively correlated
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so that disentangling their effects can be challenging
(Zhou et al 2018).

In situ data, especially from eddy-covariance flux
towers measuring turbulent carbon and water fluxes,
have demonstrated that droughts and extremes play a
disproportional role on both annual GPP and net eco-
system exchange (Reichstein et al 2013, Zscheischler
et al 2014, Yi et al 2015). Therefore, not just the mean
but also the (subseasonal and interannual) variability
of soil moisture and its extremes are critical for carbon
uptake (Zscheischler et al 2014).

In recent years, advances in satellite observations
have provided new tools helping us understand the
coupling between soilmoisture and the carbon cycle at
the global scale. A global remote sensing of solar-
induced chlorophyll fluorescence (SIF) has become
widely available from satellites such as GOSAT,
GOME-2, SCIAMACHY and OCO-2 (Frankenberg
et al 2011a, 2011b, Joiner et al 2011a, 2012, 2013,
Guanter et al 2012). SIF corresponds to a small frac-
tion of sunlight absorbed by the chlorophyll which is
radiated back at longer wavelengths (660–800 nm)

(Agati et al 1995, 1996) and is a by-product of photo-
synthesis. SIF, as measured by satellites, therefore pla-
ces key constraints on global GPP (Lee et al 2015, Ryu
et al 2019) and has helped us gain a more mechanistic
understanding of ecosystem CO2 exchange, especially
in locations where in situ measurements are rarely
available such as in tropical or high latitude regions.
SIF observations from remote sensing platforms have
shown great potential to assess vegetation productivity
as well as phenology from space (Frankenberg et al

2011, Joiner et al 2011, 2013, 2014, Frankenberg et al
2014, Alemohammad et al 2017, Jeong et al 2017, Luus
et al 2017, Sun et al 2017, 2018, Gentine and Alemo-
hammad 2018, Zhang et al 2018a), as satellite SIF is
closely related to ecosystemGPP.

Surface soil moisture has been retrieved from
satellite microwave sensors since 1979 with both pas-
sive and active sensors (Entekhabi et al 2010, Kerr et al
2010, Dorigo et al 2017), and model estimates of soil
moisture down to 2 m are also available from a wide
range of land–surface models, global hydrological
models and atmospheric reanalyses (Rodell et al 2004,
Dee et al 2011, Beck et al 2017, Gelaro et al 2017). Soil
moisture drought is generally associated with negative
impacts on the vegetation, especially in semi-arid
regions (Nicolai-Shaw et al 2017). However, in cold
and temperate climates, increases in solar radiation
and air temperature commonly associated with
droughts can sometimes have a positive impact on
vegetation activity (Zscheischler et al 2015). A recent
study confirmed this dual behavior with SIF observa-
tions, and also concluded that forested ecosystems
were more resilient to droughts than nonwoody vege-
tation (Walther et al 2019). Microwave missions are
also starting to be used to understand ecosystem-scale
water usage strategy using the temporal variations of
vegetation water content (vegetation optical depth) in

response to dryness (Konings and Gentine 2016,
Konings et al 2017, Brandt et al 2018, Feldman et al

2018, Giardina et al 2018).
In addition to soil moisture estimates, the NASA-

DLR Gravity Recovery and Climate Experiment satel-
lite missions (GRACE and GRACE-FO), also measure
changes in terrestrial water storage (TWS), which
includes groundwater, soil moisture, surface waters,
snow ice and biosphere moisture (Scanlon et al 2016).
So far, GRACE observations have been largely used in
water resources research (Rodell et al 2009, Scanlon
et al 2018) and global hydrological modeling, but
rarely in carbon cycle research, except in a few instan-
ces (Bloom et al 2010, Velicogna et al 2015, Andrew
et al 2017). Global GRACETWS changes were recently
found to be strongly correlated to anomalies in global
land carbon uptake (Humphrey et al 2018), high-
lighting the potential of GRACE TWS observations for
understandingwater–carbon cycles’ coupling.

