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We investigate the Kaluza-Klein (KK) spectrum of N =1 supersymmetric gauge theory
compactified on a circle. We concentrate on a model with the gauge group SU(2) and four
massless matter fields in the fundamental representation. We derive the exact mass formula
of KK modes using Seiberg-Witten theory. From the mass formula and the D3-brane probe
realization, we determine the spectrum of the KK modes of the matter fields and gauge
fields. We find that the lightest KK state of the gauge fields is stable in the entire vacuum
moduli space, while the lightest KK state of the matter fields decays more readily than other
KK states in one region of the moduli space. This region becomes small as we decrease the
five-dimensional gauge coupling constant g5, and vanishes in the limit g5 → 0. This result
continuously connects the known KK spectrum in the weak coupling limit and that in the
strong coupling limit.

§1. Introduction

Recently, various four-dimensional models embedded in higher-dimensional
spacetime have been thoroughly investigated.1) Their spectra generally include
Kaluza-Klein (KK) states, which carry nonzero momentum in extra dimensions.
As an example, let us consider a circle compactification of five-dimensional gauge
theory with a massless matter field. The effective four-dimensional theory has a
tower of KK modes of the gauge field, say A

(n)
µ , and of the matter field, say ψ(n),

where n runs over the integers and µ runs over 0, 1, 2, 3. The states A(n)
µ and ψ(n)

possess fifth-dimensional momentum, n/R, where R is the compactification radius.
Therefore A(n)

µ and ψ(n) with nonzero n are KK states. In this paper, we investigate
the stability of KK states.

A state A is kinematically unstable and decays into states B and C when all
the charges are conserved in the decay process and their masses satisfy the inequal-
ity M(A) ≥ M(B) + M(C). In the case of the five-dimensional model mentioned
above, the masses of A(n)

µ and ψ(n) are classically |n| /R. Thus, for n > 1, A(n)
µ

can decay into A(n−1)
µ and A

(1)
µ , and ψ(n) can decay into A(n−1)

µ and ψ(1). Similar
decay processes occur for n < 1. From these considerations, we see that the sta-
ble KK states are A(±1)

µ and ψ(±1). This result is supported by the perturbative
analysis given in Ref. 2), where the above inequality among masses in various mod-
els is evaluated to one-loop order. Nonperturbative behavior of the KK spectrum
was found in the strong coupling limit of a supersymmetric extension of the five-
dimensional model.3) In Ref. 3), the KK spectrum of a circle compactification of
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the five-dimensional N = 1 supersymmetric model with the gauge group SU(2) and
Nf = 5, 6, 7 massless fundamental matter fields is studied in the strong coupling
limit. The four-dimensional effective theory possesses N = 2 supersymmetry, and
then the exact mass formula can be derived by using Seiberg-Witten theory.4) In
addition, the theory has D3-brane probe realization,5) where the inequality is di-
agrammatically evaluated using string junctions.6) Using these techniques, it was
shown that A(n)

µ can decay into A(n−1)
µ and A(1)

µ , similarly to the perturbative result,
while ψ(n−1) decays more readily than ψ(n) in a certain region of the vacuum moduli
space.

Now we know that the perturbative KK spectrum is different from the spectrum
in the strong coupling limit. How does the spectrum change as the five-dimensional
coupling constant g5 varies from 0 to ∞? To answer this question, we shall generalize
the analysis in Ref. 3) to the case with finite g5. In §2, we derive the exact mass
formula for finite g5, using Seiberg-Witten theory. From the mass formula and the
D3-brane probe realization, we determine the stability of KK modes in §3. In this
way, we show that the nonperturbative behavior also appears in the case of finite
coupling constant. As we decrease g5, the region in which the nonperturbative
behavior appears shrinks, and in the limit g5 → 0, it vanishes, and the perturbative
spectrum is reproduced.

