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Coupling Characteristics of Multicore Photonic
Crystal Fiber-Based 1 x 4 Power Splitters

Shailendra K. Varshney, Member, IEEE, OSA, Kunimasa Saitoh, Member, IEEE, OSA, Ravindra K. Sinha, OSA,
and Masanori Koshiba, Fellow, IEEE, OSA

Abstract—A new design of multicore photonic crystal fibers
(PCFs) is proposed and investigated through full-vectorial finite-el-
ement method and finite-element beam propagation method. The
fiber design comprises four identical cores surrounding a central
core. The optical power launched into the central core is equally
divided into other neighboring four cores with a 25% of coupling
ratio. The coupled-mode analysis is also carried out to understand
the supermode patterns and the coupling characteristics. Through
numerical simulations, it is demonstrated that the optical power
can be divided equally in a 5.8-mm-long multicore PCF. The
power coupling characteristics obtained through coupled-mode
analysis are in very good agreement with those calculated from
beam propagation method solver.

Index Terms—Fiber couplers, finite-element methods (FEMs),
microstructured fibers, optical fiber devices, photonic crystal fiber,
power splitter.

1. INTRODUCTION

ULTICORE optical fibers play a significant role in di-
M viding/combining the optical power in optical fiber net-
works. A single power can be divided into several branches and
can be routed to different locations for additional purposes. Sev-
eral approaches have been adapted to process and route the op-
tical power in N branches. Among them, the most common ap-
proach is the fusion of several identical or nonidentical optical
fibers together by keeping mutual contact in the fusion region.
This fusion process results in the tapered region of fused optical
materials, where exchange of powers occurs through proximity
coupling. It has been observed that splitters using fewer than
six surrounding fibers are difficult to make, as one has to use
dummy fibers, e.g., it may be difficult to make 1 x 4 power split-
ters using conventional optical fibers. However, 2 x 2, 4 x 4,
and 1 x 7 fiber couplers/splitters can be made by fusing con-
ventional optical fibers [1]-[5]. On the other hand, with the ad-
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Fig. 1. Schematic view of multicore PCF-based 1 X 4.

vent of novel photonic crystal fibers (PCFs) [6] or so-called
holey fibers or microstructured fibers, where the airholes are dis-
tributed in silica matrix and run down the entire fiber length,
it has become possible to create multicores in a single fiber
without fusion process. This makes PCFs a versatile candidate
for optical power division or combining. It is rather easy to split
the light into surrounding cores in multicore PCFs. Previous
studies have used two/three cores PCFs to obtain coupling char-
acteristics [7], [8], wavelength-flattened couplers [9], narrow
bandpass filters [10], [11], and multicores in PCFs have been
created to achieve frequency combs by four-wave mixing [12],
phase-locking [13], and fiber laser array [14].

In this paper, we propose and investigate a new design of a
multicore PCF that can divide a single optical power equally
into four ports with 6 dB of power in each core. The design
consists of four identical cores surrounding an identical central
core. Each core is surrounded by small airholes, which are cre-
ated in order to have a complete power transfer among the cores.
To optimize the performance of the proposed device, we use a
full-vectorial finite-element method (FEM) [15] and the beam
propagation method (BPM) [16]. Through numerical simula-
tions, it has been revealed that the complete power transfer takes
place in a 5.8-mm-long multicore PCF having d/A = 0.45 and
d'/A = 0.23, where d,d’, and A are the hole diameter of the
cladding, small airholes, and pitch constant of the PCF, as shown
in Fig. 1. A good agreement is observed between the BPM and
coupled-mode theory (CMT) results.

The paper is divided into five sections. Section I gives an
overview of the previous works. In Section II, fiber design and
the methodology to achieve proposed design are described. The
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CMT for the proposed multicore PCF is derived in Section III,
and analysis has been done on supermodes patterns. Numerical
results obtained from FEM, BPM, and CMT are presented in
Section IV. Finally, concluding remarks have been made in Sec-
tion V.