In ESMs, soil moisture variability (on monthly to
interannual time scales) and soil moisture trends, have
been recently shown to have a major impact on global
NBP (i.e. net ecosystem production minus the carbon
losses from fire and land cover change) (Green et al

2019). Soil moisture variability (beside the natural sea-
sonal cycle) reduces the land carbon sink by a magni-
tude similar to the total land carbon sink itself, both
currently and in the future (Green et al 2019). This
occurs because of the strong nonlinear response of
photosynthesis (figure 1) (Green et al 2019), ecosystem
respiration (Yan et al 2016, 2018) and disturbances
(Williams and Abatzoglou 2016) to soil moisture.
Because of the nonlinearity of these responses, the
occurrence of droughts cannot be compensated by
positive soil moisture anomalies (wet periods) of simi-
lar magnitude. In other words, the response of carbon
uptake to soil water availability is not a zero-sum
game. Remote sensing observations based on SIF in
lieu of GPP and GRACE TWS in lieu of total soil
moisture support the fact that photosynthesis exhibits
a strong nonlinear response to total soil moisture
availability (including groundwater). Figure 1 indi-
cates that this response is overall similar in observa-
tions and in models, even though the exact shape
would be critical for a correct response to water stress
and is not perfectly captured bymodels (figure 1).

(Poulter et al 2014, Ahlström et al 2015, Zhang et al
2016)

Current ESMs display a quite strong degree of cor-
relation between photosynthesis and soil moisture
(figure 2 and figure S1, available online at stacks.iop.
org/ERL/14/083003/mmedia) as assessed using the
monthly correlation between GPP and total soil
moisture in the growing season. Most models exhibit
strong positive correlations in transitional and dry
regions, consistently across models (stippling repre-
sents where nine out of 11 models agree on the sign of
the correlation), especially in the midlatitudes and the
tropics, except for several models displaying negative
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Figure 1.Biosphere photosynthetic activity response curves. Plots of normalized gross primary productivity (GPP) versus
standardized soilmoisture fromCMIP5models from the historical runs (1971–2000) (a)–(h). Plot of normalized and detrended solar-
induced fluorescence (SIF) observations, a proxy for photosynthesis, versus standardized terrestrial water storage (TWS) based on the
Gravity Recovery andClimate Experiment (GRACE) (2007–2016) (i). Probability density functions of the soilmoisture andTWSdata
are plotted at the top of the x-axes. For soilmoisture, owing to large differences inmagnitude betweenmodels andwithin the same
model between regions, each pixel is standardized by itsminimumvalue in time and its standard deviation in space for easier
comparison. The y-axis data is divided by themaximumvalue (SIFmax orGPPmax) of all points.We emphasize that ESMs donot
generally include the full TWS changes and instead only represent soilmoisture and some limited groundwater components, with the
exception of several ESMs that include some simple representation of thewater table and unconfined aquifers (i.e. connected to the
surface), and of openwater bodies (Swenson and Lawrence 2015).
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correlation inWestern/Northern Europe. At high lati-

tudes there are substantial variations in the sign of the

correlation between GPP and soil moisture with mod-

els either representing a positive or negative value.

These differences may be related to uncertainties in

the effects of temperature and snow effects on GPP,

especially on its phenological cycle.
On the other hand, observations based on SIF (as a

proxy for GPP) and GRACE TWS (as a proxy for total

soil moisture) clearly emphasize the strong coupling

between carbon and water, but mostly in the transi-

tional dry–wet (semi-arid and monsoonal) regions

(figure 2(c)). This coupling has also been highlighted

in previous studies (Poulter et al 2014, Ahlström et al

2015, Zhang et al 2016). By contrast, there is a clear

overestimation of the models’ stress especially in wet

regions (e.g. the Amazon rainforest). Model-derived

correlations are very strong (correlations close to 1)

over most regions except in northern latitudes, which
is not supported by observations, except for transi-
tional regions. Observations have their own issues, in
particular related to the low signal to noise ratio and
possible sensor degradation of the remotely sensed SIF
data (Zhang et al 2018c) and to the fact that GRACE
senses all TWS including groundwater and open water
bodies, yet the latter is usually strongly correlated with
total soil moisture on monthly time scales. None-
theless, the correlation between GOME-2 SIF and
GRACE TWS is strong and positive only in water-lim-
ited regions, namely in regions dominated by seasonal
dryness such as the Mediterranean or monsoonal
regions, the savanna region of Brazil, parts of central
America, the Sahel and horn of Africa, southern
Africa, eastern Europe, India and southeast Asia as
well as themonsoonal part of Australia. Positive corre-
lations are also observed atNorthern latitudes, where a
decrease in TWS due to low precipitation might also
correspond with warm conditions and reduced cloud
cover beneficial for photosynthesis. Importantly, the
Amazon does not appear to be water stressed—rather
a decrease in water storage in the wet season appears
beneficial as it is associated with reduced cloud cover
and increased light and therefore higher rates of pho-
tosynthesis and evapotranspiration (Anber et al 2015,
Guan et al 2015).