§2. Seiberg-Witten solution

2.1. Seiberg-Witten curve

Five-dimensional N = 1 supersymmetric gauge theory compactified on a circle
is effectively described by four-dimensional N =2 supersymmetric gauge theory. It
includes an adjoint complex Higgs scalar field φ as the superpartner of the gauge
field, and it has a vacuum moduli space parametrized by the vacuum expectation
value of φ. The low energy effective Lagrangian and the mass formula are derived
from the Seiberg-Witten curve.4)

For the theory with the gauge group SU(2) and Nf matter fields in the funda-
mental representation, which we refer to as “quarks”, the Seiberg-Witten curve is
written as7)

y2 = x3 + f(u)x+ g(u), (1)

f(u) =
4∑

i=0

aiu
i, g(u) =

6∑
i=0

biu
i, (2)

where u = 〈Tr exp(2πRφ)〉−2,8) a gauge invariant moduli parameter, which takes
values in CP 1. The constants ai and bi depend on the parameters appearing in the
theory such as the five-dimensional coupling constant g5, the compactification radius
R, and the masses of the matter fields mi (i= 1, · · · , Nf ).∗) In this subsection, we

∗) We should introduce a cutoff parameter to define five-dimensional gauge theories, because

they are not renormalizable. Here we formally turn off the parameter by taking a low energy limit.

Divergent terms could appear in this limit, but we discard them.
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determine these constants. For simplicity, let us assume Nf =4 and mi =0 for all i.
In this case, the moduli space becomes simple, because the four-dimensional limit of
the theory is conformal and the dynamically generated scale Λ does not appear.

The zero points of the discriminant of (1),

∆(u) = 4f(u)3 + 27g(u)2, (3)

are determined from the global symmetry.9) The correspondence between the global
symmetry and the zeros of the ∆(u) is presented in Refs. 10) and 11). Because our
model possesses the flavor symmetry SO(8), we find that a0 and b0 should vanish
and ∆(u) is proportional to u6.10) In addition, the symmetry is extended to broken
affine SO(8).12) This is because the states possess not only SO(8) charges but also
the KK charge n. In other words, an SO(8) multiplet has copies labeled by integers
n. This is precisely the structure of affine SO(8) multiplets. The affine symmetry
is broken at the scale 1/R, because the copies have different masses. The broken
affine symmetry requires two additional zero points.11) From these restrictions, we
conclude that the curve of our model is that defined by

y2 = x3 +
{
a2 + u

(
a3 − 3u

L4

)}
u2x

+
L6

216

(
a3 − 6u

L4

){
a2

3 +
24a3u

L4
+

36
L4

(
a2 − 2u2

L4

)}
u3. (4)

To simplify this curve, we scale and shift the variables as

y → 1
24

√
3
y, x→ 1

12

{
x− L2

3

(
a3 − u

L4

)
u

}
, u→ 1

6
u (5)

and set a3 = b/L2 and a2 = (3c2 − b2)/12. In this way we obtain the simple form

y2 = x3 +
( u
L2

− b
)
ux2 + c2u2x. (6)

Then the discriminant is given by

∆(u) = c4u6
{
u− (b+ 2c)L2

}{
u− (b− 2c)L2

}
. (7)

Next we consider the constants b, c and L. They are functions of g5 and R. In
the following, we derive explicit forms of the functions by matching the curve (6)
with these existing in two limits. We choose R/g2

5 and R as independent variables
and complexify R/g2

5 to τ = 4πiR/g2
5 +θ/2π, the bare coupling constant of the four-

dimensional effective theory. The parameter θ comes from a background Abelian
gauge field.13)

Firstly, we consider the limit R → 0 with fixed τ . In this limit, the theory
reduces to the four-dimensional N = 2 SU(2) gauge theory with Nf = 4 massless
quarks and the coupling constant τ . Its Seiberg-Witten curve is given by4)

y2 = x3 − 1
4
g2(τ)u2x− 1

4
g3(τ)u3, (8)
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where g2(τ) and g4(τ) are the following Eisenstein series:

g2(τ) =
60
π4

∑
(m,n)∈Z2

�=0

1
(m+ nτ)4

, g4(τ) =
140
π6

∑
(m,n)∈Z2

�=0

1
(m+ nτ)6

. (9)

The mass dimensions of y, x and u in (8) are 3, 2 and 2, respectively. Setting the
same mass dimensions in (6), we find that the mass dimensions of b and c are 0 and
that of L is 1. Hence b and c depend only on τ , and therefore L can be written
as 1/R times a function of τ , say f(τ). The function f(τ) is removed from the
curve by scaling parameters as u→ f(τ)u, b→ b/f(τ) and c→ c/f(τ). Altogether,
rearranging the curve (6) yields the following equation:

y2 = x3 +
(
R2u− b

)
ux2 + c2u2x. (10)