II. FIBER DESIGN

Fig. 1 shows the proposed multicore PCF design. The airholes
with diameter d and pitch constant A build the cladding where
single missing airholes from several locations create multicores.
In our design, five cores are created as marked by the numbers
from 1 to 5. The core 1 is the central core, where a single op-
tical power is launched. Cores 2 and 4 are placed horizontally,
while the cores 3 and 5 are aligned vertically. The positions of
the cores are selected in such a manner that the symmetry of
the structure does not break up. This allows us to simplify the
problem, i.e., we can use one quarter section of the proposed
multicore PCF structure to evaluate the coupling characteris-
tics. Note that the distance between the cores 1 and 2 and the
cores 1 and 3 is different. Therefore, the coupling coefficients
for cores 1-2 and cores 1-3 would be different. In order to have
an equal transfer of the power in the neighboring cores, the hori-
zontal and vertical coupling coefficients must be equal. This can
be achieved if we increase the vertical coupling coefficient. To
predict the equal coupling coefficients for horizontal and ver-
tical coupling, we decrease the diameter of airholes (denoted
by d’) located just above and below of each cores, as shown by
red circles in Fig. 1. The size of small airhole can be obtained
and optimized when the horizontal and vertical coupling coef-
ficients become equal. The refractive index of background ma-
terial silica is 1.45 in our all numerical calculations, and we do
not take into account the material dispersion of the silica in our
numerical calculations as the proposed fiber splitter has small
length (few mm) and focused to operate over C-band. However,
for short wavelength operation (e.g., at 800 nm), one should con-
sider the wavelength dependency of the silica.

III. COUPLED-MODE THEORY

We use standard coupled-mode equations [17] for analyzing
the proposed multicore PCF power splitter. The mode coupling
between the cores can be described by a simple set of equations.
We define the coupling coefficients xj and &,,, which represent
the coupling between horizontally placed cores (core 1-core 2
or core 1-core 4) and vertically aligned cores (core 1-core 3 or
core 1-core 5), where core 1 is the central core. The “cartoon”
picture of the coupling between the isolated cores is shown in
Fig. 2. Note that the coupling between the adjacent outer cores
(core 2 and core 3) is neglected, because the coupling coefficient
rq between the adjacent outer cores is sufficiently small com-
pared with the horizontal and vertical coupling coefficients. The
coupling characteristics can be described by the following cou-
pled-mode equations:

da
d—l +jBay = —j {(az + as)kn + (a3 + as)r,}  (la)
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Fig. 2. Cartoon picture of coupling between the cores. The k;, and &k, denotes
the horizontal and vertical coupling coefficients, respectively. The coupling be-
tween the adjacent outer cores has been neglected.

% + jBaz = —jaiky, (1b)
d— +jBaz = —jaik, (Ic)
% + jBas = —jarn (1)
Cfli + jBas = —jaiky, (le)
where a, (k = 1,2,3,4,5) are the amplitude of the funda-

mental mode in core-k, (3 is the propagation constant of the
fundamental mode, xj, and ., are the coupling coefficients be-
tween the horizontally placed cores and the vertically aligned
cores, respectively. Since the cores 2 and 4 and cores 3 and 5
are identical, the mode amplitude shall be equal. Therefore, cou-
pled-mode equations can be reduced to (2a)—(2c) as below:

d . .

% + jfBa; = —j{2a2"ih + 2a3’fv} (2a)

d . .

% + jfaz = —jarkn (2b)
Z

d

% + jBas = —jaik, (20)
z

with boundary conditions a;1(0) = 1,a2(0) = a3(0) = 0.