Different factors might explain why the response
of models to water stress appears to be overestimated
at the local scale (figure 2). Land–surface models are
known to exhibit a dry bias, because soil moisture
decays too fast and this decay stresses ecosystems too
much, with little resilience based on deep rooted water
(Powell et al 2013, Green et al 2017, Kennedy et al

2018). Inclusions of more physically-based water
stress response, i.e. based on plant hydraulics and bet-
ter representing stomatal response to water stress and
xylem interaction, however, does seem to improve this
water stress response (De Kauwe et al 2015, Xu et al

2016, Kennedy et al 2018). Better inclusion of ground-
water processes might also be important, as they are
connected to Tr rates (Maxwell and Condon 2016).
Global observations such as the ones presented here
could represent an important tool to constrain ESMs
and their land–surface model response to water stress
andTWS in particular.

Memory and legacy effects further induce multi-
scale and long-term response of ecosystems and con-
tinental carbon fluxes to dryness and aremainly absent
from ESMs (Anderegg et al 2013, 2015c, Kaisermann
et al 2017, Sippel et al 2018). Soil moisture also reg-
ulates plant growth, and especially sap area and tree
ring size on interannual time scales, with wet years
leading to larger tree rings (Gao et al 2018). Indeed,
tree rings are commonly used to reconstruct long-
term interannual variability in moisture conditions
(Cook et al 2014b). These moisture-induced inter-
annual variations in xylem structure and functions can
also impact sap flow regulation and thus transpiration

Figure 2.Growing season correlations. Correlations between
NPP (a) orGPP (b) and total soilmoisture across Earth
Systemmodels (ESMs) during the growing season (using
monthly data from1971 to 2000). (c) Same figure in the
observations, usingGOME-2 SIF data instead ofGPP and
TWSdata instead of total soilmoisture estimate usingGRACE
satellites (2007–2016). All data are deseasonalized, and the
growing season is defined as themonthswhen SIF/GPP is
higher than 30%of the climatologymaximum. Stippling
represents regionswhere at least nine of the 11models used
agree on the sign of the correlation as depicted.
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and photosynthesis. These processes are not repre-
sented in models which tend to be too static on inter-
annual time scales. Moisture availability can also affect
the allocation to different carbon pools, as well as the
leaf to sap area ratio (Guérin et al 2018), also modify-
ing the water stress response. These long-term feed-
backs between the carbon and water cycles are not
properly represented in current models, which also
have a too short a soil moisture memory (typically less
than a year) (Anderegg et al 2015c).

We note that at the global scale there has been a
debate on whether temperature or water availability
plays the preponderant role on biosphere carbon
cycling. Several studies suggested that temperature was
a dominant factor compared to precipitation at the glo-
bal scale (Piao et al 2008, Wang et al 2013, Anderegg
et al 2015a). This apparent global domination of temp-
erature was explained by compensating water effects
across different regions (with some exhibiting positive
and others negative anomalies) (Jung et al 2017). This
supposed weak global effect of water stress on NBP
(Jung et al 2017) has been recently debated, considering
bulk global measures such as the weaker global CO2

growth rate response to water storage in models com-
pared to observations (Humphrey et al 2018). This
apparent contradiction needs to be further resolved.
After all, an increasing sensitivity to temperature has
been found, whichmay be related to the decreasing soil
moisture (Wang et al 2014). This suggests a strong
interaction between temperature and soilmoisture and
their compound effect on regulating the carbon cycle.
We also note thatHumphrey et al (2018) suggested that
a lack of long-term memory in soil moisture would
explain why global effects of water stress on inter-
annual carbon cycle variability seem to be under-
estimated. This would be entirely consistent with the
hypothesis that models overestimate the response to
soil moisture stress at the local to regional scale
(figure 2) because of too short soilmoisturememory.