Now we take the limitR→ 0 in (10) and compare with (8). Shifting x as x→ x−bu/3
in (8), we find

b = −3ei(τ), (11)

c2 = 3e2i (τ) + e1(τ)e2(τ) + e2(τ)e3(τ) + e3(τ)e1(τ). (12)

Here ei(τ) (i=1, 2, 3) are the solutions of the equation x3 − g2(τ)x/4− g3(τ)/4 = 0.
They are written as

e1(τ) =
1
3
(−θ4

1(τ) + 2θ4
3(τ)),

e2(τ) =
1
3
(−θ4

1(τ) − θ4
3(τ)),

e3(τ) =
1
3
(2θ4

1(τ) − θ4
3(τ)), (13)

where θ1 and θ3 are

θ1(τ) =
∑
n∈Z

eiπτ(n+1/2)2, θ3(τ) =
∑
n∈Z

eiπτn2
. (14)

Secondly, we consider the limit g5 → ∞ with θ = 0 and fixed R. In this limit,
the flavor symmetry SO(8) is enhanced to E5,13) and the curve should be7),12)

y2 = x3 + (R2u− 4)ux2 + 4u2x. (15)

Now, we take the limit of the curve (10). From (13), (14), and the relations e1(τ) =
e2(−1/τ)/τ2, e2(τ) = e1(−1/τ)/τ2 and e3(τ) = e3(−1/τ)/τ2, we see that e1(τ) ∼
−1/3τ2, e2(τ) ∼ 2/3τ2 and e3(τ) ∼ −1/3τ2 in this limit. Thus b ∼ 1/τ2 and c2 ∼ 0
when i in (11) and (12) is 1 or 3, while b ∼ 2/τ2 and c2 ∼ 1/τ4 for i=2. In the former
case, we cannot make (10) coincide with (15). In the latter case, we can make it
coincide by scaling the parameters as x→ x/4τ4, y → y/8τ6 and u→ u/2τ2. Then
we choose i=2 in (11) and (12). Thus we have

b = θ4
1(τ) + θ4

3(τ), (16)

c = θ2
1(τ)θ

2
3(τ). (17)
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In summary, the Seiberg-Witten curve of our model is defined by (10), where b
and c are given by (16) and (17). Its discriminant is (7) with L= 1/R. The zero
points of ∆(u) are located at u=0 and (b± 2c)/R2. It is known that extra massless
states appear at each zero point.4) For simplicity, we set R=1 in the following.

2.2. Mass formula

From the Seiberg-Witten curve (10), we derive the mass formula of stable states
called BPS states. For this purpose, we derive the periods of the curve,

Π(u) =
(
ωD(u)
ω(u)

)
=

(∮
β

dx
y∮

α
dx
y

)
, (18)

where α and β are the homology cycles on the torus given by (10) with fixed u.
The periods Π(u) are determined from the Picard-Fuchs equation,{
d2

du2
+

3u2 − 4bu+ b2 − 4c2

u(u− b− 2c)(u− b+ 2c)
d

du
+

4u2 − 2bu− b2 + 4c2

4u2(u− b− 2c)(u− b+ 2c)

}
Π(u) = 0.

(19)
Setting Π(u) = u−1/2k(w) with w = −{u− (b+ 2c)} /4c, this equation becomes

d2k

dw2
+

1 − 2w
w(1 − w)

dk

dw
− 1/4
w(1 − w)

k = 0. (20)

This is the standard hypergeometric equation with α = β = 1/2 and γ = 1. It has
two independent solutions,

K(w) =
∫ i∞

−i∞
ds

2πi

{
Γ (−s)Γ

(
1
2

+ s

)}2

(1 − w)s, (21)

K ′(w) =
∫ i∞

−i∞

ds

2πi

{
Γ (−s)Γ

(
1
2

+ s

)}2

ws. (22)

Series expansions of K(w) and K ′(w) for |w| < 1, |1 − w| < 1 and |1/w| < 1 are
easily derived. For instance, the expansions for |w|<1 are

K(w) = π
∞∑

n=0

{
Γ (1

2 + n)
n!

}2

wn, (23)

K ′(w) = −
∞∑

n=0

{
Γ (1

2 + n)
n!