For simplicity, the coupling coefficients are assumed to
be polarization independent. By making the substitution
ar = Anexp(—j(8 + 0)z) into (2a)—(2¢c), the characteristic
equation can be written as

o —2Kn  —2FKy
—RKp g 0 =0 (3)
— K 0 o

where o in (3) is an eigenvalue calculated by solving (3), re-
sulting into three eigenvalues and corresponding three eigenvec-
tors. The eigenvalues are 0, \/2(k? + £2),and —/2(k} + K2).
The field at a position z can be represented by the linear combi-
nation of the eigenvectors. Each eigenvector represents a mode
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Fig. 3. Relative amplitude and phases of supermodes in the proposed multicore
PCF splitter, (a) denotes all modes of isolated cores are in phase, (b) modes
in outer cores are out of phase to each other, and (c) all modes in outer cores
are in antiphase. The combination of supermodes can be expressed in a linear
combination of (a) and (c).

of the fiber structure as shown in Fig. 3. The plus sign indicates
that the phase of the mode and unit sign is the amplitude, while
minus sign corresponds to out of phase. The operation of this
power splitter can be understood in terms of the supermodes of
the fiver-core PCF coupler. If the individual cores of the cou-
pler are single modes, the coupler structure supports five su-
permodes; however, as mentioned before that the problem can
be reduced in three supermodes because of the core symmetry.
Through solution of coupled-mode equations (2a)—(2c), we ar-
rive at three eigenvectors corresponding to supermodes of the
structure and shown in Fig. 3. If we represent the corresponding
fields by ¢1, ¢2,and ¢p3, and assume that initially all the en-
ergy is in central core 1, the combination of supermodes can be
expressed in a linear combination of ¢; and ¢3. However, it is
difficult to excite the ¢» when a complete power transfer takes
place, i.e., when Kk = K,.

IV. NUMERICAL RESULTS

To compute the coupling coefficients of the proposed multi-
core PCF coupler, we use FEM [15] and later the power splitting
is verified by the BPM solver [16]. The geometrical parameters
of the multicore PCF are d/A = 0.45,d’/A, where d is the
hole diameter of large airholes in the cladding, d’ is the hole di-
ameter of small airholes, shown by red circles in Fig. 1, and A
is the separation between two consecutive airholes. The size of
small airhole d’ is obtained by the coupling characteristics. As
a first step of our numerical simulations, we evaluate the hori-
zontal and vertical coupling coefficients using the FEM solver
by varying the diameter of small airholes and the pitch constant
A. Note that cross-coupling between the adjacent outer cores,

JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 27, NO. 12, JUNE 15, 2009

namely, core 2-core 3, core 3-core 4, core 4-core 5, and core
5-core 2 is neglected, because the cross-coupling coefficient x4
is sufficiently small in comparison to x; and k.

The variation of the coupling coefficients at a 1550 nm wave-
length is shown in Fig. 4 as a function of normalized pitch con-
stant (A/A) for different d’'/A values, namely, d'/A = 0.40
[Fig. 4(a)], d'/A = 0.35 [Fig. 4(b)], d'/A = 0.30 [Fig. 4(c)],
and d’/A = 0.20 [Fig. 4(d)], where the polarization state is hor-
izontal polarization (i.e., z-polarization). The solid blue curves
correspond to the horizontal coupling coefficient x; and the
dashed red curves stand for vertical coupling coefficient k..

The vertical coupling coefficient is smaller than the horizontal
coupling coefficient when d’/A is 0.40, 0.35, and 0.30 and de-
creases exponentially as normalized pitch increases. However,
the horizontal coupling coefficient becomes smaller than the
vertical coupling coefficient as the small hole diameter d’'/A is
further decreased to 0.20, indicating a crossing between both
curves between d’/A = 0.20 and d'/A = 0.30. We investi-
gate the coupling coefficients for all values of the relative hole
diameter d’ /A between 0.20 and 0.30. Through numerical sim-
ulations, we arrive at d'/A = 0.23, where kj, and &, become
equal at a normalized pitch value of 1.7, suggesting the complete
power transfer in surrounding cores with equal coupling ratio.
As the operating wavelength is set to 1550 nm, the pitch value
can be computed as 2.64 ym, where x, = k,. The variation
of coupling coefficient as a function of pitch for d’'/A = 0.23
is plotted in Fig. 5, while the magnified image of the crossing
region is depicted in the inset of the figure. The coupling length
is computed as ~5.8 mm with A = 2.64 pm at 1550 nm wave-
length.