3.Global CO2 impact onwater cycle

Changes in the continental carbon cycle also have
important implications for the water cycle. As [CO2]

increases, stomatal conductance, biomass andGPP are
modified (see section 1), so is Tr. In addition, increase
in aboveground biomass also increases the roughness
of the canopy, and therefore impacts the turbulent
exchange between the atmosphere and the surface.
Those various changes modify Tr and thus evapotran-
spiration (Lemordant et al 2016, Swann et al 2016,
Lemordant et al 2018), modulate soil moisture avail-
ability (Ainsworth and Long 2005, Leuzinger and
Körner 2007, Lemordant et al 2016) and potentially
runoff (Betts et al 2007, Lemordant et al 2018).

Idealized ESM experiments can be used to decom-
pose the effect of increasing surface (physiological
effects) and atmospheric CO2 (GHG effect), which can

be studied separately with idealized experiments.
Future changes of the water cycle induced by increased
[CO2] can thus be quantified in models, with caveats
associated to the idealized setup used as well as to
uncertain model representation of the water and car-
bon processes (Swann et al 2016, Lemordant et al

2016, 2018), as noted earlier. In the FACE observa-
tions, which can be used to constrain the physiological
CO2 effects, surface turbulent fluxes could typically
not be evaluated because of the heterogenous and
unsteady source of CO2 due to the variable injection
rate, and because the experiment was smaller than the
typical footprint of an eddy-covariance system (hun-
dreds of meters). Still, FACE experiments have shown
that increased surface CO2 modifies the water cycle,
especially the seasonal cycle of soil moisture (Ains-
worth and Long 2005), as well as the sensitivity of eco-
system productivity to extreme drought events (Roy
et al 2016).

One important difference of ESM modeling stu-
dies compared to the FACE experiment (omitting the
quality of the process representation) is that ESMs
naturally account for land–atmosphere feedbacks
(Lemordant et al 2016), which are critical to fully
understand the coupling between the water and car-
bon cycles. Indeed, modification of the surface fluxes
at a regional scale (few kilometers) impact the lower
part of the atmosphere (the boundary layer) and thus
modify temperature, VPD and also cloud cover
(impacting downwelling solar radiation at the surface)
(Pielke 2001, Ek and Holtslag 2004, Seneviratne et al
2010, Pielke et al 2011, de Arellano et al 2012, Gentine
et al 2016a, 2013). For a given biomass level, increased
surface CO2 and lower soil moisture levels tend to
close stomata, leading to reduced evapotranspiration
and higher sensible heat flux, and thus higher surface
temperature and ecosystem respiration (Green et al

2019), an effect that ismissed by FACE experiments.
ESMswith prescribed surface [CO2] (physiological

effects) versus prescribed atmospheric concentrations
(GHG effects) can be used to disentangle the different
effects on total evapotranspiration (or LE in W/m2).
For example, a combination of different experiments
in Climate Model Intercomparison Project Phase 5
(CMIP5) can help delineate the CO2 effect on vegeta-
tion or on global temperature (Taylor et al 2012) (data
available at https://esgf-node.llnl.gov/projects/
cmip5/). A typical way would be using idealized
experiments in which the respective impacts of
increased [CO2] between the atmosphere (as a GHG)

and at the surface were split. Specifically, for the com-
bined effect, one can use combined runs (atmo-
sphere+surface increased CO2 concentrations,
1pctCO2), in which CO2 increased by one percent
every year for 150 years. A second simulation used pre-
scribed historical CO2 at the surface, atmospheric CO2

as a GHG is allowed to increase (esmFdbk1 experi-
ment). A third opposite experiment (esmFixClim1
experiment) in which CO2 was prescribed in the
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atmosphere as the preindustrial value and increased at
the surface only so that it should only impact bio-
spheric processes.