}2

wn

{
logw + 4

n−1∑
r=0

(
1

2r + 1
− 1

2r + 2

)
− 2 log 4

}
.

(24)

The periods are given by linear combinations of the functions

Π(u) = u−
1
2

(
c1 c2
c3 c4

)(
K(w)
K ′(w)

)
. (25)

The coefficients c1, · · · , c4 are determined by direct calculation of the elliptic integrals
(18) for |w| < 1 and comparing the result with the expansions (23) and (24). We
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obtain (
c1 c2
c3 c4

)
=

1√
c π2

(
2π 0

−π − 2i log 4 −iπ
)
. (26)

The periods undergo monodromy around the zeros of ∆(u). The monodromy
matrices acting on Π(u) around u=0, b− 2c and b+ 2c are

M0 =
(−1 0

0 −1

)
, M− =

(
3 4
−1 −1

)
, M+ =

(
1 0
−1 1

)
, (27)

respectively. From these matrices, we can determine the kinds of states that become
massless at the zeros; when the monodromy matrix around a first-order zero is

M(p,q) =
(

1 − pq p2

−q2 1 + pq

)
, (28)

a state (p, q) whose electric and magnetic charges of unbroken U(1) gauge symme-
try are p and q, respectively, becomes massless. Thus we see that (2,−1) becomes
massless at u= b − 2c and (0, 1) at u= b + 2c. Moreover, six states become mass-
less simultaneously at u = 0, the sixth order zero. Because M0 is expressed as
M4

(1,0)M(2,−1)M(0,1), the massless states are (2,−1), (0, 1) and four (1, 0).
Now we can write down the mass formula. It is described by the integration of

the periods over u.4) Each bound of the integrals is chosen so as to reproduce the
extra massless states at the zero points correctly. Then the mass formula of a state
with electric and magnetic charges (p, q) and the charges of broken affine symmetry
related to the singularities at u=b± 2c, say n1 and n2, is given by

M(p,q,n1,n2)(u) =
∣∣Z(p,q,n1,n2)(u)

∣∣ , (29)

Z(p,q,n1,n2)(u) = pa(u) − qaD(u) + n1s1 + n2s2, (30)

where

aD(u) =
∫ u

0
ωD(u′)du′, (31)

a(u) =
∫ u

0
ω(u′)du′, (32)

s1 =
∫ b+2c

0
ωD(u)du = 8π arcsin

√
b+ 2c

4c
, (33)

s2 = −
∫ b−2c

0
{2ω(u) + ωD(u)} du = 8π arcsin

√
b− 2c

4c
. (34)

In the following, we report the results of evaluations of the values of a and aD

using numerical integration with Mathematica. For simplicity, we assume θ = 0.
Then b and c are real, c > 0 and b > 2c. Hence the zeros of ∆(u), u = 0, b− 2c and
b + 2c, are aligned from the left on the real axis of the u-plane. We set the branch
cuts of aD and a from these zeros to ∞ along the real axis as depicted in Fig. 1.
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 0

 0

u=0 u=b-2c u=b+2c

Fig. 1. Three brunch cuts.

When we cross each cut from the
lower half u-plane, t(aD(u), a(u), s1, s2)
is changed by the matrices and we have

M̃0 =
(−1 0 0 0

0 −1 0 0
0 0 1 0
0 0 0 1

)
,

M̃− =
(−1 −4 −2 0

1 3 1 0
0 0 1 0
0 0 0 1

)
,

M̃+ =
(

1 0 0 0
1 1 0 −1
0 0 1 0
0 0 0 1

)
(35)

for the cut from u = 0, b − 2c and b +
2c, respectively. To conserve (30), we
should change the charges t(p, q, n1, n2)
simultaneously. The matrices acting on
t(p, q, n1, n2) are given by

K0 =
(−1 0 0 0

0 −1 0 0
0 0 1 0
0 0 0 1

)
,

K− =
(−1 −4 0 0

1 3 0 0−1 −2 1 0
0 0 0 1

)
,

K+ =
(

1 0 0 0
1 1 0 0
0 0 1 0−1 0 0 1

)
. (36)