To verify the equal power division in proposed multicore PCF
splitter, we use a BPM solver for the design parameters obtained
above and are given here as d/A = 0.45,d'/A = 0.23,A =
2.64 pm, and A = 1550 nm. The BPM results stating the nor-
malized power propagation as a function of the propagation dis-
tance z are depicted in Fig. 6, where the horizontally polar-
ized fundamental mode is launched into the central core 1 at
a coupler input. The solid black curve corresponds to the power
variation in the central core 1, solid blue curve corresponds to
the coupled power in the horizontal core 2, and the diamond
markers stand for the coupled power in the vertical core 3. It
can be clearly seen from these numerical results that the powers
in surrounding cores increase gradually and at a distance of
5.8 mm, there is a complete transfer of the power from the cen-
tral core to the neighboring cores 2, 3, 4, and 5. This verifies the
predicted pitch constant and the small-hole-diameter values and
also demonstrates numerically the power splitting functionality.

In Fig. 7, we show the modal field distribution of the x-com-
ponent of the electric field (E..) at the initial stage, where the
power is launched into the central core and at the final stage,
where the complete power is equally divided into the outer
cores. Fig. 7(a) exhibits the modal field distribution at 1550 nm
wavelength at z = 0. After launching the modal field into the
central core, the coupling starts and transfer of the power takes
place with an equal splitting into neighboring outer cores, as
shown in Fig. 7(b). The power propagation in the multicore
PCF (d/A = 0.45,d'/A = 0.23, and A = 2.64 um) is also
obtained by CMT, and the results are demonstrated in Fig. 8. It
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d'/A=0.35

Coupling coefficient [1/mm]
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1 12 14 16 18 2
A
(b)
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Coupling coefficient [1/mm]
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Fig. 4. Coupling coefficient variation as a function of normalized pitch for different values of small hole diameter (a) d'/A = 0.40, (b) d'/A = 0.35, (¢)
d’'/A = 0.30,and (d) d’/A = 0.20 in a multicore PCF with d/A = 0.45. The solid blue curves correspond to horizontal coupling coefficient % ,, whereas the
dashed red curves correspond to vertical coupling coefficient ,,. As the value of small hole diameter reduces, the coupling coefficients curves approach to each

other and after a certain value of d’ /A, the £, becomes smaller than ..

d'/A =023 10

Crossing point
e, =
n S

Coupling coefficient [1/mm]

Fig. 5. Coupling coefficient variation as a function of normalized pitch for
d/A = 0.45 and d'/A = 0.23. The solid blue curve (corresponding to )
and the dashed red curve (corresponding to «., ) cross each other at a particular
pitch value. At this crossing point £, = &,, indicating the complete power
transfer to surrounding cores. The computed pitch value is 2.64 gm at 1550 nm
wavelength.

can be seen from the results that the power get transferred into
surrounding cores at a distance of 5.8 mm, which is in good
agreement with the results calculated through BPM. From these
results, we can say that the assumption that the cross-coupling
coefficient x4 is sufficiently small in comparison to Ky, and &,
is valid in the proposed PCF shown in Fig. 1.

Fig. 9 establishes the scaling rules for the proposed multi-
core PCF structure when the cladding hole diameter d and pitch

BPM analysis |—Central core 1
0.8 |—Horizontal core 2
0.6

0.4

Normalized power

0.2

1000 2000 3000 4000 5000 6000
z [pm]
Fig. 6. Normalized power propagation in the multicore PCF power splitter
(d/A = 0.45,d"/A = 0.23,and A = 2.64 mm) at 1550 nm wavelength

calculated by the BPM simulation. It can be seen that a complete power transfer
occurs at a distance of 5.8 mm.