Latent heat flux (i.e. evapotranspiration in energy
units) increases in many regions, especially at north-
ern latitudes, because of the GHG increased radiation
and correlated change in temperature (figure 3(c)).
The GHG effect on LE varies spatially, with typically a
decrease in dry regions and an increase in wet or cold
(snowy) regions where higher temperature increases
snowmelt and can extend the growing season. There is
a predicted significant decrease (across more than 3/4
of the models) in dry regions, and especially in the
Mediterranean, central America, and Southern Africa
consistent with previous ESM findings (Seager et al
2010, 2014, Cook et al 2014a).

The modeled physiological effect of CO2 on latent
heat flux is strong in ESMs and mostly negative
(because of the higher WUE), figure 3(b), especially
over tropical forests. Indeed, in those regions the
increase in LAI due to rising CO2 is limited (because
biomass is already very high) so that the primary phy-
siological mechanism is a reduction of stomatal

conductance, reducing transpiration and ET. How-
ever, in several regions the impact of physiological
effects is small because of a compensating increase in
LAI (Lemordant et al 2016, 2018), stimulated by the
increase in surface [CO2] (fertilization effect), which
can increase evapotranspiration (Williams and
Torn 2015) and compensate the reduction in stomatal
conductance at higher [CO2]. The GHG effects are
more consistent across models (as indicated by the
stippling) than the physiological effects, which are
more uncertain, yet importantly of the same order of
magnitude. In addition, those effects are nonlinear as
assessed by the difference between the total
(GHG+physiological)—GHG simulation and the
direct physiological experiment.

Total soil moisture is predicted to be less impacted
by changes in CO2 than evapotranspiration (figure 4).
Increased warming effect caused by GHG increases
photosynthesis and LE (figure 3), as it increases the
duration of the growing season in snow-dominated
regions (Hinzman et al 2005, Bintanja and
Andry 2017, Screen 2017, Jeong et al 2018). On the
other hand, some currently dry regions are predicted

Figure 3.Predicted change due to rising CO2 on surface latent heat flux (evapotranspiration) based on eight Earth systemmodels. 140
year change based on a linear regression. Top left: [CO2] imposed as both a greenhouse gas (GHG) and at the surface (physiology), Top
right: [CO2] imposed at the surface (physiology), Bottom left: [CO2] imposed as aGHG. Bottom right: [CO2] imposed as both a
greenhouse gas (GHG) and at the surface (physiology)–GHGeffects (to test linearity in physiological effects).We used all eight
availablemodels not sharing clear lineage (such as differentmodel version or different horizontal resolutions).Models were
interpolated to a common 1°×1° grid, using nearest-neighbor interpolation. Values were averaged over a 20 year timewindow to
minimize the impact of interannual variability. Stippling represents regions wheremore thatfivemodels agree in terms of sign.
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to become even drier (e.g. central America, the Medi-
terranean), figure 4. This is not only due to increased
warming but also related changes in atmospheric cir-
culation and moisture transport to those regions,
reducing the moisture convergence over the region
(Seager et al 2010, 2014, Cook et al 2014a). Increased
surface physiological [CO2] has an even impact on
total soil moisture weaker than the GHG effect and
tend to lead to water saving (figure 4(b)), whereas
GHG effects tend to reduce soil moisture because of
the increased atmospheric demand due to to increased
radiation. In many seasonally dry regions, total soil
moisture is decreasing because of a reduction in pre-
cipitation (Seager et al 2010, 2014, Cook et al 2014a)
but stomatal closure partially compensate that effect
(Lemordant et al 2016). In wet forested regions, total
soil moisture tends to decrease, as a result of increased
GHG atmospheric demand. Contrary to ET, most of
the uncertainties in total soil moisture originate from
the GHG effects rather than from physiological chan-
ges. This seemingly contradicting result with the ET
impact of physiological effects is due to the compen-
sating effects of increased biomass and decreased
canopy conductance with rising [CO2]. Increased bio-
mass decreases soil moisture but decreased con-
ductance tends on the other hand to buffer soil
moisture. It is therefore clear that to correctly assess
future changes in the water cycle we need better con-
strained models in terms ofWUE (and its change), the
(related) impact of [CO2] of stomatal conductance,
but also of changes in biomass and phenology, which

varies dramatically across models. Runoff changes
(figure 5) are in line with the soil moisture tendencies
especially in wet regions. In dry regions though there is
only limited total runoff change, likely because runoff
is already low in those regions. As expected, there is
also major increase in runoff in cold and snow-domi-
nated regions because of the increased warming due to
GHG. Physiological effects tend to be smaller and are
mostly operating in tropical regions, with a typical
increase (except in the Amazon) due to the reduction
in LE due to stomatal conductance reduction
(figure 3).