§3. Stability of KK modes

Four-dimensional theory described by Seiberg-Witten curve (1) appears in type
IIB string theory as the world volume theory of a D3-brane probe in a 7-brane
background.5) In our model, we employ the background constructed from six 7-
branes [1, 0]4[2,−1][1, 0] at z=0, a 7-brane [2,−1] at z=b− 2c, and a 7-brane [0, 1]
at z=b+2c. Here z is a complex coordinate of the space transverse to the 7-branes,
[1, 0] denotes a D7-brane, and [p, q] denotes an SL(2, Z)-dual 7-brane.14) The metric
on the z-plane is given by15)

ds2 = Im τ̃(z)
∣∣∣∣da(z)dz

dz

∣∣∣∣2 , (37)

where τ̃(z) = daD(z)/da(z). In this background, the world volume theory of a D3-
brane probe located at z = u is our model with the moduli parameter u. States of
the model correspond to strings ending on the D3-brane. Therefore, the spectrum of
states corresponds to the spectrum of strings which can end on the D3-brane probe.
Then to find the spectrum of KK modes, we study the spectrum of corresponding
strings.

In IIB string theory, there appear a fundamental string, (1, 0), and its SL(2, Z)-
dual strings, (p, q). The ends of a string (p, q) are located on a D3-brane or a 7-brane
with the same charges, [p, q]. In addition, strings can merge with each other and
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form a string junction.14) Thus there are three kinds of strings ending on the D3-
brane probe: a string connecting a 7-brane and the D3-brane, a string with both
ends on the D3-brane, and a string emanating from a string junction and ending on
the D3-brane. Some strings are related to string junctions transitionally, due to the
string creation at 7-branes.16) In any case, a string (p, q) ending on the D3-brane
is detected as a state with electric charge p and magnetic charge q. In particular, a
string (1, 0) connecting [1, 0] at z = 0 and the D3-brane corresponds to a quark, and
a string (1, 0) with both ends on the D3-brane corresponds to a gauge field. The
winding number of a string around the 7-branes is equivalent to the KK charge n.17)

To be stable, a string stretches along a geodesic that minimizes the string mass.
The mass of a string (p, q) along a curve C is given by∫

C
T(p,q)ds =

∫ ∣∣dZ(p,q,0,0)

∣∣ , (38)

where T(p,q) = |p− qτ̃ | /√Im τ̃ , the tension of (p, q).14) In order to minimize this
quantity, points on a geodesic emanating from z=z0 must satisfy the equation

Arg
{
Z(p,q,0,0)(z) − Z(p,q,0,0)(z0)

}
= φ. (39)

Here φ is a constant between 0 and 2π. It takes the same value for geodesics of the
strings in a stable junction.6) Therefore, the mass of a string junction constructed
from n1(2,−1) from z=b− 2c, n2(0, 1) from z=b+ 2c, (p− 2n1, q + n1 − n2) from
z = 0 and an outgoing string (p, q) coincides with (29) when the outgoing string
ends on the D3-brane at z = u. Thus the junction corresponds to a state with the
charges (p, q, n1, n2). Note that the geodesic equation of the outgoing string (p, q) is
rewritten as

Arg{Z(p,q,n1,n2)(z)} = φ. (40)

Hereafter, we refer to the string satisfying (40) as (p, q, n1, n2). When a string
(p, q, n1, n2) crosses branch cuts, it undergoes monodromy described by the matrices
(36).

We note that φ parameterizes the direction of geodesics. As φ varies, the geodesic
(39) moves around the point z = z0 and sweeps some region in the z-plane. When
this region includes a point z=u, the string can end on the D3-brane probe at z=u
and is detected as a stable state. Therefore, the region in the z-plane through which
the geodesic of a string passes corresponds to the region in the moduli u-plane where
the corresponding state is stable.6) With this in mind, in the following, we seek the
regions of KK modes of quarks ψ(n), unbroken U(1) gauge fields A(n)

µ and W -bosons
W

(n)
µ by evaluating (39) and (40) for corresponding strings. In the following, we

assume b− 2c=4 and b+ 2c=6, unless explicitly stated otherwise.