of fiber are varied, keeping fixed cladding hole diameter d/A.
The solid curves correspond to x-polarization state, whereas the
dashed curves correspond to y-polarization state. The d’/A is
obtained at every pitch value of the corresponding multicore
PCF with fixed d/A and xj, = k,. For small value of the pitch
constant, the d'/A is large and it decreases as we increase the
pitch constant. For large cladding hole diameter, the d’'/A is
large, and it reduces as the cladding hole diameter gets smaller.
It can be clearly seen from the graph that the proposed multi-
core PCF structure shows the polarization dependency. For -
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Fig. 7. Modal field distributions (x-component) of the multicore PCF (d/A = 0.45,d’/A = 0.23, and A = 2.64 mm) coupler (a) at = = 0 mm, and (b) at
z = 5.8 mm at 1550 nm wavelength. It can clearly visualized from the modal field distribution that the power launched in the central core at = = 0 gets completely
transferred in surrounding four cores in a short distance of 5.8 mm, thus validating the operation of the proposed 1 X 4 power splitter.

CMT analysis | —Central core 1

- 0.8 —Horizontal core 2
2 - Vertical core 3
o
206
X
g 0.4
z

0.2

0
0 1000 2000 3000 4000 5000 6000
z[pm]
Fig. 8. Normalized power propagation in the multicore PCF power splitter
(d/A = 0.45,d'"/A = 0.23,and A = 2.64 pm) at 1550 nm wavelength
evaluated by CMT. It can be seen that a complete power transfer occurs at a dis-

tance of 5.8 mm. A good agreement can be observed between the BPM results
and the results obtained from CMT.

0.3
0.28
0.26
0.24 |
0.22
0.20
0.18
0.16

d'/IA

d/A =035

15 20 25 30 35 40 45 50
A [pm]

Fig. 9. Scaling rules for the proposed multicore PCF structure. The pitch and
the cladding hole diameters are varied and correspondingly the values of small
hole diameters are obtained at 1550 nm wavelength. It can be seen from the
results that the proposed multicore PCF exhibits polarization dependency.

and y-polarization states, the coupling coefficients are different,
resulting into different values of small hole diameter.

V. CONCLUDING REMARKS

The power coupling characteristics of a newly designed mul-
ticore PCFs were demonstrated numerically by employing accu-
rate FEM and BPM solvers. The coupled-mode equations have
also derived to compare the power transfer among the neigh-
boring cores with 25% of coupling ratio. The proposed mul-
ticore PCF can split a single input power into four ports with
equal power in each four cores, showing the capability to acts
as 1 x 4 power splitter. Through numerical simulations, it has
been revealed that the power can be divided into four cores in a
5.8-mm-long multicore PCF having d/A = 0.45,d'/A = 0.23,
and A = 2.64 pm at 1550 nm wavelength. We also investigate
the effect of displacement of surrounding cores on the power
splitting characteristics. During the fabrication process, there
may be a slight shift in the location of the surrounding cores,
and this will result into different coupling coefficient. We vary
the coupling coefficient by £2% and observe the power split-
ting characteristics of a 5.8-mm-long multicore PCF. Through
numerical simulations, we find that the power splitting ratio de-
creases to 24.97% from 25%. This indicates that even if the
cores are slightly displaced, the splitting power ratio does not
change so much, and we can divide the incident light into other
four cores by an equal amount.

Scaling rules are established for the proposed multicore PCF.
It has been found that d’/A decreases as the pitch constant in-
creases. For large values of cladding hole diameter, a large d’ /A
is required. However, if we select large-cladding hole diameter,
the fiber may no longer be single mode. It has also been shown
that the proposed multicore PCF design exhibits strong polar-
ization dependency. This polarization dependency arises mainly
by the small hole diameters d’ in the cladding. The proposed
multicore PCF power splitter can be fabricated by following the
same guidelines for fabricating regular PCF structures. After
drawing few meters, the desired length of the proposed PCF
power splitter can be cut. Furthermore, we are working on an al-
ternative design of the proposed multi-core PCF power splitter,
which can be a polarization independent and easier to fabricate.
Such study would be published elsewhere.
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