We thus conclude that ESMs predict a large impact
of surface [CO2] (physiological effects) on the water
cycle in the future. Yet, the response varies drastically
across models so we can only have low confidence
in this future ESMs’ prediction. The uncertainties are
dominated by uncertainties in the physiological
impact but uncertainties in theGHGeffects (figures 3–5
top right) arenon-negligible (figures 3–5 bottom left).

4.Discussion and challenges

This short review aimed at discussing some of what we
consider important processes and challenges in obser-
ving and simulating the coupling between the water
and carbon cycles. Based on this review we argue that
the terrestrial water–carbon cycles have to be studied
as an interconnected system, given the very large
impact they have on each other. Specifically, we
emphasized that physiological effects due to increased

Figure 4. Same asfigure 3 but on total soilmoisture.
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[CO2] appear in model simulations to be a dominant
control of the future water cycle and that the
representation of vegetation water stress places key
constraints on the capacity of continents to act as a
future CO2 sink. These predictions are however highly
uncertain across models, and therefore need to be
better constrained to better predict the future carbon
andwater cycles.

There are however numerous challenges related to
these two carbon–water coupling issues. First, most
current studies only have limited observational con-
straints on the effect of increasing [CO2] at the ecosys-
tem scale and especially on WUE. FACE experiments
have helped better understand the impact of rising
[CO2] but omitted land–atmosphere feedbacks, and
therefore increased temperature and VPD due to
changes in the surface energy partitioning (Lemordant
et al 2016). This is due to the small footprint of the
experiment, as well as the short duration of the experi-
ments (a few years) places limits on our understanding
of long-term (multidecadal) time scale response of
ecosystem WUE to rising [CO2] (Mastrotheodoros
et al 2017, Reich et al 2018). Isotopic inferences on
WUE might be one of our better constraints on those
long-term changes (Frank et al 2015) as well as long-
term eddy-covariance observations which are now
starting to cover a few decades at selected sites (Keenan
et al 2013). Long-term remote sensing observations of
SIF and estimates of ET might help better constrain
those changes in WUE (Alemohammad et al 2017).
There are still challenges on the way though, such as

estimating changes in light use efficiency with
increased [CO2] from remote sensing platforms
(Gentine and Alemohammad 2018, Zhang et al

2018b), as well as partitioning transpiration from total
ET, which remains highly uncertain (Jasechko et al

2013, Michel et al 2016, Miralles et al 2016, Wei et al
2017, Lian et al 2018).

Regarding water stress, it appears critical to cor-
rectly and more physically represent it in models,
given its very large impact on carbon and water fluxes
(Verhoef and Egea 2014). Recent model developments
have started to incorporate more realistic plant
hydraulics representation of water stress (Eller et al

2018, Kennedy et al 2018). Yet, one challenge is to con-
strain those models, especially at the global scale.
Recent advances in satellite remote sensing observa-
tions are starting to offer unprecedented constraints
on those processes, globally. Microwave remote sen-
sing can be used to retrieve surface soil moisture
(Barre et al 2008, Entekhabi et al 2010, Kolassa and
Aires 2012, Chan et al 2016, Kolassa et al 2016, Col-
liander et al 2017, Dorigo et al 2017, Kolassa et al

2017a, 2017b) as well as to place constraints on vegeta-
tion hydraulic strategies (water conservative versus
water intensive) (Konings and Gentine 2016, Konings
et al 2017). In addition, solar-induced fluorescence
places key constraints on the rate of photosynthesis at
the ecosystem scale (Joiner et al 2011b, Frankenberg
et al 2012, Joiner et al 2013, Lee et al 2013, Parazoo et al
2013, Frankenberg et al 2014, Guanter et al 2014,
Lee et al 2015, Guanter et al 2015). GRACE and

Figure 5. Same asfigure 3 but on runoff.
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GRACE follow-on (FO) missions (Andersen et al

2005, Humphrey et al 2016, Annette Eicker 2018,
Humphrey et al 2018) allow estimating total TWS and
microwave remote sensing missions (SMOS, SMAP,
AMSR-2) allow monitoring surface soil moisture and
vegetationwater storage.