3.1. Quarks

We now consider the cases of quarks. First, we consider ψ(0). It corresponds to
a string (1, 0) emanating from z=0, that is, (1, 0, 0, 0). The geodesics for various φ
are evaluated as depicted in Fig. 2. From that figure, we see that the string sweeps
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φ=3πi/24

φ=5πi/24φ=7πi/24
φ=9πi/24

φ=11πi/24

φ=37πi/24

φ=39πi/24

φ=41πi/24 φ=43πi/24

φ=45πi/24

φ=47πi/24

Fig. 2. The string that corresponds to a quark KK zero mode ψ(0) sweeps out the entire of the

z-plane. This result implies that ψ(0) is stable for any value of the moduli parameter u.

the entire z-plane. Thus, we can conclude that ψ(0) is stable in the entire moduli
u-plane.

Secondly, we consider ψ(1). It corresponds to a string (1, 0, 0, 0) going around
the 7-branes once in the counterclockwise direction. The string crosses the branch
cuts in the region satisfying Re z > b + 2c. Then the charges are changed to
K+K−K0

t(1, 0, 0, 0) = t(1, 0, 1, 1), as depicted in Fig. 3(A). Thus, ψ(1) corresponds to
a string (1, 0, 1, 1). The string sweeps a region in the first quadrant of the z-plane as
we increase φ. Moreover, as depicted in Figs. 3(B)–(C), the string hits the 7-brane
[0, 1] at z = b + 2c and becomes a string junction. The detailed configuration near
the merging point of the strings is shown in Fig. 4. The junction is constructed from
three strings: (1,−1, 1, 0), which comes from (1, 0, 0, 0) crossing the cuts between
z=0 and z=b− 2c, (0, 1, 0, 1) emanating from [0, 1] at z=b+ 2c, and the outgoing
string (1, 0, 1, 1). As we increase φ further, the merging point draws a curve C1, as
shown in Fig. 4, and (1, 0, 1, 1) sweeps outside the region S1 surrounded by C1 and
the real axis. Thus, ψ(1) is stable outside S1 in the moduli u-plane and disappears
inside it. In addition, when the D3-brane is located on C1, (1, 0, 1, 1) can decay into
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Fig. 3. The string geodesics corresponding to ψ(n). The string (1, 0, n, n) corresponds to the quark

ψ(n). Here, we show the strings up to n = 8. In Figs. 3(A)–(F), some string junctions are

constructed. (For details, see Fig. 4.)

(0, 1, 0, 1) and (1,−1, 1, 0). Thus ψ(1) becomes marginally stable when the moduli
parameter u is on C1.

Thirdly, we consider ψ(2). It corresponds to (1, 0, 2, 2), which comes from a string
(1, 0, 1, 1) going around the 7-branes once more (see Figs. 3(C)–(D)). As depicted in
Fig. 3(E), the string hits the 7-brane at z=b+ 2c again and becomes a complicated
string junction. As we increase φ, the merging point of the strings draws a curve
C2, and (1, 0, 2, 2) sweeps outside the region S2 surrounded by C2 and the real axis.
Thus, ψ(2) is stable outside the region and disappears inside it. Note that the merging
point is apparently below C1. Consequently, S2 is inside S1, as shown in Fig. 5.

On the basis of these observations, we next consider ψ(n) (n≥ 3). In general,
ψ(n) corresponds to a string (1, 0, n, n), which appears as (1, 0, n−1, n−1) crosses the
branch cuts in the region satisfying Re z>b+ 2c. The string hits [0, 1] at z=b+ 2c,
and an additional string (0, 1, 0, 1) is created. The merging point of the strings draws
a curve Cn, which connects z = b ± 2c in the upper half u-plane, as we increase φ.
Simultaneously, (1, 0, n, n) sweeps outside the region Sn surrounded by Cn and the
real axis. Thus, ψ(n) appears outside Sn and disappears inside it. The region Sn is
inside Sn−1, as shown in Fig. 5. Therefore, the quarks ψ(n) disappear in increasing
order of n as we change the moduli parameter from a value above C1 to the segment
[b− 2c, b+2c]. Similar analysis can be done for ψ(n) with negative n. It corresponds
to a string (1, 0, 0, 0) going around the 7-branes |n| times in the clockwise direction.
We can derive the curve of marginal stability for ψ(n) and obtain the mirror image of
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Fig. 4. The enlarged illustrations of a string junction with the outgoing string (1, 0, 1, 1). We

illcustrate the point where the strings merge by a blob ◦. Connecting these blobs, we get a

curve stretched from the 7-brane at z= b + 2c (=6) to the one at z= b − 2c (=4). We call this

curve C1, the curve of marginal stability for ψ(1).

that for ψ(−n) with respect to the real axis in the u-plane. These results are similar
to the quark KK spectrum in the strong coupling limit, g5 → ∞.3)

Now we determine the g5 dependence of the quark KK spectrum. From (16)
and (17), we see that the positions of the singularities, z= b ± 2c, depend on g5, as
shown in Fig. 6. The distance between the singularities becomes small as we decrease
g5. Then the curves of marginal stability, which connect the two singularities, also
become small. As an example, we plot the curve of ψ(1) for g5 =3, 4, 5, 6 in Fig. 7.
This curve shrinks to a point in the limit g5 → 0, where the two singularities at
z=b± 2c collide. Therefore, the nonperturbative jumps of the quark KK spectrum
disappear in this limit, as suggested by the perturbative analysis. Contrastingly, in
the limit g5 → ∞, z=b− 2c coincides with z=0. Therefore the quark KK spectrum
in the strong coupling limit is reproduced.

3.2. W -bosons

Next we consider W (0)
µ . It corresponds to the string (1, 0) emanating from the

D3-brane going around the 7-branes at z=0, and coming back to the D3-brane. The
string crosses the branch cut from z=0 and becomes a string (−1, 0) because of the
monodromy. Both the geodesic of (1, 0) and that of (−1, 0) are the same as that of
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Fig. 5. The marginal stability curves for ψ(n) (1 ≤ n ≤ 7). Here we also set z ± 2c = 6, 4.
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Fig. 6. The positions of the two singularities

at z=b±2c depend on g5, and they collide

in the limit g5 → 0. The singularity z =

b − 2c collides with that at z = 0 in the

strong coupling limit, g5 → ∞.

(1, 0, 0, 0), the string corresponding to
ψ(0). Therefore, the region where the
geodesic for W (0)

µ sweeps is the same as
that for ψ(0). Hence the stability ofW (0)

µ

is the same as that of ψ(0); it is stable
for the entire moduli u-plane. In addi-
tion, the KK state W (n)

µ corresponds to
the string corresponding to W (0)

µ which
goes around the 7-branes n times in the
counterclockwise direction. The string
has the same geodesic for ψ(n). Thus we
conclude that W (n)

µ is stable outside Sn

and disappears inside it.

3.3. Unbroken U(1) gauge bosons

Before concluding this paper, we
consider unbroken U(1) gauge bosons. We start with A

(0)
µ . It corresponds to the

string (1, 0) localized on the D3-brane probe at z= u. Because this string appears
for any value of u, A(0)

µ is stable over the entire u-plane.
Next we consider A(1)

µ . It corresponds to the string (1, 0) emanating from the
D3-brane probe, going around all the 7-branes once in the counterclockwise direction,
and coming back to the D3-brane. The geodesic equation is given by

Arg{a(z) − a(x)} = 0, (41)

where x is a point through which the string passes. The geodesics for various x are
loops, as shown in Fig. 8. As we decrease x from ∞ to b + 2c, the loop becomes
small. When x = b + 2c, the loop hits the 7-brane at z = b + 2c and becomes a
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Fig. 8. The string geodesics corresponding to the lightest gauge KK state A
(1)
µ .

string junction, as depicted in Fig. 8(B). As we decrease x from b + 2c to b − 2c,
the loop part of the junction collapses to a straight line, as depicted in Fig. 8(C).
In any case, when the D3-brane is located on the loop, the junction cannot decay,
and is observed as a stable A(1)

µ . Because the loop sweeps the entire z-plane, except
the segment between z=0 and z=b+ 2c, A(1)

µ is stable in the entire u-plane except
on that segment. If the D3-brane is located on this segment, the junction can decay
into two parts. Thus this segment is the marginal stability curve of A(1)

µ .
Finally, we consider A(n)

µ (n > 1). This corresponds to a string (1, 0) going
around the 7-branes n times. This string corresponds to n loop strings or loop string
junctions derived for A(1)

µ . Thus, A(n)
µ can decay into n A

(1)
µ for any value of u.

Similarly, it can be shown that A(−1)
µ is stable in the entire u-plane, except on the

segment between z=0 and z=b+ 2c, and A(−n)
µ (n > 1) can decay into n A(−1)

µ for
any value of u.
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