There are still important challenges on the way,
though. Understanding changes in ecosystem respira-
tion remains a challenge, especially at the global scale.
Indeed, we currently do not have the capacity tomoni-
tor it globally, unlike solar-induced fluorescence for
photosynthesis, to constrain its response to soil moist-
ure and rising [CO2]. There has been progress based
on in situ observations though (Heskel et al 2016,
Huntingford et al 2017, Bond-Lamberty et al 2018,
Yan et al 2018). In addition, CO2 annual growth rates
permit to obtain an integrated view of continental CO2

exchanges yet do not permit to correctly zoom into
regional information (Keenan et al 2016, Wang et al

2017). Data assimilation with multiple observational
constraints on the carbon cycle are still our best con-
straint on ecosystem exchange and thus on respiration
processes at coarse regional scales (Kawa 2004, Baker
et al 2006, Thum et al 2017,MacBean et al 2016, 2018).

Another challenge is that VPD and soil moisture
are inherently coupled through land–atmosphere
interactions (Zhou et al 2018). As atmospheric temp-
erature and dryness increases with rising [CO2], VPD
rise will be more disconnected from changes in soil
moisture and are likely to have a strong impact on
photosynthesis. Therefore, it is critical to correctly dis-
entangle the respective impacts of VPD and soilmoist-
ure, especially on fluxes and ecosystem conductance,
at the ecosystem scale but so far this has been a chal-
lenge because of this strong coupling. New statistical
tools to decompose causes and effects might be essen-
tial to better understand their respective impacts
(Granger 1980, Sugihara et al 2012). Dedicated in situ

experiment with either dry conditions or increased
VPD (Grossiord et al 2017) might also be critical to
better disentangle those effects.

Understanding the impact and response of inter-
annual and decadal time scales variations on ecosys-
tems remains a grand challenge. Indeed, the coupling
between the water and carbon cycles is present at mul-
tiple time scales from short (leaf–gas exchange), to
annual (carbon allocation, changes in xylem, struc-
tureK) to interannual (species composition, mortal-
ity, legacyK). Again, long-term remote sensing and
long-term in situ observations could place key con-
straints on those changes.

Extremes are becoming more extreme with
increased GHG concentrations, such as droughts, heat
waves, extreme precipitation and runoff. These
extreme events will strongly limit the capacity of con-
tinental carbon uptake, directly by limiting ecosystem
photosynthesis and increasing ecosystem respiration
but also through changes in disturbances such as fires
(Williams et al 2014, Seager et al 2015, Williams and

Abatzoglou 2016, Williams et al 2018), wind damage
(Silvério et al 2019) or through large-scale mortality
(McDowell 2011, Williams et al 2013, Adams et al

2017). Beside the occurrence of more drought events,
systematic high temperature and VPD at levels unpre-
cedented in our recent history will challenge our pre-
dictive capacity, which is based mostly on historical,
lower temperature and VPD conditions. Dedicated
field experiments could be a solution to better under-
stand the impact of high temperature, VPD and the
occurrence of intense droughts on ecosystems (Gros-
siord et al 2017).

Finally, a key component of the future carbon and
water cycles, omitted or oversimplified in current gen-
eration of ESMs is land management. Current models
include land-use land cover changes and potential sce-
narios for their changes (Lawrence et al 2016), which
are essential for improved terrestrial prediction but
the impact of land management still remains an open
question. Data availability to constrain it (e.g. water
consumption for agriculture, industry) still remains
an issue (Ho et al 2016, 2017), even if it is improving in
many regions of the globe and if remote sensing obser-
vations have highlighted that they are the main con-
tributors to overall global greening of the planet (Chen
et al 2019). Including these processes in ESMs will be
important given the pressure on food production due
to rising population and increased temperature and
VPD pressure on crop production (Ziervogel and
Ericksen 2010, Butler and Huybers 2012, Lobell et al
2013, Asseng et al 2015, Deryng et al 2016,
Osborne 2016).
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